metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[{μ4-2,2′-[butane-1,4-diylbis(sulfanedi­yl)]bis­­(1,3,4-thia­diazole)}silver(I)] perchlorate sesquihydrate]

aCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: zhuwm@zzu.edu.cn

(Received 30 April 2012; accepted 19 May 2012; online 31 May 2012)

In the polymeric title compound, {[Ag(C8H10N4S4)]ClO4·1.5H2O}n, the AgI atom has a slightly distorted trigonal-planar coordination geometry provided by three N-atom donors from the thia­diazole rings of three symmetry-related 2,2′-[butane-1,4-diylbis(sulfanedi­yl)]bis­(1,3,4-thia­diazole) ligands. Centrosymmetrically related AgI atoms are bridged by the N–N fragments of rings, forming six-membered dinuclear metallacycles, which are further linked by the alkyl spacers of the thia­diazole ligands into a layer network extending parallel to (0-21). The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds. The O atoms of the perchlorate anion and one water mol­ecule are disordered over two sets of sites with refined occupancy ratios of 0.640 (6):0.360 (6) and 0.663 (11):0.337 (11), respectively. The second water molecule shows half-occupancy.

Related literature

For related polymeric AgI complexes, see: Yu et al. (2006[Yu, J. H., Ding, C. J., Han, K. F., Zhang, S. W. & Guo, H. Y. (2006). Chin. J. Inorg. Chem. 22, 607-611.]); Wang & Ma (2007[Wang, C. C. & Ma, H. Y. (2007). Z. Kristallogr. New Cryst. Struct. 222, 101-104.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C8H10N4S4)]ClO4·1.5H2O

  • Mr = 524.79

  • Triclinic, [P \overline 1]

  • a = 10.076 (12) Å

  • b = 10.08 (2) Å

  • c = 10.137 (12) Å

  • α = 92.02 (2)°

  • β = 119.727 (14)°

  • γ = 94.20 (2)°

  • V = 889 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 291 K

  • 0.29 × 0.04 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.624, Tmax = 0.940

  • 6708 measured reflections

  • 3237 independent reflections

  • 1834 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.143

  • S = 1.00

  • 3237 reflections

  • 214 parameters

  • 236 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6W⋯O4′i 0.85 2.15 2.71 (3) 123
O6—H6W⋯O2i 0.85 1.61 2.46 (4) 178
O6—H5W⋯O1ii 0.85 2.47 3.02 (6) 123
O6—H5W⋯O6iii 0.85 2.36 3.10 (4) 146
O6—H5W⋯O4′ii 0.85 1.98 2.62 (6) 131
O5—H2W⋯O1i 0.85 2.42 3.27 (4) 179
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z+1; (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last decade, a great effort has been devoted to designing ligands capable of enforcing close metal contacts during the process of assembly or crystallization to form polynuclear complexes and coordination polymers, owing to these complexes are expected to produce specific structures, properties and reactivities, not found for mononuclear complexes. In particular, N,N'-linkage ligands such as 1,2-diazines, 1,2-diazoles, 1,2,4-triazoles and 1,3,4-thiadiazole are very versatile ligands that are able to bridge a wide range of intermetallic separations through two close adjacent N donors (Yu et al., 2006; Wang & Ma, 2007).

In the title compound (Fig. 1), the Ag metal is coordinated by three N donors from thiadiazole rings of three distinct 2,2'-(butane-1,4-diyldithio)-bis(1,3,4-thiadiazole) ligands in a slightly distorted trigonal planar coordination geometry, with the metal protruding 0.0172 (15) Å from the N3 coordination plane. The Ag-N bond distances fall in the range 2.232 (8)-2.311 (9) Å. Centrosymmetrically related Ag metals are doubly bridged by the N-N fragments of thiadiazole rings of two distinct ligands to form six-membered dinuclear metallacycles. The Ag···Ag separation within the rings is 3.722 (4) Å, which is longer than the summed van der Waals radii of two free Ag ions (3.44 Å). The six-membered rings are linked by the alkyl spacers of the ligand into a two-dimensional layer network extending parallel to the (0 -2 1) plane (Fig. 2). Each Ag metal in the layer shows weak interactions with one S atom from an adjacent layer (Ag···S separation of 3.116 (5) Å), and with the oxygen atoms of the disordered ClO4- anion, the shortest Ag···O separation being 2.816 (8) Å. The crystal structure is enforced by intermolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For related polymeric AgI complexes, see: Yu et al. (2006); Wang & Ma (2007).

Experimental top

The reaction of bis[2,2'-(butane-1,4-diyldithio)-bis(1,3,4-thiadiazole)] (0.1 mmol) with AgCl04 (0.1 mmol) in MeOH (10 mL) for a few minutes afforded a light white solid, which was filtered, washed with acetone, and dried in air. Single crystals of the title compound suitable for X-ray analysis were obtained by slow diffusion of Et2O into an acetonitrile solution of the solid.

Refinement top

The oxygen atoms of the perchlorate anion and the water molecule including the O5 oxygen atoms are disordered over two sets of sites with refined site occupancy ratios of 0.640 (6):0.360 (6) and 0.663 (11):0.337 (11) respectively. The anisotropic displacement parameters for paired components of the disordered atoms were constrained to be equivalent and approximately isotropic by the EADP and ISOR commands in SHELXL-97 (Sheldrick, 2008). Water H atoms were located in a difference Fourier map and allowed to ride on the parent oxygen atoms, with O—H = 0.85 Å and with Uiso(H) = 1.5 Ueq(O). All other H atoms were positioned geometrically and refined as riding, with C—H = 0.93-0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing the two-dimensional layer structure. Hydrogen atoms, water molecules and perchlorate anions are omitted.
Poly[[{µ4-2,2'-[butane-1,4-diylbis(sulfanediyl)]bis(1,3,4- thiadiazole)}silver(I)] perchlorate sesquihydrate] top
Crystal data top
[Ag(C8H10N4S4)]ClO4·1.5H2OZ = 2
Mr = 524.79F(000) = 522
Triclinic, P1Dx = 1.961 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.076 (12) ÅCell parameters from 954 reflections
b = 10.08 (2) Åθ = 2.3–19.5°
c = 10.137 (12) ŵ = 1.78 mm1
α = 92.02 (2)°T = 291 K
β = 119.727 (14)°Block, colourless
γ = 94.20 (2)°0.29 × 0.04 × 0.04 mm
V = 889 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3237 independent reflections
Radiation source: fine-focus sealed tube1834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.624, Tmax = 0.940k = 1211
6708 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.9001P]
where P = (Fo2 + 2Fc2)/3
3237 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.64 e Å3
236 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Ag(C8H10N4S4)]ClO4·1.5H2Oγ = 94.20 (2)°
Mr = 524.79V = 889 (3) Å3
Triclinic, P1Z = 2
a = 10.076 (12) ÅMo Kα radiation
b = 10.08 (2) ŵ = 1.78 mm1
c = 10.137 (12) ÅT = 291 K
α = 92.02 (2)°0.29 × 0.04 × 0.04 mm
β = 119.727 (14)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3237 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1834 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.940Rint = 0.043
6708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055236 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.64 e Å3
3237 reflectionsΔρmin = 0.75 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O50.5870 (14)0.9980 (12)0.5479 (13)0.111 (3)0.663 (11)
H1W0.58260.95100.47430.166*0.663 (11)
H2W0.54930.96030.59740.166*0.663 (11)
O5'0.709 (3)0.984 (2)0.599 (3)0.111 (3)0.337 (11)
H3W0.67720.94100.51370.166*0.337 (11)
H4W0.67370.96090.65640.166*0.337 (11)
Cl10.6364 (2)0.2700 (2)0.2629 (3)0.0868 (8)0.640 (6)
O10.5621 (6)0.1488 (5)0.2654 (8)0.105 (2)0.640 (6)
O20.7031 (8)0.2400 (7)0.1638 (8)0.107 (2)0.640 (6)
O30.7646 (7)0.3177 (6)0.4046 (6)0.093 (2)0.640 (6)
O40.5392 (6)0.3695 (5)0.1966 (8)0.098 (2)0.640 (6)
Cl1'0.6364 (2)0.2700 (2)0.2629 (3)0.0868 (8)0.360 (6)
O1'0.5900 (8)0.3025 (7)0.3739 (8)0.105 (2)0.360 (6)
O2'0.7956 (5)0.2706 (6)0.3363 (8)0.107 (2)0.360 (6)
O3'0.5824 (7)0.3645 (6)0.1525 (7)0.093 (2)0.360 (6)
O4'0.5605 (7)0.1401 (5)0.1931 (7)0.098 (2)0.360 (6)
Ag10.28732 (7)0.49669 (7)0.38379 (8)0.0710 (3)
S10.4338 (2)0.2152 (2)0.7857 (2)0.0592 (6)
S20.1184 (2)0.28824 (19)0.5359 (2)0.0517 (5)
S30.2397 (2)0.5507 (2)0.0592 (2)0.0525 (5)
S40.1933 (2)0.74107 (19)0.1386 (2)0.0539 (5)
N10.5493 (7)0.3652 (6)0.6644 (7)0.0519 (16)
N20.3926 (6)0.3663 (6)0.5770 (6)0.0464 (15)
N30.0497 (7)0.5526 (6)0.2226 (6)0.0488 (15)
N40.0286 (6)0.6374 (5)0.1089 (6)0.0433 (14)
C10.5838 (9)0.2893 (8)0.7730 (9)0.057 (2)
H10.68500.27550.84110.069*
C20.3171 (8)0.2935 (7)0.6263 (8)0.0424 (17)
C30.0689 (9)0.1618 (8)0.6326 (9)0.054 (2)
H3A0.14300.17540.74080.065*
H3B0.03090.17550.61980.065*
C40.0641 (9)0.0183 (8)0.5792 (8)0.055 (2)
H4A0.16070.00530.58390.065*
H4B0.05240.04040.64730.065*
C50.0794 (9)0.5012 (8)0.2069 (9)0.0518 (19)
H50.08390.44100.27240.062*
C60.1156 (8)0.6454 (6)0.0185 (7)0.0401 (16)
C70.0201 (9)0.8336 (8)0.1127 (9)0.060 (2)
H7A0.05590.77180.09240.072*
H7B0.04310.87180.20730.072*
C80.0493 (10)0.9440 (8)0.0136 (10)0.068 (2)
H8A0.06850.90680.10770.082*
H8B0.14750.97980.02680.082*
O60.337 (2)0.974 (2)0.981 (2)0.169 (8)0.50
H5W0.43390.99601.03030.254*0.50
H6W0.32150.90070.92960.254*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.104 (6)0.128 (6)0.102 (6)0.027 (5)0.051 (5)0.015 (5)
O5'0.104 (6)0.128 (6)0.102 (6)0.027 (5)0.051 (5)0.015 (5)
Cl10.0565 (13)0.0827 (16)0.0970 (17)0.0042 (11)0.0195 (12)0.0245 (14)
O10.099 (4)0.099 (4)0.109 (4)0.007 (4)0.048 (3)0.013 (4)
O20.084 (4)0.116 (5)0.110 (4)0.006 (3)0.041 (3)0.010 (4)
O30.079 (4)0.104 (4)0.087 (4)0.023 (3)0.033 (3)0.010 (3)
O40.084 (4)0.092 (4)0.105 (5)0.018 (3)0.035 (3)0.011 (3)
Cl1'0.0565 (13)0.0827 (16)0.0970 (17)0.0042 (11)0.0195 (12)0.0245 (14)
O1'0.099 (4)0.099 (4)0.109 (4)0.007 (4)0.048 (3)0.013 (4)
O2'0.084 (4)0.116 (5)0.110 (4)0.006 (3)0.041 (3)0.010 (4)
O3'0.079 (4)0.104 (4)0.087 (4)0.023 (3)0.033 (3)0.010 (3)
O4'0.084 (4)0.092 (4)0.105 (5)0.018 (3)0.035 (3)0.011 (3)
Ag10.0421 (4)0.0867 (5)0.0724 (5)0.0093 (3)0.0171 (3)0.0441 (4)
S10.0534 (12)0.0638 (14)0.0507 (12)0.0034 (10)0.0179 (10)0.0237 (10)
S20.0405 (10)0.0521 (12)0.0588 (12)0.0008 (9)0.0218 (9)0.0155 (10)
S30.0385 (10)0.0540 (12)0.0567 (12)0.0057 (9)0.0173 (9)0.0089 (10)
S40.0499 (11)0.0509 (12)0.0459 (11)0.0124 (9)0.0111 (9)0.0139 (10)
N10.043 (4)0.051 (4)0.055 (4)0.004 (3)0.019 (3)0.016 (3)
N20.037 (3)0.047 (4)0.048 (4)0.003 (3)0.015 (3)0.017 (3)
N30.045 (4)0.051 (4)0.045 (4)0.016 (3)0.017 (3)0.011 (3)
N40.037 (3)0.039 (3)0.050 (4)0.009 (3)0.018 (3)0.011 (3)
C10.045 (4)0.058 (5)0.057 (5)0.002 (4)0.016 (4)0.013 (4)
C20.043 (4)0.043 (4)0.040 (4)0.005 (3)0.020 (3)0.007 (3)
C30.050 (5)0.060 (5)0.055 (5)0.007 (4)0.029 (4)0.009 (4)
C40.058 (5)0.054 (5)0.051 (4)0.001 (4)0.027 (4)0.012 (4)
C50.052 (5)0.048 (5)0.053 (5)0.011 (4)0.024 (4)0.014 (4)
C60.039 (4)0.034 (4)0.038 (4)0.004 (3)0.013 (3)0.005 (3)
C70.073 (6)0.054 (5)0.053 (5)0.019 (4)0.029 (4)0.020 (4)
C80.067 (6)0.051 (5)0.076 (6)0.008 (4)0.028 (5)0.021 (5)
O60.162 (11)0.181 (11)0.168 (11)0.007 (8)0.087 (8)0.007 (8)
Geometric parameters (Å, º) top
O5—O5i1.53 (2)S4—C61.750 (7)
O5—H1W0.8502S4—C71.810 (8)
O5—H2W0.8498N1—C11.280 (9)
O5—H3W1.2854N1—N21.376 (8)
O5—H4W1.1129N1—Ag1ii2.323 (6)
O5'—H1W1.2852N2—C21.300 (8)
O5'—H3W0.8500N3—C51.296 (9)
O5'—H4W0.8500N3—N41.398 (8)
Cl1—O11.393 (5)N4—C61.288 (8)
Cl1—O41.398 (5)C1—H10.9300
Cl1—O31.408 (4)C3—C41.516 (11)
Cl1—O21.494 (5)C3—H3A0.9700
Cl1'—O2'1.394 (4)C3—H3B0.9700
Cl1'—O3'1.415 (5)C4—C4iii1.487 (14)
Cl1'—O4'1.433 (5)C4—H4A0.9700
Cl1'—O1'1.452 (4)C4—H4B0.9700
Ag1—N22.239 (6)C5—H50.9300
Ag1—N32.259 (6)C7—C81.505 (11)
Ag1—N1ii2.323 (6)C7—H7A0.9700
S1—C11.701 (8)C7—H7B0.9700
S1—C21.720 (7)C8—C8iv1.501 (15)
S2—C21.736 (7)C8—H8A0.9700
S2—C31.821 (7)C8—H8B0.9700
S3—C51.695 (8)O6—H5W0.8500
S3—C61.735 (7)O6—H6W0.8498
O5i—O5—H1W88.4C6—N4—N3110.5 (5)
O5i—O5—H2W74.1N1—C1—S1116.1 (6)
H1W—O5—H2W116.5N1—C1—H1122.0
O5i—O5—H3W129.1S1—C1—H1122.0
H2W—O5—H3W121.9N2—C2—S1113.4 (5)
O5i—O5—H4W139.9N2—C2—S2119.8 (5)
H1W—O5—H4W108.3S1—C2—S2126.8 (4)
H2W—O5—H4W65.8C4—C3—S2115.7 (6)
H3W—O5—H4W75.3C4—C3—H3A108.4
H1W—O5'—H4W94.7S2—C3—H3A108.4
H3W—O5'—H4W120.0C4—C3—H3B108.4
O1—Cl1—O4114.6S2—C3—H3B108.4
O1—Cl1—O3114.0H3A—C3—H3B107.4
O4—Cl1—O3111.4C4iii—C4—C3112.3 (8)
O1—Cl1—O2105.0C4iii—C4—H4A109.1
O4—Cl1—O2106.5C3—C4—H4A109.1
O3—Cl1—O2104.3C4iii—C4—H4B109.1
O2'—Cl1'—O3'112.2C3—C4—H4B109.1
O2'—Cl1'—O4'111.4H4A—C4—H4B107.9
O3'—Cl1'—O4'109.7N3—C5—S3115.6 (6)
O2'—Cl1'—O1'109.6N3—C5—H5122.2
O3'—Cl1'—O1'107.8S3—C5—H5122.2
O4'—Cl1'—O1'105.9N4—C6—S3115.6 (5)
N2—Ag1—N3136.8 (2)N4—C6—S4125.7 (5)
N2—Ag1—N1ii118.1 (2)S3—C6—S4118.7 (4)
N3—Ag1—N1ii104.8 (2)C8—C7—S4115.0 (6)
C1—S1—C286.5 (4)C8—C7—H7A108.5
C2—S2—C3102.5 (3)S4—C7—H7A108.5
C5—S3—C686.1 (4)C8—C7—H7B108.5
C6—S4—C7100.3 (3)S4—C7—H7B108.5
C1—N1—N2111.0 (6)H7A—C7—H7B107.5
C1—N1—Ag1ii128.6 (5)C8iv—C8—C7114.0 (9)
N2—N1—Ag1ii120.1 (4)C8iv—C8—H8A108.8
C2—N2—N1113.0 (6)C7—C8—H8A108.8
C2—N2—Ag1125.1 (5)C8iv—C8—H8B108.8
N1—N2—Ag1121.7 (4)C7—C8—H8B108.8
C5—N3—N4112.3 (6)H8A—C8—H8B107.6
C5—N3—Ag1127.3 (5)H5W—O6—H6W107.3
N4—N3—Ag1119.7 (4)
C1—N1—N2—C21.4 (9)N1—N2—C2—S2177.2 (5)
Ag1ii—N1—N2—C2173.9 (5)Ag1—N2—C2—S22.4 (9)
C1—N1—N2—Ag1176.4 (5)C1—S1—C2—N20.4 (6)
Ag1ii—N1—N2—Ag11.1 (7)C1—S1—C2—S2177.8 (5)
N3—Ag1—N2—C21.4 (8)C3—S2—C2—N2174.1 (6)
N1ii—Ag1—N2—C2173.3 (6)C3—S2—C2—S18.6 (6)
N3—Ag1—N2—N1173.0 (4)C2—S2—C3—C480.2 (6)
N1ii—Ag1—N2—N11.0 (7)S2—C3—C4—C4iii67.4 (10)
N2—Ag1—N3—C58.1 (8)N4—N3—C5—S31.7 (8)
N1ii—Ag1—N3—C5179.3 (6)Ag1—N3—C5—S3172.0 (3)
N2—Ag1—N3—N4177.8 (4)C6—S3—C5—N31.0 (6)
N1ii—Ag1—N3—N49.6 (5)N3—N4—C6—S30.8 (8)
C5—N3—N4—C61.6 (8)N3—N4—C6—S4179.6 (5)
Ag1—N3—N4—C6172.7 (5)C5—S3—C6—N40.0 (6)
N2—N1—C1—S11.8 (9)C5—S3—C6—S4179.6 (5)
Ag1ii—N1—C1—S1173.0 (4)C7—S4—C6—N47.9 (7)
C2—S1—C1—N11.3 (7)C7—S4—C6—S3172.5 (4)
N1—N2—C2—S10.5 (8)C6—S4—C7—C874.4 (6)
Ag1—N2—C2—S1175.2 (3)S4—C7—C8—C8iv65.6 (11)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6W···O4ii0.852.152.71 (3)123
O6—H6W···O2ii0.851.612.46 (4)178
O6—H5W···O1v0.852.473.02 (6)123
O6—H5W···O6vi0.852.363.10 (4)146
O6—H5W···O4v0.851.982.62 (6)131
O5—H2W···O1ii0.852.423.27 (4)179
Symmetry codes: (ii) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ag(C8H10N4S4)]ClO4·1.5H2O
Mr524.79
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.076 (12), 10.08 (2), 10.137 (12)
α, β, γ (°)92.02 (2), 119.727 (14), 94.20 (2)
V3)889 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.29 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.624, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
6708, 3237, 1834
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 1.00
No. of reflections3237
No. of parameters214
No. of restraints236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.75

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6W···O4'i0.852.152.71 (3)123
O6—H6W···O2i0.851.612.46 (4)178
O6—H5W···O1ii0.852.473.02 (6)123
O6—H5W···O6iii0.852.363.10 (4)146
O6—H5W···O4'ii0.851.982.62 (6)131
O5—H2W···O1i0.852.423.27 (4)179
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+2.
 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C. C. & Ma, H. Y. (2007). Z. Kristallogr. New Cryst. Struct. 222, 101–104.  CAS Google Scholar
First citationYu, J. H., Ding, C. J., Han, K. F., Zhang, S. W. & Guo, H. Y. (2006). Chin. J. Inorg. Chem. 22, 607–611.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds