organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Azido-1-(4-nitro­phen­yl)ethanone

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Karachi, Karachi, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 28 April 2012; accepted 10 May 2012; online 31 May 2012)

In the title compound, C8H6N4O3, the ketone [C—C(=O)—C] and nitro groups are tilted with respect to the benzene ring by 18.92 (6) and 24.11 (15)°, respectively. In the crystal, mol­ecules are linked into inter­woven chains running parallel to the [100] direction by C—H⋯N hydrogen bonds and weak ππ stacking inter­actions, with centroid–centroid separations of 3.897 (3) Å.

Related literature

For the crystal structure of the related compound 2-azido-1-(4-fluoro­phen­yl)ethanone, see: Yousuf et al. (2012[Yousuf, S., Arshad, M., Butt, H. M., Saeed, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1268.]). For the biological activities of triazoles, see: Genin et al. (2000[Genin, M. J., et al. (2000). J. Med. Chem. 43, 953-970.]); Parmee et al. (2000[Parmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111-2114.]); Koble et al. (1995[Koble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131-4134.]); Moltzen et al. (1994[Moltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085-4099.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N4O3

  • Mr = 206.17

  • Orthorhombic, P c a 21

  • a = 7.6307 (5) Å

  • b = 9.5168 (6) Å

  • c = 12.4097 (8) Å

  • V = 901.19 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 273 K

  • 0.50 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.987

  • 4914 measured reflections

  • 1649 independent reflections

  • 1461 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.06

  • 1649 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 767 Friedel pairs

  • Flack parameter: 0.2 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯N2i 0.97 2.48 3.422 (3) 165
Symmetry code: (i) [x+{\script{1\over 2}}, -y+1, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was obtained as intermediate during an attempt to synthesize new triazoles, an important class of organic compounds with a wide range of biological activities (Genin et al., 2000; Parmee et al., 2000; Koble et al., 1995; Moltzen et al., 1994).

The structure of the title compound (Fig. 1) is similar to that of our recently published compound 2-azido-1-(4-fluorophenyl)ethanone (Yousuf et al., 2012) with the difference that the fluorophenyl ring is replaced by a nitrobenzene ring. The benzene ring forms dihedral angles of 18.92 (6) and 24.11 (15)° with the planes through the ketone (O3/C3/C7/C8) and nitro (N1/O1/O2) groups, respectively. The azide group is not linear (N3–N2–N1 = 171.7 (2)°). The bond lengths and angle are similar to those found in the previously reported compound (Yousuf et al., 2012). The crystal structure is stabilized by intermolecular C—H···N (Table 1) hydrogen bonds and ππ stacking interactions (centroid-to-centroid separations of 3.897 (3) Å) forming interwoven chains parallel to the a axis (Fig. 2).

Related literature top

For the crystal structure of the related compound 2-azido-1-(4-fluorophenyl)ethanone, see: Yousuf et al. (2012). For the biological activities of triazoles, see: Genin et al. (2000); Parmee et al. (2000); Koble et al. (1995); Moltzen et al. (1994).

Experimental top

1-(4-Nitrophenyl)ethanone (6.05 mmoL, 1.0 eq.) was dissolved in acetonitrile (18 ml) in a round bottom flask. To the stirred mixture, p-toluene sulphonic acid (9.08 mmoL, 1.5 eq.) and N-bromosuccinimide (8.48 mmol, 1.4 eq.) were added, and then heated to reflux for 1 to 1.5 h until TLC analysis showed no starting material present in the mixture. The reaction mixture was cooled to room temperature, sodium azide (18.16 mmoL, 3.0 eq.) was added and further stirred for 2 to 3 hrs followed by the addition of the ice cooled water to quench the reaction. The reaction mixture was extracted with diethyl ether (2 × 25 ml) and the combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated in vacuum to get the crude product. The crude product was purified by flash silica gel chromatography (EtOAc/hexane 1/9–3/7 v/v) to afford the title compound in 70% yield. Recrystallization from ethanol afforded crystals suitable for single-crystal X-ray studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

Methylene and aromatic H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). 765 Friedel pairs were not merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.
2-Azido-1-(4-nitrophenyl)ethanone top
Crystal data top
C8H6N4O3F(000) = 424
Mr = 206.17Dx = 1.520 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c 2acCell parameters from 1557 reflections
a = 7.6307 (5) Åθ = 3.3–24.2°
b = 9.5168 (6) ŵ = 0.12 mm1
c = 12.4097 (8) ÅT = 273 K
V = 901.19 (10) Å3Block, colourles
Z = 40.50 × 0.23 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1649 independent reflections
Radiation source: fine-focus sealed tube1461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.942, Tmax = 0.987k = 1111
4914 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.0663P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1649 reflectionsΔρmax = 0.11 e Å3
136 parametersΔρmin = 0.11 e Å3
1 restraintAbsolute structure: Flack (1983), 767 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (14)
Crystal data top
C8H6N4O3V = 901.19 (10) Å3
Mr = 206.17Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 7.6307 (5) ŵ = 0.12 mm1
b = 9.5168 (6) ÅT = 273 K
c = 12.4097 (8) Å0.50 × 0.23 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1649 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1461 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.987Rint = 0.020
4914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.11 e Å3
S = 1.06Δρmin = 0.11 e Å3
1649 reflectionsAbsolute structure: Flack (1983), 767 Friedel pairs
136 parametersAbsolute structure parameter: 0.2 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9428 (3)1.19359 (17)0.40028 (13)0.0815 (5)
O20.9798 (2)1.30833 (17)0.54808 (15)0.0744 (5)
O30.6676 (2)0.72287 (15)0.81581 (12)0.0673 (4)
N10.9448 (2)1.20158 (19)0.49879 (14)0.0553 (5)
N20.7720 (3)0.45389 (18)0.76819 (14)0.0603 (5)
N30.8183 (2)0.45144 (17)0.86298 (15)0.0553 (4)
N40.8503 (3)0.4344 (2)0.95022 (17)0.0740 (6)
C10.9238 (2)0.9459 (2)0.51250 (14)0.0478 (5)
H1A0.96570.93880.44230.057*
C20.8824 (3)0.8273 (2)0.57102 (15)0.0472 (5)
H2B0.89910.73890.54070.057*
C30.8160 (2)0.83847 (19)0.67466 (14)0.0418 (4)
C40.7943 (2)0.9715 (2)0.71966 (14)0.0474 (5)
H4A0.74890.97960.78890.057*
C50.8386 (2)1.0906 (2)0.66373 (16)0.0482 (4)
H5A0.82641.17910.69460.058*
C60.9017 (2)1.0752 (2)0.56038 (14)0.0438 (4)
C70.7632 (3)0.7125 (2)0.73869 (14)0.0459 (4)
C80.8367 (3)0.57217 (19)0.70483 (15)0.0520 (5)
H8A0.80790.55630.62970.062*
H8B0.96340.57540.71070.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1121 (14)0.0726 (11)0.0598 (10)0.0001 (10)0.0104 (9)0.0177 (8)
O20.0870 (11)0.0473 (9)0.0889 (12)0.0090 (8)0.0091 (10)0.0089 (9)
O30.0804 (11)0.0609 (9)0.0606 (8)0.0032 (7)0.0250 (8)0.0022 (7)
N10.0540 (10)0.0514 (12)0.0607 (12)0.0034 (8)0.0015 (9)0.0086 (9)
N20.0725 (12)0.0476 (10)0.0607 (10)0.0110 (9)0.0118 (9)0.0040 (8)
N30.0606 (11)0.0435 (9)0.0617 (11)0.0068 (8)0.0014 (9)0.0033 (8)
N40.0883 (14)0.0733 (14)0.0603 (11)0.0078 (11)0.0024 (11)0.0088 (10)
C10.0507 (10)0.0538 (13)0.0390 (9)0.0025 (9)0.0020 (8)0.0012 (9)
C20.0520 (10)0.0424 (11)0.0472 (10)0.0023 (9)0.0000 (9)0.0059 (8)
C30.0402 (9)0.0447 (11)0.0406 (9)0.0012 (8)0.0020 (8)0.0021 (8)
C40.0498 (10)0.0512 (12)0.0413 (9)0.0013 (9)0.0033 (8)0.0052 (9)
C50.0510 (10)0.0419 (11)0.0516 (10)0.0002 (8)0.0032 (9)0.0080 (9)
C60.0399 (9)0.0439 (11)0.0475 (9)0.0005 (8)0.0050 (8)0.0046 (9)
C70.0460 (9)0.0490 (11)0.0426 (9)0.0047 (9)0.0030 (9)0.0025 (8)
C80.0594 (12)0.0456 (12)0.0510 (10)0.0008 (10)0.0012 (10)0.0031 (9)
Geometric parameters (Å, º) top
O1—N11.225 (2)C2—H2B0.9300
O2—N11.216 (2)C3—C41.393 (3)
O3—C71.207 (2)C3—C71.493 (3)
N1—C61.462 (2)C4—C51.372 (3)
N2—N31.229 (2)C4—H4A0.9300
N2—C81.459 (2)C5—C61.378 (3)
N3—N41.122 (2)C5—H5A0.9300
C1—C61.377 (3)C7—C81.508 (3)
C1—C21.379 (3)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.386 (2)
O2—N1—O1123.83 (18)C3—C4—H4A119.4
O2—N1—C6118.28 (16)C4—C5—C6118.00 (18)
O1—N1—C6117.89 (18)C4—C5—H5A121.0
N3—N2—C8115.67 (17)C6—C5—H5A121.0
N4—N3—N2171.7 (2)C1—C6—C5122.64 (18)
C6—C1—C2118.44 (17)C1—C6—N1118.80 (16)
C6—C1—H1A120.8C5—C6—N1118.55 (18)
C2—C1—H1A120.8O3—C7—C3121.29 (19)
C1—C2—C3120.62 (18)O3—C7—C8121.17 (19)
C1—C2—H2B119.7C3—C7—C8117.52 (15)
C3—C2—H2B119.7N2—C8—C7114.03 (16)
C2—C3—C4119.02 (17)N2—C8—H8A108.7
C2—C3—C7122.04 (17)C7—C8—H8A108.7
C4—C3—C7118.93 (15)N2—C8—H8B108.7
C5—C4—C3121.25 (16)C7—C8—H8B108.7
C5—C4—H4A119.4H8A—C8—H8B107.6
C8—N2—N3—N4176.5 (17)O2—N1—C6—C1156.72 (18)
C6—C1—C2—C31.5 (3)O1—N1—C6—C123.6 (2)
C1—C2—C3—C41.0 (3)O2—N1—C6—C524.0 (2)
C1—C2—C3—C7177.54 (16)O1—N1—C6—C5155.73 (18)
C2—C3—C4—C50.6 (3)C2—C3—C7—O3161.46 (19)
C7—C3—C4—C5179.14 (16)C4—C3—C7—O317.1 (3)
C3—C4—C5—C61.5 (3)C2—C3—C7—C819.8 (2)
C2—C1—C6—C50.6 (3)C4—C3—C7—C8161.67 (16)
C2—C1—C6—N1179.83 (16)N3—N2—C8—C767.2 (3)
C4—C5—C6—C10.9 (3)O3—C7—C8—N24.1 (3)
C4—C5—C6—N1178.33 (16)C3—C7—C8—N2177.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···N2i0.972.483.422 (3)165
Symmetry code: (i) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H6N4O3
Mr206.17
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)273
a, b, c (Å)7.6307 (5), 9.5168 (6), 12.4097 (8)
V3)901.19 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.942, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4914, 1649, 1461
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.06
No. of reflections1649
No. of parameters136
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.11
Absolute structureFlack (1983), 767 Friedel pairs
Absolute structure parameter0.2 (14)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···N2i0.97002.48003.422 (3)165.00
Symmetry code: (i) x+1/2, y+1, z.
 

Footnotes

Additional corresponding author, e-mail: bashafz@gmail.com.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGenin, M. J., et al. (2000). J. Med. Chem. 43, 953–970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131–4134.  PubMed Web of Science Google Scholar
First citationMoltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085–4099.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationParmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousuf, S., Arshad, M., Butt, H. M., Saeed, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1268.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds