metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ2-benzene-1,3-di­carboxyl­ato-κ2O1:O3){μ2-1,2-bis­­[(1H-imidazol-1-yl)meth­yl]benzene-κ2N3:N3′}zinc]

aDepartment of Chemistry, Chaohu University, Chaohu 238000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China
*Correspondence e-mail: aqliugx@sohu.com

(Received 5 May 2012; accepted 17 May 2012; online 26 May 2012)

In the two-dimensional title coordination polymer, [Zn(C8H4O4)(C14H14N4)]n, the ZnII atom adopts a distorted tetra­hedral geometry, being ligated by two O atoms from two different benzene-1,3-dicarboxyl­ate dianions and two N atoms from two symmetry-related 1,2-bis­(imidazol-1-ylmeth­yl)benzene mol­ecules. The dihedral angles between the imidazole rings and the benzene ring in the neutral ligand are 76.31 (13) and 85.33 (15)°. The ZnII atoms are bridged by dicarboxyl­ate ligands, forming chains parallel to the a axis, which are further linked by 1,2-bis­(imidazol-1-ylmeth­yl)benzene mol­ecules, generating a two-dimensional layer structure parallel to the ac plane. The crystal structure is enforced by intra­layer and inter­layer C—H⋯O hydrogen bonds.

Related literature

For background to coordination polymers with bis­(imidazole) ligands, see: Qi et al. (2008[Qi, Y., Chi, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 606-611.]); Liu et al. (2009[Liu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605-1670.]); Hu et al. (2008[Hu, T.-L., Zou, R.-Q., Li, J.-R. & Bu, X.-H. (2008). Dalton Trans. pp. 1302-1311.]). For related structures, see: Liu et al. (2008[Liu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327-2336.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O4)(C14H14N4)]

  • Mr = 467.77

  • Triclinic, [P \overline 1]

  • a = 10.2028 (14) Å

  • b = 10.2744 (14) Å

  • c = 11.4529 (16) Å

  • α = 75.405 (2)°

  • β = 83.480 (2)°

  • γ = 61.499 (2)°

  • V = 1021.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.790

  • 5145 measured reflections

  • 3564 independent reflections

  • 3148 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.02

  • 3564 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3i 0.93 2.38 3.188 (4) 145
C11—H11⋯O4ii 0.93 2.54 3.413 (4) 157
C14—H14⋯O1ii 0.93 2.38 3.306 (7) 171
C19—H19B⋯O2iii 0.97 2.38 3.200 (4) 142
C20—H20⋯O1iv 0.93 2.34 3.016 (4) 130
C21—H21⋯O4v 0.93 2.54 3.092 (6) 119
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) -x, -y+1, -z+2; (iv) x, y, z-1; (v) x-1, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Studies of coordination polymers are of considerable interest due to their fascinating network topologies and potential applications in storage, catalysis, molecular magnetism, recognition, and photoluminescence. Recently significant work has been carried out by using metal ions assembly with bis(imidazole) ligands interconnected by flexible spacers (Qi et al., 2008; Liu et al., 2008, 2009). From careful inspection of the reported cases, we found that the ligand exhibits a special ability to formulate the compounds, and different organic anions play an important role in directing the final structures and topologies (Hu et al., 2008). Inspired by the these considerations, 1,2-bis(imidazol-1-ylmethyl)benzene was chosen as neutral ligands, and benzene-1,3-dicarboxylate as co-ligand to construct the title complex.

The title compound is a two-dimensional layer coordination polymer. The zinc(II) atom adopts a distorted tetrahedral geometry, being ligated by two O atoms from two different benzene-1,3-dicarboxylate ligands and two N atoms from two 1,2-bis(imidazol-1-ylmethyl)benzene ligands, as shown in Fig. 1. In the neutral ligand, the N1/N2/C9-C11 and N3/N4/C20/C21 imidazole rings form a dihedral angle of 76.10 (13)° and are tilted by 76.31 (13) and 85.33 (15)° with respect to the benzene ring plane. The Zn atoms are bridged by benzene-1,3-dicarboxylate dianions to form one-dimensional chains running parallel to the a axis, which are further linked by 1,2-bis(imidazol-1-ylmethyl)benzene molecules to generate a two-dimensional layer structure parallel to the ac plane (Fig. 2). The crystal structure is enforced by intralayer and interlayer C—H···O hydrogen bonds (Table 1).

Related literature top

For background to coordination polymers with bis(imidazole) ligands, see: Qi et al. (2008); Liu et al. (2009); Hu et al. (2008). For related structures, see: Liu et al. (2008).

Experimental top

A mixture of Zn(NO3)2.6H2O (29.1 mg, 0.1 mmol), benzene-1,3-dicarboxylate acid (16.4 mg, 0.1 mmol), 1,2-bis(imidazol-1-ylmethyl)benzene (23.8 mg, 0.1 mmol), NaOH (8 mg, 0.2 mmol) and H2O (15 ml) was added in a Teflon-lined stainless steel vessel. The vessel was sealed and heated for 3 d at 140 °C. After the mixture was slowly cooled to room temperature, colourless block crystals were obtained in a yield of ca 59% based on Zn.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93- 0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, extended to show the Zn coordination geometry. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Suffixes A and B denote symmetry operators (-1+x, y, z) and (x, y, 1+z), respectively.
[Figure 2] Fig. 2. The two-dimensional layer structure of the title compound. Hydrogen atoms are omitted for clarity.
Poly[(µ2-benzene-1,3-dicarboxylato-κ2O1:O3){µ2- 1,2-bis[(1H-imidazol-1-yl)methyl]benzene- κ2N3:N3'}zinc] top
Crystal data top
[Zn(C8H4O4)(C14H14N4)]Z = 2
Mr = 467.77F(000) = 480
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2028 (14) ÅCell parameters from 2793 reflections
b = 10.2744 (14) Åθ = 2.3–27.9°
c = 11.4529 (16) ŵ = 1.24 mm1
α = 75.405 (2)°T = 293 K
β = 83.480 (2)°Block, colourless
γ = 61.499 (2)°0.26 × 0.24 × 0.20 mm
V = 1021.0 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3564 independent reflections
Radiation source: sealed tube3148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
phi and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.739, Tmax = 0.790k = 1211
5145 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.6759P]
where P = (Fo2 + 2Fc2)/3
3564 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Zn(C8H4O4)(C14H14N4)]γ = 61.499 (2)°
Mr = 467.77V = 1021.0 (2) Å3
Triclinic, P1Z = 2
a = 10.2028 (14) ÅMo Kα radiation
b = 10.2744 (14) ŵ = 1.24 mm1
c = 11.4529 (16) ÅT = 293 K
α = 75.405 (2)°0.26 × 0.24 × 0.20 mm
β = 83.480 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3148 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.790Rint = 0.062
5145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
3564 reflectionsΔρmin = 0.52 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.12836 (4)0.60720 (4)1.18865 (3)0.03331 (15)
N10.1733 (3)0.7657 (3)1.0358 (2)0.0304 (6)
N20.1374 (3)0.8927 (3)0.8612 (2)0.0342 (6)
N30.1584 (3)0.7322 (3)0.5120 (3)0.0420 (7)
N40.1780 (3)0.6676 (3)0.3492 (3)0.0394 (7)
O10.1045 (3)0.6829 (3)1.1935 (2)0.0464 (6)
O20.0904 (2)0.4788 (3)1.1805 (2)0.0392 (6)
O30.7971 (2)0.4629 (3)1.1786 (2)0.0352 (5)
O40.5906 (3)0.6760 (3)1.1811 (2)0.0400 (6)
C10.1634 (3)0.5512 (4)1.1811 (3)0.0329 (7)
C20.3288 (3)0.4676 (4)1.1651 (3)0.0294 (7)
C30.3983 (4)0.3254 (4)1.1412 (3)0.0366 (8)
H30.34220.27711.13680.044*
C40.5505 (4)0.2531 (4)1.1234 (3)0.0435 (9)
H40.59640.15731.10600.052*
C50.6341 (4)0.3236 (4)1.1315 (3)0.0354 (7)
H50.73650.27521.11940.042*
C60.5668 (3)0.4654 (3)1.1575 (3)0.0273 (6)
C70.4142 (3)0.5373 (4)1.1729 (3)0.0288 (7)
H70.36800.63401.18870.035*
C80.6550 (3)0.5425 (4)1.1731 (3)0.0292 (7)
C90.0785 (3)0.7650 (4)0.9477 (3)0.0338 (7)
H90.01740.68580.94580.041*
C100.2999 (4)0.9013 (4)1.0029 (3)0.0362 (7)
H100.38710.93321.04770.043*
C110.2793 (4)0.9816 (4)0.8960 (3)0.0400 (8)
H110.34741.07740.85440.048*
C120.0539 (4)0.9346 (4)0.7587 (3)0.0403 (8)
H12A0.02890.84270.74120.048*
H12B0.01290.99310.78090.048*
C130.1483 (4)1.0259 (4)0.6473 (3)0.0363 (8)
C140.2102 (5)1.1822 (4)0.6227 (4)0.0497 (9)
H140.19201.22780.67520.060*
C150.2984 (5)1.2723 (5)0.5217 (4)0.0604 (11)
H150.33911.37760.50590.072*
C160.3248 (5)1.2046 (5)0.4458 (4)0.0608 (11)
H160.38531.26430.37810.073*
C170.2638 (4)1.0504 (5)0.4677 (3)0.0493 (9)
H170.28201.00650.41370.059*
C180.1755 (4)0.9577 (4)0.5683 (3)0.0352 (7)
C190.1066 (4)0.7864 (4)0.5940 (3)0.0443 (9)
H19A0.00100.74440.58800.053*
H19B0.12970.74920.67610.053*
C200.0952 (4)0.6950 (4)0.4103 (3)0.0402 (8)
H200.00310.68880.38460.048*
C210.3031 (5)0.6908 (5)0.4175 (4)0.0549 (11)
H210.38310.68070.39740.066*
C220.2927 (5)0.7305 (5)0.5184 (4)0.0589 (11)
H220.36240.75230.57990.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0290 (2)0.0372 (2)0.0396 (2)0.01929 (18)0.00090 (16)0.00993 (17)
N10.0260 (13)0.0318 (14)0.0338 (14)0.0133 (11)0.0016 (11)0.0075 (11)
N20.0324 (15)0.0395 (15)0.0329 (15)0.0183 (12)0.0007 (11)0.0092 (12)
N30.0473 (18)0.0478 (17)0.0412 (17)0.0280 (15)0.0012 (14)0.0152 (14)
N40.0390 (16)0.0522 (18)0.0384 (16)0.0280 (14)0.0070 (13)0.0182 (14)
O10.0284 (12)0.0502 (16)0.0675 (17)0.0200 (12)0.0001 (12)0.0209 (13)
O20.0258 (11)0.0460 (14)0.0532 (15)0.0237 (11)0.0039 (10)0.0068 (11)
O30.0211 (11)0.0402 (13)0.0515 (14)0.0187 (10)0.0002 (10)0.0128 (11)
O40.0328 (12)0.0372 (14)0.0594 (15)0.0217 (11)0.0000 (11)0.0149 (11)
C10.0252 (16)0.044 (2)0.0337 (17)0.0203 (15)0.0024 (13)0.0053 (15)
C20.0244 (15)0.0409 (18)0.0284 (16)0.0203 (14)0.0020 (12)0.0054 (13)
C30.0340 (18)0.048 (2)0.0425 (19)0.0286 (16)0.0001 (14)0.0141 (16)
C40.0371 (19)0.045 (2)0.060 (2)0.0215 (16)0.0027 (17)0.0268 (18)
C50.0242 (16)0.0418 (19)0.0441 (19)0.0166 (15)0.0013 (14)0.0140 (15)
C60.0223 (15)0.0335 (16)0.0291 (16)0.0161 (13)0.0036 (12)0.0038 (13)
C70.0239 (15)0.0309 (16)0.0347 (17)0.0151 (13)0.0014 (13)0.0067 (13)
C80.0258 (16)0.0408 (19)0.0280 (16)0.0222 (15)0.0008 (12)0.0050 (13)
C90.0266 (16)0.0360 (18)0.0377 (18)0.0119 (14)0.0025 (14)0.0111 (15)
C100.0299 (17)0.0364 (18)0.0429 (19)0.0150 (15)0.0055 (14)0.0134 (15)
C110.0320 (18)0.0350 (18)0.047 (2)0.0111 (15)0.0015 (15)0.0086 (15)
C120.0342 (18)0.060 (2)0.0368 (18)0.0294 (17)0.0026 (14)0.0127 (16)
C130.0354 (18)0.045 (2)0.0365 (18)0.0272 (16)0.0069 (14)0.0084 (15)
C140.057 (2)0.050 (2)0.055 (2)0.036 (2)0.0094 (19)0.0143 (19)
C150.065 (3)0.039 (2)0.070 (3)0.026 (2)0.004 (2)0.002 (2)
C160.062 (3)0.059 (3)0.048 (2)0.027 (2)0.010 (2)0.011 (2)
C170.058 (2)0.059 (3)0.0331 (19)0.030 (2)0.0040 (17)0.0056 (17)
C180.0381 (18)0.0412 (19)0.0303 (17)0.0231 (16)0.0036 (14)0.0063 (14)
C190.053 (2)0.047 (2)0.0383 (19)0.0253 (18)0.0073 (16)0.0114 (16)
C200.0371 (19)0.048 (2)0.043 (2)0.0243 (17)0.0016 (16)0.0150 (17)
C210.054 (2)0.086 (3)0.051 (2)0.050 (2)0.0143 (19)0.029 (2)
C220.059 (3)0.090 (3)0.052 (2)0.050 (3)0.019 (2)0.030 (2)
Geometric parameters (Å, º) top
Zn1—N11.990 (3)C5—H50.9300
Zn1—O21.984 (2)C6—C71.380 (4)
Zn1—O3i1.993 (2)C6—C81.502 (4)
Zn1—N4ii2.022 (3)C7—H70.9300
N1—C91.315 (4)C9—H90.9300
N1—C101.371 (4)C10—C111.350 (5)
N2—C91.338 (4)C10—H100.9300
N2—C111.370 (4)C11—H110.9300
N2—C121.469 (4)C12—C131.501 (5)
N3—C201.318 (4)C12—H12A0.9700
N3—C221.372 (5)C12—H12B0.9700
N3—C191.459 (4)C13—C141.380 (5)
N4—C201.320 (4)C13—C181.396 (5)
N4—C211.369 (4)C14—C151.380 (6)
N4—Zn1iii2.022 (3)C14—H140.9300
O1—C11.231 (4)C15—C161.360 (6)
O2—C11.281 (4)C15—H150.9300
O3—C81.280 (4)C16—C171.362 (6)
O3—Zn1iv1.993 (2)C16—H160.9300
O4—C81.228 (4)C17—C181.382 (5)
C1—C21.498 (4)C17—H170.9300
C2—C31.372 (5)C18—C191.511 (5)
C2—C71.388 (4)C19—H19A0.9700
C3—C41.382 (5)C19—H19B0.9700
C3—H30.9300C20—H200.9300
C4—C51.380 (5)C21—C221.349 (6)
C4—H40.9300C21—H210.9300
C5—C61.379 (4)C22—H220.9300
N1—Zn1—O2102.90 (10)N2—C9—H9124.3
N1—Zn1—O3i110.16 (10)C11—C10—N1110.0 (3)
O2—Zn1—O3i101.36 (9)C11—C10—H10125.0
N1—Zn1—N4ii120.15 (11)N1—C10—H10125.0
O2—Zn1—N4ii108.84 (11)C10—C11—N2105.8 (3)
O3i—Zn1—N4ii111.41 (10)C10—C11—H11127.1
C9—N1—C10105.4 (3)N2—C11—H11127.1
C9—N1—Zn1125.4 (2)N2—C12—C13112.8 (3)
C10—N1—Zn1129.0 (2)N2—C12—H12A109.0
C9—N2—C11107.3 (3)C13—C12—H12A109.0
C9—N2—C12124.5 (3)N2—C12—H12B109.0
C11—N2—C12127.7 (3)C13—C12—H12B109.0
C20—N3—C22107.2 (3)H12A—C12—H12B107.8
C20—N3—C19126.6 (3)C14—C13—C18119.2 (3)
C22—N3—C19125.7 (3)C14—C13—C12118.6 (3)
C20—N4—C21105.0 (3)C18—C13—C12122.1 (3)
C20—N4—Zn1iii126.6 (2)C13—C14—C15121.3 (4)
C21—N4—Zn1iii128.4 (2)C13—C14—H14119.4
C1—O2—Zn1112.6 (2)C15—C14—H14119.4
C8—O3—Zn1iv104.77 (19)C16—C15—C14118.9 (4)
O1—C1—O2123.4 (3)C16—C15—H15120.5
O1—C1—C2119.9 (3)C14—C15—H15120.5
O2—C1—C2116.6 (3)C15—C16—C17120.8 (4)
C3—C2—C7118.9 (3)C15—C16—H16119.6
C3—C2—C1122.2 (3)C17—C16—H16119.6
C7—C2—C1118.9 (3)C16—C17—C18121.4 (4)
C2—C3—C4120.8 (3)C16—C17—H17119.3
C2—C3—H3119.6C18—C17—H17119.3
C4—C3—H3119.6C17—C18—C13118.3 (3)
C3—C4—C5119.7 (3)C17—C18—C19122.2 (3)
C3—C4—H4120.2C13—C18—C19119.5 (3)
C5—C4—H4120.2N3—C19—C18113.3 (3)
C6—C5—C4120.5 (3)N3—C19—H19A108.9
C6—C5—H5119.8C18—C19—H19A108.9
C4—C5—H5119.8N3—C19—H19B108.9
C5—C6—C7119.1 (3)C18—C19—H19B108.9
C5—C6—C8122.0 (3)H19A—C19—H19B107.7
C7—C6—C8118.9 (3)N3—C20—N4112.2 (3)
C2—C7—C6121.0 (3)N3—C20—H20123.9
C2—C7—H7119.5N4—C20—H20123.9
C6—C7—H7119.5C22—C21—N4109.7 (3)
O4—C8—O3122.7 (3)C22—C21—H21125.2
O4—C8—C6120.2 (3)N4—C21—H21125.2
O3—C8—C6117.1 (3)C21—C22—N3106.0 (3)
N1—C9—N2111.5 (3)C21—C22—H22127.0
N1—C9—H9124.3N3—C22—H22127.0
O2—Zn1—N1—C98.3 (3)C12—N2—C9—N1172.1 (3)
O3i—Zn1—N1—C999.1 (3)C9—N1—C10—C110.7 (4)
N4ii—Zn1—N1—C9129.4 (2)Zn1—N1—C10—C11174.3 (2)
O2—Zn1—N1—C10165.8 (3)N1—C10—C11—N20.7 (4)
O3i—Zn1—N1—C1086.8 (3)C9—N2—C11—C100.5 (4)
N4ii—Zn1—N1—C1044.7 (3)C12—N2—C11—C10172.2 (3)
N1—Zn1—O2—C163.6 (2)C9—N2—C12—C13148.5 (3)
O3i—Zn1—O2—C1177.6 (2)C11—N2—C12—C1341.2 (5)
N4ii—Zn1—O2—C164.9 (2)N2—C12—C13—C1496.4 (4)
Zn1—O2—C1—O14.6 (4)N2—C12—C13—C1883.5 (4)
Zn1—O2—C1—C2175.2 (2)C18—C13—C14—C150.1 (5)
O1—C1—C2—C3174.6 (3)C12—C13—C14—C15179.8 (3)
O2—C1—C2—C35.2 (5)C13—C14—C15—C160.3 (6)
O1—C1—C2—C74.3 (5)C14—C15—C16—C170.9 (7)
O2—C1—C2—C7175.8 (3)C15—C16—C17—C181.1 (7)
C7—C2—C3—C40.9 (5)C16—C17—C18—C130.7 (6)
C1—C2—C3—C4178.1 (3)C16—C17—C18—C19179.9 (4)
C2—C3—C4—C51.0 (6)C14—C13—C18—C170.1 (5)
C3—C4—C5—C60.2 (5)C12—C13—C18—C17180.0 (3)
C4—C5—C6—C71.3 (5)C14—C13—C18—C19179.3 (3)
C4—C5—C6—C8177.0 (3)C12—C13—C18—C190.8 (5)
C3—C2—C7—C60.3 (5)C20—N3—C19—C1892.4 (4)
C1—C2—C7—C6179.3 (3)C22—N3—C19—C1878.1 (5)
C5—C6—C7—C21.4 (5)C17—C18—C19—N37.6 (5)
C8—C6—C7—C2176.9 (3)C13—C18—C19—N3173.3 (3)
Zn1iv—O3—C8—O44.1 (4)C22—N3—C20—N40.5 (5)
Zn1iv—O3—C8—C6176.6 (2)C19—N3—C20—N4172.4 (3)
C5—C6—C8—O4170.8 (3)C21—N4—C20—N30.6 (4)
C7—C6—C8—O410.8 (5)Zn1iii—N4—C20—N3179.9 (2)
C5—C6—C8—O39.9 (5)C20—N4—C21—C220.4 (5)
C7—C6—C8—O3168.4 (3)Zn1iii—N4—C21—C22179.7 (3)
C10—N1—C9—N20.3 (3)N4—C21—C22—N30.2 (5)
Zn1—N1—C9—N2174.91 (19)C20—N3—C22—C210.2 (5)
C11—N2—C9—N10.1 (4)C19—N3—C22—C21172.2 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O3v0.932.383.188 (4)145
C11—H11···O4vi0.932.543.413 (4)157
C14—H14···O1vi0.932.383.306 (7)171
C19—H19B···O2vii0.972.383.200 (4)142
C20—H20···O1iii0.932.343.016 (4)130
C21—H21···O4viii0.932.543.092 (6)119
Symmetry codes: (iii) x, y, z1; (v) x+1, y+1, z+2; (vi) x, y+2, z+2; (vii) x, y+1, z+2; (viii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O4)(C14H14N4)]
Mr467.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.2028 (14), 10.2744 (14), 11.4529 (16)
α, β, γ (°)75.405 (2), 83.480 (2), 61.499 (2)
V3)1021.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.739, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
5145, 3564, 3148
Rint0.062
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.02
No. of reflections3564
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.52

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O3i0.932.383.188 (4)145
C11—H11···O4ii0.932.543.413 (4)157
C14—H14···O1ii0.932.383.306 (7)171
C19—H19B···O2iii0.972.383.200 (4)142
C20—H20···O1iv0.932.343.016 (4)130
C21—H21···O4v0.932.543.092 (6)119
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+2; (iii) x, y+1, z+2; (iv) x, y, z1; (v) x1, y, z1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (No. KJ2012A204).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, T.-L., Zou, R.-Q., Li, J.-R. & Bu, X.-H. (2008). Dalton Trans. pp. 1302–1311.  Web of Science CSD CrossRef Google Scholar
First citationLiu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327–2336.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605–1670.  Web of Science CSD CrossRef CAS Google Scholar
First citationQi, Y., Chi, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 606–611.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds