organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1950-o1951

3-O-Methyl-1-isomangostin

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 15 May 2012; accepted 22 May 2012; online 31 May 2012)

In the title xanthone derivative [systematic name: 9-hy­droxy-5,10-dimeth­oxy-2,2-dimethyl-11-(3-methyl­but-2-en-1-yl)-2,3,4,12-tetra­hydro-1,7-dioxatetra­phen-12-one], C25H28O6, the xanthone ring system is roughly planar, with an r.m.s. deviation of 0.1038 (1) Å. The chromane ring is in a half-chair conformation and the 3-methyl­but-2-enyl substituent is axially attached with an (+)-anti­clinal conformation. Two weak intra­molecular C—H⋯O inter­actions generate two S(6) ring motifs. In the crystal, mol­ecules are linked into ribbons along the c axis by O—H⋯O and weak C—H⋯O hydrogen bonds. A ππ inter­action, with a centroid–centroid distance of 3.5413 (8) Å, is also observed.

Related literature

For background to xanthones and their biological activity, see: Bennett & Lee (1989[Bennett, G. J. & Lee, H.-H. (1989). Phytochemistry, 28, 967-998.]); Boonnak et al. (2010[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2010). Chem. Pharm. Bull. 58, 386-389.]); Gopalakrishnan et al. (1997[Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod. 60, 519-524.]); Ho et al. (2002[Ho, C. K., Huang, Y. L. & Chen, C. C. (2002). Planta Med. 68, 975-979.]); Mahabusarakam et al. (1987[Mahabusarakam, W., Wiriyachitra, P. & Taylor, W. C. (1987). J. Nat. Prod. 50, 474-478.]); Obolskiy et al. (2009[Obolskiy, D., Pischel, I., Siriwatanametanon, N. & Heinrich, M. (2009). Phytother. Res. 23, 1047-1065.]); Phongpaichit et al. (1994[Phongpaichit, S., Ongsakul, M., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chauprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399-405.]); Shankaranarayan et al. (1979[Shankaranarayan, D., Gopalakrishnan, C. & Kameswaran, L. (1979). Arch. Int. Pharmacodyn. Ther. 239, 257-269.]); Yoshikawa et al. (1994[Yoshikawa, M., Harada, E., Miki, A., Tsukamoto, K., Si Quian, L., Yamahara, J. & Murakami, N. (1994). Yakugaku Zasshi, 114, 129-133.]). For related structures, see: Chantrapromma et al. (2005[Chantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. & Atta-ur-Rahman (2005). Acta Cryst. E61, o2136-o2138.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H28O6

  • Mr = 424.47

  • Monoclinic, P 21 /c

  • a = 10.8635 (9) Å

  • b = 16.6117 (13) Å

  • c = 13.4146 (8) Å

  • β = 118.843 (5)°

  • V = 2120.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.33 × 0.23 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.984

  • 21681 measured reflections

  • 5630 independent reflections

  • 4344 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.05

  • 5630 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O2i 0.90 1.77 2.6082 (17) 155
C15—H15A⋯O1ii 0.99 2.55 3.3820 (18) 141
C20—H20C⋯O5 0.98 2.57 3.104 (2) 115
C21—H21A⋯O2 0.99 2.29 2.807 (2) 111
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Garcinia genus plants are commonly known as a good providing source of bioactive xanthones (Bennett & Lee, 1989). The α-, β- and γ-mangostins are well known bioactive xanthones that were isolated from G. mangostana as major constituents (Mahabusarakam et al., 1987) and they exhibit various biological and pharmacological properties (Obolskiy et al., 2009; Phongpaichit et al., 1994) such as antibacterial (Boonnak et al., 2010), antifungal (Gopalakrishnan et al., 1997), anti-inflammatory (Shankaranarayan et al., 1979), antioxidant (Yoshikawa et al., 1994) and anti-cancer (Ho et al., 2002) activities. These interesting biological properties of xanthones have led us to synthesize the title compound (I) by modification of an isoprenyl side chain of β-mangostin to the chromane ring via acid catalysis (Gopalakrishnan et al., 1997) with the hope to enhance its bioactivity. However our antibacterial testing has found that (I) is less active than its precusor (β-mangostin). Herein the crystal structure of (I) is reported.

Compound (I) has a xanthone nucleus with a fused angular fashion chromane ring (Fig. 1). The three-ring system [C1–C13/O1] of the xanthone nucleus is roughly planar with an r.m.s. deviation of 0.1038 (1) Å from the plane through all the fourteen non-hydrogen atoms (maximum deviation of -0.192 (1) Å for atom O1). The chromane ring (C1–C2/C14–C16/O3) is in a half-chair conformation with puckering parameter Q = 0.4631 (17) Å, θ = 49.7 (2)° and ϕ = 272.7 (2)° (Cremer & Pople, 1975), with the puckered C14 and C15 atoms having deviations of -0.306 (1) and 0.293 (2) Å, respectively. The hydroxyl group is planarly attached at atom C8. The two methoxy groups have different orientations in which one methoxy group at atom C3 lies close to the plane of its bound benzene ring with the torsion angle C19–O4–C3–C4 = 1.79 (19)° whereas the other is axially attached at atom C9 with the torsion angle C20–O6–C9–C8 = 80.63 (15)°, indicating an (+)-anti-clinal conformation. The 3-methyl-2-butenyl substituent is attached at atom C10 with the torsion angle C9–C10–C21–C22 = 87.47 (16) °, indicating an (+)-anti-clinal conformation (Fig. 1). Intramolecular C20—H20C···O5 and C21—H21A···O2 weak interactions (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to those found in a related structure (Chantrapromma et al., 2005).

In the crystal packing, the molecules are linked into ribbons along [0 0 1] by O—H···O hydrogen bonds and the adjacent ribbons are further linked by weak C—H···O interactions (Fig. 2 and Table 1). A ππ interaction with the distance of Cg2···Cg2ii = 3.5413 (8) Å is observed; Cg2 is the centroid of C1–C5/C13 ring; symmetry code: (ii) 1-x, 2-y, 2-z.

Related literature top

For background to xanthones and their biological activity, see: Bennett & Lee (1989); Boonnak et al. (2010); Gopalakrishnan et al. (1997); Ho et al. (2002); Mahabusarakam et al. (1987); Obolskiy et al. (2009); Phongpaichit et al. (1994); Shankaranarayan et al. (1979); Yoshikawa et al. (1994). For related structures, see: Chantrapromma et al. (2005). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

A solution of β-mangostin (30 mg, 0.707 mmol) and p-toluenesulfonic acid (75 mg, 0.436 mmol) in dry acetic acid (1.30 ml) was stirred at room temperature for 24 h. The mixture was extracted with ethylacetate. The combined ethylacetate extract was further washed with a saturated aqueous NaHCO3 solution and dried over anhydrous MgSO4. The solvent was evaporated under reduced pressure to give a yellow residue, which was further purified by column chromatography (hexane/ethylacetate, 9:1 v/v) to yield the title compound (I). Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from a solution of CHCl3/CH3OH (9:1 v)/v by slow evaporation of the solvent at room temperature after several days.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.90 Å, d(C-H) = 0.95 Å for aromatic and CH, 0.99 for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. One outlier (1 0 0 ) was omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. Hydrogen bonds were drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the a axis. Only H atoms involved in hydrogen bonds (dashed lines) are shown for clarity.
3-O-methyl-1-isomangostin top
Crystal data top
C25H28O6F(000) = 904
Mr = 424.47Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5630 reflections
a = 10.8635 (9) Åθ = 2.1–29.0°
b = 16.6117 (13) ŵ = 0.09 mm1
c = 13.4146 (8) ÅT = 100 K
β = 118.843 (5)°Block, yellow
V = 2120.5 (3) Å30.33 × 0.23 × 0.17 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5630 independent reflections
Radiation source: sealed tube4344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.970, Tmax = 0.984k = 2216
21681 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.7665P]
where P = (Fo2 + 2Fc2)/3
5630 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C25H28O6V = 2120.5 (3) Å3
Mr = 424.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8635 (9) ŵ = 0.09 mm1
b = 16.6117 (13) ÅT = 100 K
c = 13.4146 (8) Å0.33 × 0.23 × 0.17 mm
β = 118.843 (5)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5630 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4344 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.984Rint = 0.031
21681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
5630 reflectionsΔρmin = 0.22 e Å3
286 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47611 (10)0.79136 (6)1.00159 (8)0.0224 (2)
O20.72643 (12)0.86788 (7)0.87266 (9)0.0303 (2)
O30.56536 (10)0.99916 (6)0.79679 (8)0.0246 (2)
O40.17200 (10)1.01564 (6)0.85893 (9)0.0254 (2)
O50.79450 (11)0.58712 (6)1.21935 (9)0.0269 (2)
H1O50.75230.59131.26230.040*
O60.99052 (11)0.64398 (6)1.16684 (9)0.0271 (2)
C10.48227 (14)0.96827 (8)0.83776 (11)0.0208 (3)
C20.36202 (14)1.00707 (8)0.82405 (11)0.0215 (3)
C30.28457 (14)0.97195 (8)0.87218 (11)0.0214 (3)
C40.32266 (14)0.89900 (8)0.92935 (11)0.0218 (3)
H4A0.26710.87470.95820.026*
C50.44460 (14)0.86281 (8)0.94284 (11)0.0199 (3)
C60.60528 (14)0.75690 (8)1.03800 (11)0.0202 (3)
C70.63295 (15)0.69158 (8)1.11039 (12)0.0219 (3)
H7A0.56580.67421.13190.026*
C80.76041 (15)0.65239 (8)1.15050 (11)0.0224 (3)
C90.86042 (14)0.68063 (8)1.11974 (12)0.0228 (3)
C100.83498 (15)0.74805 (8)1.05092 (12)0.0227 (3)
C110.70074 (14)0.78588 (8)1.00440 (11)0.0209 (3)
C120.65700 (15)0.85193 (8)0.92089 (11)0.0215 (3)
C130.52913 (14)0.89451 (8)0.90017 (11)0.0199 (3)
C140.50491 (16)1.06108 (9)0.70826 (12)0.0262 (3)
C150.42974 (16)1.12362 (9)0.74250 (13)0.0275 (3)
H15A0.49881.15040.81350.033*
H15B0.38811.16510.68230.033*
C160.31443 (15)1.08605 (8)0.76085 (12)0.0249 (3)
H16A0.28841.12370.80480.030*
H16B0.23011.07680.68620.030*
C170.63073 (18)1.09726 (10)0.70456 (15)0.0350 (4)
H17A0.69481.12070.77890.052*
H17B0.59891.13930.64610.052*
H17C0.67981.05510.68630.052*
C180.40695 (18)1.01862 (10)0.59661 (13)0.0319 (3)
H18A0.45950.97740.58060.048*
H18B0.36891.05800.53460.048*
H18C0.32960.99330.60300.048*
C190.09221 (16)0.98457 (9)0.91024 (14)0.0287 (3)
H19A0.01361.02090.89390.043*
H19B0.15290.98050.99280.043*
H19C0.05570.93110.87900.043*
C200.98891 (17)0.57034 (9)1.11071 (13)0.0294 (3)
H20A1.08440.54851.14430.044*
H20B0.95380.58071.02950.044*
H20C0.92740.53141.11990.044*
C210.95680 (15)0.78156 (9)1.03784 (13)0.0269 (3)
H21A0.94280.84021.02360.032*
H21B1.04490.77381.11040.032*
C220.97349 (17)0.74360 (9)0.94364 (14)0.0291 (3)
H22A0.89420.74450.86970.035*
C231.09098 (19)0.70835 (9)0.95472 (17)0.0364 (4)
C241.22440 (18)0.69855 (11)1.06549 (19)0.0455 (5)
H24A1.20820.71481.12840.068*
H24B1.29810.73241.06510.068*
H24C1.25400.64211.07520.068*
C251.0935 (2)0.67564 (13)0.8511 (2)0.0533 (5)
H25A1.00080.68270.78430.080*
H25B1.11720.61830.86200.080*
H25C1.16410.70470.83950.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (5)0.0229 (5)0.0282 (5)0.0027 (4)0.0158 (4)0.0046 (4)
O20.0344 (6)0.0341 (6)0.0357 (6)0.0082 (4)0.0275 (5)0.0088 (4)
O30.0271 (5)0.0253 (5)0.0274 (5)0.0018 (4)0.0179 (4)0.0058 (4)
O40.0235 (5)0.0275 (5)0.0287 (5)0.0051 (4)0.0154 (4)0.0024 (4)
O50.0339 (6)0.0277 (5)0.0280 (5)0.0090 (4)0.0219 (5)0.0073 (4)
O60.0252 (5)0.0314 (5)0.0277 (5)0.0079 (4)0.0152 (4)0.0027 (4)
C10.0233 (7)0.0225 (6)0.0189 (6)0.0020 (5)0.0120 (5)0.0008 (5)
C20.0233 (7)0.0220 (6)0.0194 (6)0.0001 (5)0.0105 (5)0.0007 (5)
C30.0198 (6)0.0252 (6)0.0194 (6)0.0011 (5)0.0098 (5)0.0024 (5)
C40.0209 (7)0.0257 (6)0.0230 (6)0.0002 (5)0.0138 (6)0.0011 (5)
C50.0220 (6)0.0203 (6)0.0192 (6)0.0000 (5)0.0114 (5)0.0005 (5)
C60.0197 (6)0.0230 (6)0.0208 (6)0.0010 (5)0.0121 (5)0.0016 (5)
C70.0248 (7)0.0236 (6)0.0235 (6)0.0012 (5)0.0165 (6)0.0003 (5)
C80.0273 (7)0.0234 (6)0.0198 (6)0.0034 (5)0.0139 (6)0.0003 (5)
C90.0220 (7)0.0270 (7)0.0224 (6)0.0040 (5)0.0132 (6)0.0007 (5)
C100.0243 (7)0.0256 (6)0.0232 (6)0.0008 (5)0.0156 (6)0.0016 (5)
C110.0225 (7)0.0230 (6)0.0218 (6)0.0016 (5)0.0143 (5)0.0002 (5)
C120.0241 (7)0.0230 (6)0.0217 (6)0.0002 (5)0.0144 (6)0.0010 (5)
C130.0215 (6)0.0220 (6)0.0189 (6)0.0003 (5)0.0119 (5)0.0006 (5)
C140.0329 (8)0.0239 (6)0.0272 (7)0.0023 (6)0.0189 (6)0.0062 (5)
C150.0338 (8)0.0227 (6)0.0309 (7)0.0005 (6)0.0193 (7)0.0027 (5)
C160.0275 (7)0.0225 (6)0.0263 (7)0.0023 (5)0.0143 (6)0.0021 (5)
C170.0399 (9)0.0293 (8)0.0465 (9)0.0022 (6)0.0294 (8)0.0102 (7)
C180.0431 (9)0.0314 (7)0.0257 (7)0.0027 (7)0.0203 (7)0.0034 (6)
C190.0239 (7)0.0328 (7)0.0347 (8)0.0028 (6)0.0184 (7)0.0002 (6)
C200.0323 (8)0.0290 (7)0.0301 (7)0.0092 (6)0.0176 (7)0.0043 (6)
C210.0256 (7)0.0284 (7)0.0322 (7)0.0002 (6)0.0182 (6)0.0013 (6)
C220.0312 (8)0.0305 (7)0.0353 (8)0.0045 (6)0.0237 (7)0.0056 (6)
C230.0428 (9)0.0264 (7)0.0596 (11)0.0074 (6)0.0403 (9)0.0122 (7)
C240.0344 (9)0.0391 (9)0.0749 (14)0.0098 (7)0.0358 (10)0.0170 (9)
C250.0694 (14)0.0468 (11)0.0768 (14)0.0169 (10)0.0616 (13)0.0112 (10)
Geometric parameters (Å, º) top
O1—C61.3689 (16)C14—C181.528 (2)
O1—C51.3737 (15)C15—C161.522 (2)
O2—C121.2363 (16)C15—H15A0.9900
O3—C11.3635 (16)C15—H15B0.9900
O3—C141.4653 (16)C16—H16A0.9900
O4—C31.3579 (16)C16—H16B0.9900
O4—C191.4377 (18)C17—H17A0.9800
O5—C81.3549 (16)C17—H17B0.9800
O5—H1O50.8949C17—H17C0.9800
O6—C91.3805 (17)C18—H18A0.9800
O6—C201.4322 (18)C18—H18B0.9800
C1—C21.3871 (19)C18—H18C0.9800
C1—C131.4318 (18)C19—H19A0.9800
C2—C31.411 (2)C19—H19B0.9800
C2—C161.5114 (19)C19—H19C0.9800
C3—C41.3863 (19)C20—H20A0.9800
C4—C51.3848 (18)C20—H20B0.9800
C4—H4A0.9500C20—H20C0.9800
C5—C131.3982 (18)C21—C221.499 (2)
C6—C71.3890 (19)C21—H21A0.9900
C6—C111.4005 (19)C21—H21B0.9900
C7—C81.3826 (19)C22—C231.346 (2)
C7—H7A0.9500C22—H22A0.9500
C8—C91.415 (2)C23—C241.502 (3)
C9—C101.3917 (19)C23—C251.505 (3)
C10—C111.4258 (19)C24—H24A0.9800
C10—C211.522 (2)C24—H24B0.9800
C11—C121.4734 (19)C24—H24C0.9800
C12—C131.4611 (19)C25—H25A0.9800
C14—C171.516 (2)C25—H25B0.9800
C14—C151.523 (2)C25—H25C0.9800
C6—O1—C5119.66 (11)H15A—C15—H15B107.9
C1—O3—C14117.77 (11)C2—C16—C15111.17 (12)
C3—O4—C19117.28 (11)C2—C16—H16A109.4
C8—O5—H1O5108.7C15—C16—H16A109.4
C9—O6—C20112.70 (11)C2—C16—H16B109.4
O3—C1—C2122.40 (12)C15—C16—H16B109.4
O3—C1—C13116.11 (12)H16A—C16—H16B108.0
C2—C1—C13121.44 (12)C14—C17—H17A109.5
C1—C2—C3118.60 (12)C14—C17—H17B109.5
C1—C2—C16121.55 (13)H17A—C17—H17B109.5
C3—C2—C16119.85 (12)C14—C17—H17C109.5
O4—C3—C4123.32 (12)H17A—C17—H17C109.5
O4—C3—C2114.67 (12)H17B—C17—H17C109.5
C4—C3—C2122.01 (12)C14—C18—H18A109.5
C5—C4—C3117.60 (12)C14—C18—H18B109.5
C5—C4—H4A121.2H18A—C18—H18B109.5
C3—C4—H4A121.2C14—C18—H18C109.5
O1—C5—C4114.08 (12)H18A—C18—H18C109.5
O1—C5—C13121.95 (12)H18B—C18—H18C109.5
C4—C5—C13123.97 (12)O4—C19—H19A109.5
O1—C6—C7114.52 (12)O4—C19—H19B109.5
O1—C6—C11122.16 (12)H19A—C19—H19B109.5
C7—C6—C11123.33 (12)O4—C19—H19C109.5
C8—C7—C6118.57 (13)H19A—C19—H19C109.5
C8—C7—H7A120.7H19B—C19—H19C109.5
C6—C7—H7A120.7O6—C20—H20A109.5
O5—C8—C7122.36 (13)O6—C20—H20B109.5
O5—C8—C9117.91 (12)H20A—C20—H20B109.5
C7—C8—C9119.73 (12)O6—C20—H20C109.5
O6—C9—C10119.36 (13)H20A—C20—H20C109.5
O6—C9—C8118.73 (12)H20B—C20—H20C109.5
C10—C9—C8121.70 (12)C22—C21—C10114.13 (13)
C9—C10—C11118.61 (13)C22—C21—H21A108.7
C9—C10—C21117.73 (12)C10—C21—H21A108.7
C11—C10—C21123.44 (12)C22—C21—H21B108.7
C6—C11—C10117.87 (12)C10—C21—H21B108.7
C6—C11—C12118.90 (12)H21A—C21—H21B107.6
C10—C11—C12123.20 (12)C23—C22—C21125.71 (16)
O2—C12—C13124.11 (12)C23—C22—H22A117.1
O2—C12—C11120.20 (12)C21—C22—H22A117.1
C13—C12—C11115.69 (12)C22—C23—C24124.58 (17)
C5—C13—C1116.31 (12)C22—C23—C25119.59 (18)
C5—C13—C12119.45 (12)C24—C23—C25115.83 (15)
C1—C13—C12124.24 (12)C23—C24—H24A109.5
O3—C14—C17104.25 (12)C23—C24—H24B109.5
O3—C14—C15109.29 (11)H24A—C24—H24B109.5
C17—C14—C15111.26 (12)C23—C24—H24C109.5
O3—C14—C18107.36 (11)H24A—C24—H24C109.5
C17—C14—C18111.32 (13)H24B—C24—H24C109.5
C15—C14—C18112.91 (13)C23—C25—H25A109.5
C16—C15—C14111.83 (12)C23—C25—H25B109.5
C16—C15—H15A109.3H25A—C25—H25B109.5
C14—C15—H15A109.3C23—C25—H25C109.5
C16—C15—H15B109.3H25A—C25—H25C109.5
C14—C15—H15B109.3H25B—C25—H25C109.5
C14—O3—C1—C218.47 (18)O1—C6—C11—C124.4 (2)
C14—O3—C1—C13163.92 (11)C7—C6—C11—C12175.70 (12)
O3—C1—C2—C3178.12 (12)C9—C10—C11—C65.0 (2)
C13—C1—C2—C30.63 (19)C21—C10—C11—C6169.51 (13)
O3—C1—C2—C160.9 (2)C9—C10—C11—C12173.19 (13)
C13—C1—C2—C16178.37 (12)C21—C10—C11—C1212.3 (2)
C19—O4—C3—C41.79 (19)C6—C11—C12—O2165.46 (13)
C19—O4—C3—C2177.51 (12)C10—C11—C12—O212.8 (2)
C1—C2—C3—O4177.28 (11)C6—C11—C12—C1313.96 (18)
C16—C2—C3—O41.74 (18)C10—C11—C12—C13167.83 (12)
C1—C2—C3—C42.0 (2)O1—C5—C13—C1178.29 (12)
C16—C2—C3—C4178.95 (12)C4—C5—C13—C11.0 (2)
O4—C3—C4—C5176.20 (12)O1—C5—C13—C121.69 (19)
C2—C3—C4—C53.0 (2)C4—C5—C13—C12179.04 (13)
C6—O1—C5—C4168.53 (12)O3—C1—C13—C5179.69 (11)
C6—O1—C5—C1312.13 (19)C2—C1—C13—C52.05 (19)
C3—C4—C5—O1179.18 (12)O3—C1—C13—C120.32 (19)
C3—C4—C5—C131.5 (2)C2—C1—C13—C12177.96 (13)
C5—O1—C6—C7170.98 (11)O2—C12—C13—C5168.33 (13)
C5—O1—C6—C118.95 (19)C11—C12—C13—C511.06 (18)
O1—C6—C7—C8179.30 (12)O2—C12—C13—C111.6 (2)
C11—C6—C7—C80.8 (2)C11—C12—C13—C1168.96 (12)
C6—C7—C8—O5178.50 (12)C1—O3—C14—C17165.58 (12)
C6—C7—C8—C91.6 (2)C1—O3—C14—C1546.56 (16)
C20—O6—C9—C10104.50 (15)C1—O3—C14—C1876.23 (15)
C20—O6—C9—C880.63 (15)O3—C14—C15—C1658.35 (16)
O5—C8—C9—O64.17 (19)C17—C14—C15—C16172.94 (12)
C7—C8—C9—O6175.69 (12)C18—C14—C15—C1661.06 (16)
O5—C8—C9—C10178.92 (12)C1—C2—C16—C1513.47 (18)
C7—C8—C9—C100.9 (2)C3—C2—C16—C15165.52 (12)
O6—C9—C10—C11179.05 (12)C14—C15—C16—C241.79 (16)
C8—C9—C10—C114.3 (2)C9—C10—C21—C2287.47 (16)
O6—C9—C10—C214.18 (19)C11—C10—C21—C2297.93 (16)
C8—C9—C10—C21170.53 (13)C10—C21—C22—C23124.59 (16)
O1—C6—C11—C10177.31 (12)C21—C22—C23—C242.4 (3)
C7—C6—C11—C102.6 (2)C21—C22—C23—C25177.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O2i0.901.772.6082 (17)155
C15—H15A···O1ii0.992.553.3820 (18)141
C20—H20C···O50.982.573.104 (2)115
C21—H21A···O20.992.292.807 (2)111
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC25H28O6
Mr424.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.8635 (9), 16.6117 (13), 13.4146 (8)
β (°) 118.843 (5)
V3)2120.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.23 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
21681, 5630, 4344
Rint0.031
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.05
No. of reflections5630
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O2i0.901.772.6082 (17)155
C15—H15A···O1ii0.992.553.3820 (18)141
C20—H20C···O50.982.573.104 (2)115
C21—H21A···O20.992.292.807 (2)111
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

NB thanks Prince of Songkla University for a postdoctoral fellowship. Financial support from Prince of Songkla University is gratefully acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBennett, G. J. & Lee, H.-H. (1989). Phytochemistry, 28, 967–998.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2010). Chem. Pharm. Bull. 58, 386–389.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. & Atta-ur-Rahman (2005). Acta Cryst. E61, o2136–o2138.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod. 60, 519–524.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHo, C. K., Huang, Y. L. & Chen, C. C. (2002). Planta Med. 68, 975–979.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMahabusarakam, W., Wiriyachitra, P. & Taylor, W. C. (1987). J. Nat. Prod. 50, 474–478.  CrossRef CAS Web of Science Google Scholar
First citationObolskiy, D., Pischel, I., Siriwatanametanon, N. & Heinrich, M. (2009). Phytother. Res. 23, 1047–1065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPhongpaichit, S., Ongsakul, M., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chauprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399–405.  Google Scholar
First citationShankaranarayan, D., Gopalakrishnan, C. & Kameswaran, L. (1979). Arch. Int. Pharmacodyn. Ther. 239, 257–269.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshikawa, M., Harada, E., Miki, A., Tsukamoto, K., Si Quian, L., Yamahara, J. & Murakami, N. (1994). Yakugaku Zasshi, 114, 129–133.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1950-o1951
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds