metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ3-iodido-tetra­kis­{[ethyl 2-(1H-benzimidazol-1-yl)acetate-κN3]copper(I)}

aDepartment of General Medicine, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China
*Correspondence e-mail: llyang666@163.com

(Received 9 May 2012; accepted 17 May 2012; online 26 May 2012)

The complex mol­ecule of the tetra­nuclear cubane-type title compound, [Cu4I4(C11H12N2O2)4], has crystallographically imposed fourfold inversion symmetry. The CuI ions are coordinated in a distorted tetra­hedral geometry by an N atom of a benzimidazole ring system and three μ3-iodide ions, forming a Cu4I4 core. In the crystal, complex mol­ecules are connected into a three-dimensional network by C—H⋯O hydrogen bonds involving H and O atoms of adjacent eth­oxy­carbonyl groups.

Related literature

For potential applications in physiological and pharmacological fields of benzimidazoyl derivatives or complexes based on the benzimidazoyl unit, see: Ramla et al. (2007[Ramla, M. M., Omar, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489-6496.]); Barreca et al. (2007[Barreca, M. L., Rao, A., Luca, L. D., Iraci, N., Monforte, A. M., Maga, G., Clercq, E. D., Pannecouque, C., Balzarini, J. & Chimirri, A. (2007). Bioorg. Med. Chem. Lett. 17, 1956-1960.]); Cetinkaya et al. (1999[Cetinkaya, E., Alici, B., Gok, Y., Durmaz, R. & Günal, S. (1999). J. Chemother. 11, 83-89.]); Snyderwine et al. (1997[Snyderwine, E. G., Turesky, R. J., Turteltaub, W. K., Davis, C. D., Sadrieh, N., Schut, H. A. J., Nagao, M., Sugimura, T., Thorgeirsson, U. P., Adamson, R. H. & Thorgeirsson, S. S. (1997). Mutat. Res. 376, 203-210.]); Skog & Solyakov (2002[Skog, K. & Solyakov, A. (2002). Food Chem. Toxicol., 40, 1213-1221.]); Garner et al. (1999[Garner, R. C., Lightfoot, T. J., Cupid, B. C., Russell, D., Coxhead, J. M., Kutschera, W., Priller, A., Rom, W., Steier, P., Alexander, D. J., Leveson, S. H., Dingley, K. H., Mauthe, R. J. & Turteltaub, K. W. (1999). Cancer Lett. 143, 161-165.]). For applications of copper complexes in biology or medicine, see: Sorrell 1989[Sorrell, T. N. (1989). Tetrahedron, 45, 3-68.]. For related structures, see: Sun et al. (2011[Sun, Y. G., Xiong, G., Guo, M. Y., Ding, F., Wang, L., Gao, E. J., Zhu, M. C. & Verpoort, E. (2011). Z. Anorg. Allg. Chem. 637, 293-300.]); Liu et al. (2011[Liu, J. C., Cao, J., Deng, W. T. & Chen, B. H. (2011). J. Chem. Crystallogr. 41, 806-810.]); Toth et al. (1987[Toth, A., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1987). Inorg Chem. 26, 3897-3902.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4I4(C11H12N2O2)4]

  • Mr = 1578.66

  • Tetragonal, I 41 /a

  • a = 21.196 (11) Å

  • c = 11.581 (7) Å

  • V = 5203 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.04 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.768, Tmax = 0.784

  • 13042 measured reflections

  • 2422 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 1.03

  • 2422 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.97 2.60 3.531 (5) 162
Symmetry code: (i) [y-{\script{1\over 4}}, -x+{\script{7\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazoyl-based ligands have wide applications in physiological and pharmacological fields, such as treatment of hypoglycemia, inhibitory activity for the lymphoma of Burkitt, antimicrobial activity and other effects (Ramla et al., 2007; Barreca et al., 2007; Cetinkaya et al., 1999). Similarly, some metal complexes of benzimidazoyl derivatives possess interesting activities such as anti-viral, anti-cancers and anti-fungal activities (Snyderwine et al., 1997; Skog & Solyakov,2002; Garner et al., 1999). In particular, copper complexes are often used as chemical models of copper proteins and copper enzymes (Sorrell, 1989). Up to now, a number of structures of copper complexes involving the benzimidazol group have been reported (Sun et al., 2011; Liu et al., 2011; Toth et al., 1987), but no crystal structure of copper(I) complex based on ethyl 2-(1H- benzimidazol-1-yl)acetate is available. In order to contribute to this research field, we report herein the crystal structure of the title tetranuclear cubane-type complex.

In the title complex (Fig. 1), each copper(I) metal of the Cu4I4 core is coordinated by three µ3-iodide ions and a nitrogen atom of a benzimidazole ring system in a distorted tetrahedral geometry. The deviation from the ideal geometry can be indicated by the range [104.30 (9)–114.311 (17) °] of the bond angles around the metal. The Cu—N bond length is 2.038 (3) Å, and the Cu—I bond lengths fall in the range are 2.715 (14)–2.733 (14) %A. In the crystal structure (Fig. 2), complex molecules are connected into a three-dimensional network by C—H···O hydrogen bonds (Table 1) involving H and O atoms of adjacent ethyl acetate groups.

Related literature top

For potential applications in physiological and pharmacological fields of benzimidazoyl derivatives or complexes based on the benzimidazoyl unit, see: Ramla et al. (2007); Barreca et al. (2007); Cetinkaya et al. (1999); Snyderwine et al. (1997); Skog & Solyakov (2002); Garner et al. (1999). For applications of copper complexes in biology or medicine, see: Sorrell 1989. For related structures, see: Sun et al. (2011); Liu et al. (2011); Toth et al. (1987).

Experimental top

A mixture of ethyl 2-(1H-benzimidazol-1-yl)acetate (0.015 g, 0.1 mmol), CuI (0.019 g, 0.1 mmol), 3 mL H2O and 10 mL EtOH was heated at 160°C under hydrothermal condition in a Teflon lined steel autoclave (inner volume 15 mL) for 3 days, and then cooled to room temperature at a rate of 2°C h-1. Red single crystals suitable for X-Ray diffraction were obtained in 43% yield. Elemental Calc. for C44H48Cu4I4N8O8: C, 33.48; H, 3.06; N, 7.10%. Found: C, 33.61; H, 3.21; N, 7.21%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation. The Uiso(H) were allowed at 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with displacement ellipsoids drawn at the 30% probability level. Atoms labelled with suffix A, B and C are generated by the symmetry operator (2-x, 1.5-y, z), (0.25+y, 1.75-x, 0.75-z) and (1.75-y, -0.25+x, 0.75-z) respectively.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis.
Tetra-µ3-iodido-tetrakis{[ethyl 2-(1H-benzimidazol-1-yl)acetate-κN3]copper(I)} top
Crystal data top
[Cu4I4(C11H12N2O2)4]Dx = 2.015 Mg m3
Mr = 1578.66Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 4922 reflections
Hall symbol: -I 4adθ = 2.7–27.9°
a = 21.196 (11) ŵ = 4.04 mm1
c = 11.581 (7) ÅT = 296 K
V = 5203 (5) Å3Block, red
Z = 40.24 × 0.22 × 0.18 mm
F(000) = 3040
Data collection top
Bruker APEXII CCD
diffractometer
2422 independent reflections
Radiation source: fine-focus sealed tube2018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1425
Tmin = 0.768, Tmax = 0.784k = 2524
13042 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0216P)2 + 3.0196P]
where P = (Fo2 + 2Fc2)/3
2422 reflections(Δ/σ)max = 0.004
155 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu4I4(C11H12N2O2)4]Z = 4
Mr = 1578.66Mo Kα radiation
Tetragonal, I41/aµ = 4.04 mm1
a = 21.196 (11) ÅT = 296 K
c = 11.581 (7) Å0.24 × 0.22 × 0.18 mm
V = 5203 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2018 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.784Rint = 0.046
13042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
2422 reflectionsΔρmin = 0.32 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.102882 (10)0.771393 (11)0.517267 (18)0.04331 (9)
O20.78785 (12)1.08340 (12)0.5233 (2)0.0575 (7)
C90.81754 (17)1.02891 (18)0.5439 (3)0.0471 (9)
C110.7103 (2)1.1347 (3)0.4120 (7)0.143 (3)
H11A0.71031.17190.45930.214*
H11B0.66991.13020.37530.214*
H11C0.74251.13830.35410.214*
C80.88524 (16)1.04277 (16)0.5783 (3)0.0506 (9)
H8A0.90521.06790.51860.061*
H8B0.88551.06710.64930.061*
C100.72251 (18)1.0806 (2)0.4824 (4)0.0664 (11)
H10A0.71601.04240.43790.080*
H10B0.69391.08000.54770.080*
O10.79545 (12)0.97762 (12)0.5333 (2)0.0598 (7)
N20.92099 (13)0.98507 (12)0.5952 (2)0.0443 (7)
N10.96375 (13)0.89215 (13)0.5503 (2)0.0435 (7)
C70.93802 (16)0.94424 (16)0.5110 (3)0.0440 (8)
H70.93210.95230.43280.053*
C50.93545 (16)0.95618 (15)0.7004 (3)0.0428 (8)
C60.96267 (15)0.89832 (15)0.6711 (3)0.0405 (8)
C40.92889 (18)0.97605 (18)0.8156 (3)0.0556 (10)
H40.91111.01480.83470.067*
C30.95049 (19)0.9346 (2)0.8988 (3)0.0626 (11)
H30.94720.94570.97620.075*
C10.98362 (18)0.85733 (18)0.7569 (3)0.0538 (10)
H11.00140.81850.73850.065*
C20.97706 (18)0.87645 (19)0.8701 (3)0.0603 (10)
H20.99070.84990.92890.072*
Cu10.98756 (2)0.81434 (2)0.45656 (4)0.04928 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03946 (14)0.04686 (15)0.04360 (13)0.00175 (11)0.00630 (9)0.00031 (10)
O20.0476 (15)0.0452 (15)0.0798 (18)0.0054 (13)0.0103 (13)0.0033 (13)
C90.047 (2)0.047 (2)0.0474 (19)0.003 (2)0.0016 (17)0.0051 (17)
C110.068 (3)0.104 (4)0.256 (9)0.012 (4)0.033 (4)0.080 (5)
C80.047 (2)0.0350 (19)0.070 (2)0.0048 (18)0.0008 (18)0.0054 (17)
C100.050 (2)0.074 (3)0.076 (3)0.004 (2)0.011 (2)0.006 (2)
O10.0576 (17)0.0428 (15)0.0789 (18)0.0059 (14)0.0057 (14)0.0100 (13)
N20.0445 (17)0.0343 (15)0.0542 (17)0.0042 (14)0.0006 (14)0.0027 (13)
N10.0467 (17)0.0391 (16)0.0446 (15)0.0054 (14)0.0011 (13)0.0027 (13)
C70.042 (2)0.043 (2)0.0469 (19)0.0004 (17)0.0031 (16)0.0032 (16)
C50.0369 (18)0.042 (2)0.049 (2)0.0038 (16)0.0005 (16)0.0007 (16)
C60.0400 (19)0.0360 (18)0.0456 (18)0.0006 (16)0.0008 (15)0.0037 (15)
C40.057 (2)0.053 (2)0.058 (2)0.002 (2)0.0094 (19)0.0157 (19)
C30.071 (3)0.074 (3)0.043 (2)0.002 (2)0.0065 (19)0.007 (2)
C10.062 (3)0.044 (2)0.055 (2)0.003 (2)0.0007 (18)0.0030 (17)
C20.068 (3)0.062 (3)0.051 (2)0.001 (2)0.001 (2)0.009 (2)
Cu10.0551 (3)0.0414 (2)0.0513 (3)0.0049 (2)0.0002 (2)0.0078 (2)
Geometric parameters (Å, º) top
I1—Cu12.7015 (14)N1—C61.406 (4)
I1—Cu1i2.7244 (16)N1—Cu12.038 (3)
I1—Cu1ii2.7334 (14)C7—H70.9300
O2—C91.337 (4)C5—C61.397 (4)
O2—C101.465 (4)C5—C41.406 (5)
C9—O11.190 (4)C6—C11.392 (5)
C9—C81.518 (5)C4—C31.383 (5)
C11—C101.432 (6)C4—H40.9300
C11—H11A0.9600C3—C21.395 (5)
C11—H11B0.9600C3—H30.9300
C11—H11C0.9600C1—C21.379 (5)
C10—H10A0.9700C1—H10.9300
C10—H10B0.9700C2—H20.9300
C8—N21.452 (4)Cu1—I1iii2.7244 (16)
C8—H8A0.9700Cu1—Cu1iii2.7252 (13)
C8—H8B0.9700Cu1—Cu1i2.7252 (13)
N2—C71.353 (4)Cu1—I1ii2.7334 (14)
N2—C51.397 (4)Cu1—Cu1ii2.7780 (17)
N1—C71.313 (4)
Cu1—I1—Cu1i60.299 (15)C1—C6—C5120.5 (3)
Cu1—I1—Cu1ii61.477 (17)C1—C6—N1130.3 (3)
Cu1i—I1—Cu1ii59.912 (15)C5—C6—N1109.3 (3)
C9—O2—C10117.9 (3)C3—C4—C5116.0 (3)
O1—C9—O2125.9 (3)C3—C4—H4122.0
O1—C9—C8125.1 (3)C5—C4—H4122.0
O2—C9—C8108.9 (3)C4—C3—C2122.0 (4)
C10—C11—H11A109.5C4—C3—H3119.0
C10—C11—H11B109.5C2—C3—H3119.0
H11A—C11—H11B109.5C2—C1—C6117.5 (3)
C10—C11—H11C109.5C2—C1—H1121.2
H11A—C11—H11C109.5C6—C1—H1121.2
H11B—C11—H11C109.5C1—C2—C3121.8 (4)
N2—C8—C9111.5 (3)C1—C2—H2119.1
N2—C8—H8A109.3C3—C2—H2119.1
C9—C8—H8A109.3N1—Cu1—I1110.98 (8)
N2—C8—H8B109.3N1—Cu1—I1iii104.30 (9)
C9—C8—H8B109.3I1—Cu1—I1iii114.311 (17)
H8A—C8—H8B108.0N1—Cu1—Cu1iii138.82 (8)
C11—C10—O2108.8 (4)I1—Cu1—Cu1iii110.146 (17)
C11—C10—H10A109.9I1iii—Cu1—Cu1iii59.43 (4)
O2—C10—H10A109.9N1—Cu1—Cu1i147.54 (8)
C11—C10—H10B109.9I1—Cu1—Cu1i60.27 (4)
O2—C10—H10B109.9I1iii—Cu1—Cu1i60.21 (4)
H10A—C10—H10B108.3Cu1iii—Cu1—Cu1i61.29 (3)
C7—N2—C5106.8 (3)N1—Cu1—I1ii103.14 (8)
C7—N2—C8125.5 (3)I1—Cu1—I1ii110.098 (19)
C5—N2—C8126.9 (3)I1iii—Cu1—I1ii113.280 (17)
C7—N1—C6105.1 (3)Cu1iii—Cu1—I1ii59.88 (4)
C7—N1—Cu1126.8 (2)Cu1i—Cu1—I1ii109.193 (17)
C6—N1—Cu1127.6 (2)N1—Cu1—Cu1ii147.30 (8)
N1—C7—N2113.5 (3)I1—Cu1—Cu1ii59.827 (16)
N1—C7—H7123.2I1iii—Cu1—Cu1ii107.917 (17)
N2—C7—H7123.2Cu1iii—Cu1—Cu1ii59.357 (16)
C6—C5—N2105.3 (3)Cu1i—Cu1—Cu1ii59.357 (16)
C6—C5—C4122.3 (3)I1ii—Cu1—Cu1ii58.696 (16)
N2—C5—C4132.4 (3)
C10—O2—C9—O10.9 (5)C5—C6—C1—C20.7 (5)
C10—O2—C9—C8176.7 (3)N1—C6—C1—C2179.2 (3)
O1—C9—C8—N21.1 (5)C6—C1—C2—C30.0 (6)
O2—C9—C8—N2176.6 (3)C4—C3—C2—C10.4 (6)
C9—O2—C10—C11150.6 (4)C7—N1—Cu1—I1135.7 (3)
C9—C8—N2—C768.8 (4)C6—N1—Cu1—I154.4 (3)
C9—C8—N2—C5100.2 (4)C7—N1—Cu1—I1iii12.1 (3)
C6—N1—C7—N21.2 (4)C6—N1—Cu1—I1iii177.9 (3)
Cu1—N1—C7—N2173.0 (2)C7—N1—Cu1—Cu1iii47.5 (3)
C5—N2—C7—N11.7 (4)C6—N1—Cu1—Cu1iii122.5 (2)
C8—N2—C7—N1172.6 (3)C7—N1—Cu1—Cu1i68.4 (3)
C7—N2—C5—C61.5 (3)C6—N1—Cu1—Cu1i121.6 (3)
C8—N2—C5—C6172.1 (3)C7—N1—Cu1—I1ii106.4 (3)
C7—N2—C5—C4179.3 (4)C6—N1—Cu1—I1ii63.5 (3)
C8—N2—C5—C410.0 (6)C7—N1—Cu1—Cu1ii157.8 (2)
N2—C5—C6—C1179.2 (3)C6—N1—Cu1—Cu1ii12.1 (4)
C4—C5—C6—C11.0 (5)Cu1i—I1—Cu1—N1145.25 (9)
N2—C5—C6—N10.8 (4)Cu1ii—I1—Cu1—N1145.04 (9)
C4—C5—C6—N1178.9 (3)Cu1i—I1—Cu1—I1iii27.64 (3)
C7—N1—C6—C1179.8 (4)Cu1ii—I1—Cu1—I1iii97.34 (2)
Cu1—N1—C6—C18.2 (5)Cu1i—I1—Cu1—Cu1iii36.98 (3)
C7—N1—C6—C50.2 (4)Cu1ii—I1—Cu1—Cu1iii32.73 (3)
Cu1—N1—C6—C5171.9 (2)Cu1ii—I1—Cu1—Cu1i69.703 (11)
C6—C5—C4—C30.6 (5)Cu1i—I1—Cu1—I1ii101.19 (3)
N2—C5—C4—C3178.2 (3)Cu1ii—I1—Cu1—I1ii31.49 (3)
C5—C4—C3—C20.1 (6)Cu1i—I1—Cu1—Cu1ii69.703 (11)
Symmetry codes: (i) y+1/4, x+7/4, z+3/4; (ii) x+2, y+3/2, z; (iii) y+7/4, x1/4, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1iv0.972.603.531 (5)162
Symmetry code: (iv) y1/4, x+7/4, z1/4.

Experimental details

Crystal data
Chemical formula[Cu4I4(C11H12N2O2)4]
Mr1578.66
Crystal system, space groupTetragonal, I41/a
Temperature (K)296
a, c (Å)21.196 (11), 11.581 (7)
V3)5203 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.04
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.768, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
13042, 2422, 2018
Rint0.046
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.053, 1.03
No. of reflections2422
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.972.603.531 (5)162
Symmetry code: (i) y1/4, x+7/4, z1/4.
 

References

First citationBarreca, M. L., Rao, A., Luca, L. D., Iraci, N., Monforte, A. M., Maga, G., Clercq, E. D., Pannecouque, C., Balzarini, J. & Chimirri, A. (2007). Bioorg. Med. Chem. Lett. 17, 1956–1960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCetinkaya, E., Alici, B., Gok, Y., Durmaz, R. & Günal, S. (1999). J. Chemother. 11, 83–89.  Web of Science PubMed CAS Google Scholar
First citationGarner, R. C., Lightfoot, T. J., Cupid, B. C., Russell, D., Coxhead, J. M., Kutschera, W., Priller, A., Rom, W., Steier, P., Alexander, D. J., Leveson, S. H., Dingley, K. H., Mauthe, R. J. & Turteltaub, K. W. (1999). Cancer Lett. 143, 161–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J. C., Cao, J., Deng, W. T. & Chen, B. H. (2011). J. Chem. Crystallogr. 41, 806–810.  Web of Science CSD CrossRef Google Scholar
First citationRamla, M. M., Omar, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489–6496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkog, K. & Solyakov, A. (2002). Food Chem. Toxicol., 40, 1213–1221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSnyderwine, E. G., Turesky, R. J., Turteltaub, W. K., Davis, C. D., Sadrieh, N., Schut, H. A. J., Nagao, M., Sugimura, T., Thorgeirsson, U. P., Adamson, R. H. & Thorgeirsson, S. S. (1997). Mutat. Res. 376, 203–210.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSorrell, T. N. (1989). Tetrahedron, 45, 3–68.  CrossRef CAS Web of Science Google Scholar
First citationSun, Y. G., Xiong, G., Guo, M. Y., Ding, F., Wang, L., Gao, E. J., Zhu, M. C. & Verpoort, E. (2011). Z. Anorg. Allg. Chem. 637, 293–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationToth, A., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1987). Inorg Chem. 26, 3897–3902.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds