organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­phenyl­sulfon­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 May 2012; accepted 21 May 2012; online 26 May 2012)

In the crystal structure of the title compound, C11H13NO5S, the amide C=O and the carboxyl C=O groups of the acid segment orient themselves away from each other. The dihedral angle between the benzene ring and the amide group is 69.0 (2)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720.]); Saraswathi et al. (2011[Saraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o227.]), of N-chloro­aryl­amides, see: Gowda & Rao (1989[Gowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303-3310.]); Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and of N-bromo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983[Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO5S

  • Mr = 271.28

  • Monoclinic, P 21 /c

  • a = 10.2496 (9) Å

  • b = 17.041 (2) Å

  • c = 7.4721 (6) Å

  • β = 101.909 (9)°

  • V = 1277.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.48 × 0.32 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.883, Tmax = 0.959

  • 4739 measured reflections

  • 2597 independent reflections

  • 2107 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.110

  • S = 1.12

  • 2597 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.14 (2) 2.948 (2) 164 (2)
O5—H5O⋯O4ii 0.83 (2) 1.83 (2) 2.663 (3) 178 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+2, -z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Saraswathi et al., 2011); N-chloroarylsulfonamides (Gowda & Rao, 1989; Jyothi & Gowda, 2004) and N-bromoaryl- sulfonamides (Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of N-(4-methylphenylsulfonyl)succinamic acid has been determined (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment are anti to each other. Further, the amide CO and the carboxyl CO of the acid segment orient themselves away from each other, in contrast to the anti conformation observed between the the amide oxygen and the carboxyl oxygen in N-(4-methylphenyl)-succinamic acid (I) (Saraswathi et al., 2011). But both the amide oxygen and the carboxyl oxygen are anti to the H atoms on the adjacent –CH2 groups, in both the compounds.

In the title compound, the CO and O—H bonds of the acid group are in syn position to each other, similar to that observed in (I). The molecule is bent at the S-atom with the C1–S1–N1–C7 torsion angle of 79.2 (1)°. Further, the dihedral angle between the phenyl ring and the amide group is 69.0 (2)°. In the crystal, the pairs of O—H···O and N—H···O intermolecular hydrogen bonds link the molecules into layers parallel to the bc plane (Table 1, Fig. 2).

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Saraswathi et al. (2011), of N-chloroarylamides, see: Gowda & Rao (1989); Jyothi & Gowda (2004) and of N-bromoarylsulfonamides, see: Gowda & Mahadevappa (1983); Usha & Gowda (2006).

Experimental top

Succinic anhydride (0.015 mole) and 4-dimethylaminopyridine (0.01 mole) were added to a solution of p-toluenesulfonamide (0.01 mole) in dichloromethane. The reaction mixture was strirred for 18 h at room temperature and set aside for completion of the reaction. The reaction mixture was concentrated to dryness. The resultant title compound was washed with dilute HCl and then with water thoroughly, to remove the unreacted base and the succinic anhydride. It was recrystallized to constant melting point from ethyl acetate (173–175 °C). The purity of the compound was checked and characterized by its infrared spectrum. Prism-like colourless single crystals used in X-ray diffraction studies were grown by slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

The H atoms of the NH group and the OH group were located in a difference Fourier map and later restrained to the distances of N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Methylphenylsulfonyl)succinamic acid top
Crystal data top
C11H13NO5SF(000) = 568
Mr = 271.28Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2495 reflections
a = 10.2496 (9) Åθ = 3.0–27.6°
b = 17.041 (2) ŵ = 0.27 mm1
c = 7.4721 (6) ÅT = 293 K
β = 101.909 (9)°Prism, colourless
V = 1277.0 (2) Å30.48 × 0.32 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2597 independent reflections
Radiation source: fine-focus sealed tube2107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1211
Tmin = 0.883, Tmax = 0.959k = 218
4739 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.034P)2 + 0.9166P]
where P = (Fo2 + 2Fc2)/3
2597 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
C11H13NO5SV = 1277.0 (2) Å3
Mr = 271.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2496 (9) ŵ = 0.27 mm1
b = 17.041 (2) ÅT = 293 K
c = 7.4721 (6) Å0.48 × 0.32 × 0.16 mm
β = 101.909 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2597 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2107 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.959Rint = 0.014
4739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.23 e Å3
2597 reflectionsΔρmin = 0.32 e Å3
170 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1649 (2)0.82620 (14)0.0924 (3)0.0398 (5)
C20.1077 (3)0.75638 (15)0.0207 (4)0.0507 (6)
H20.16040.71260.01320.061*
C30.0291 (3)0.75296 (17)0.0394 (4)0.0625 (7)
H30.06820.70630.08810.075*
C40.1092 (3)0.81770 (18)0.0286 (4)0.0607 (7)
C50.0496 (3)0.88660 (16)0.0469 (4)0.0582 (7)
H50.10250.93010.05720.070*
C60.0864 (3)0.89152 (14)0.1068 (4)0.0482 (6)
H60.12550.93810.15630.058*
C70.3668 (2)0.93791 (13)0.0993 (3)0.0349 (5)
C80.4086 (2)0.94773 (14)0.2799 (3)0.0394 (5)
H8A0.38790.90010.35140.047*
H8B0.50420.95570.25820.047*
C90.3388 (2)1.01660 (14)0.3874 (3)0.0439 (6)
H9A0.35821.06380.31430.053*
H9B0.37431.02360.49710.053*
C100.1912 (2)1.00645 (14)0.4408 (3)0.0419 (5)
C110.2586 (3)0.8130 (2)0.0975 (6)0.0995 (13)
H11A0.28560.75900.10910.119*
H11B0.28220.83820.21470.119*
H11C0.30290.83890.01260.119*
N10.3902 (2)0.86326 (11)0.0248 (2)0.0387 (4)
H1N0.404 (3)0.8261 (12)0.090 (3)0.046*
O10.39301 (18)0.75502 (11)0.1880 (2)0.0565 (5)
O20.37311 (18)0.89014 (11)0.2992 (2)0.0558 (5)
O30.32175 (17)0.99012 (10)0.0214 (2)0.0479 (4)
O40.13237 (16)0.94917 (10)0.4003 (3)0.0552 (5)
O50.13192 (19)1.06525 (12)0.5367 (3)0.0672 (6)
H5O0.0496 (18)1.0596 (19)0.557 (4)0.081*
S10.33860 (6)0.83267 (4)0.15920 (7)0.04120 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (13)0.0405 (13)0.0342 (11)0.0018 (10)0.0130 (9)0.0004 (10)
C20.0567 (15)0.0388 (13)0.0565 (15)0.0028 (12)0.0116 (12)0.0042 (12)
C30.0639 (18)0.0487 (16)0.0723 (19)0.0113 (14)0.0080 (14)0.0089 (14)
C40.0482 (15)0.0634 (18)0.0701 (18)0.0024 (13)0.0112 (13)0.0047 (15)
C50.0537 (16)0.0479 (15)0.0771 (19)0.0076 (13)0.0230 (14)0.0025 (14)
C60.0562 (15)0.0359 (13)0.0564 (15)0.0021 (11)0.0209 (12)0.0030 (11)
C70.0315 (11)0.0392 (12)0.0328 (11)0.0044 (9)0.0038 (9)0.0022 (9)
C80.0365 (12)0.0479 (13)0.0336 (11)0.0005 (10)0.0072 (9)0.0029 (10)
C90.0405 (12)0.0479 (14)0.0430 (12)0.0051 (11)0.0082 (10)0.0080 (11)
C100.0464 (13)0.0400 (13)0.0376 (12)0.0007 (11)0.0047 (10)0.0042 (10)
C110.054 (2)0.098 (3)0.140 (4)0.0050 (19)0.003 (2)0.001 (3)
N10.0485 (11)0.0360 (10)0.0341 (10)0.0027 (9)0.0142 (8)0.0011 (8)
O10.0609 (11)0.0531 (11)0.0559 (11)0.0110 (9)0.0129 (9)0.0202 (9)
O20.0649 (11)0.0689 (12)0.0326 (8)0.0113 (10)0.0075 (8)0.0062 (8)
O30.0580 (10)0.0423 (10)0.0467 (9)0.0046 (8)0.0181 (8)0.0041 (8)
O40.0420 (9)0.0466 (10)0.0718 (12)0.0054 (8)0.0001 (8)0.0162 (9)
O50.0451 (10)0.0579 (12)0.0924 (15)0.0011 (9)0.0001 (10)0.0301 (11)
S10.0478 (3)0.0445 (3)0.0315 (3)0.0001 (3)0.0087 (2)0.0046 (2)
Geometric parameters (Å, º) top
C1—C21.385 (3)C8—H8A0.9700
C1—C61.390 (3)C8—H8B0.9700
C1—S11.750 (2)C9—C101.493 (3)
C2—C31.382 (4)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.387 (4)C10—O41.218 (3)
C3—H30.9300C10—O51.307 (3)
C4—C51.388 (4)C11—H11A0.9600
C4—C111.514 (4)C11—H11B0.9600
C5—C61.377 (4)C11—H11C0.9600
C5—H50.9300N1—S11.6559 (19)
C6—H60.9300N1—H1N0.828 (16)
C7—O31.206 (3)O1—S11.4349 (19)
C7—N11.390 (3)O2—S11.4234 (18)
C7—C81.507 (3)O5—H5O0.832 (18)
C8—C91.516 (3)
C2—C1—C6120.8 (2)H8A—C8—H8B107.9
C2—C1—S1119.28 (19)C10—C9—C8113.14 (19)
C6—C1—S1119.88 (19)C10—C9—H9A109.0
C3—C2—C1118.8 (2)C8—C9—H9A109.0
C3—C2—H2120.6C10—C9—H9B109.0
C1—C2—H2120.6C8—C9—H9B109.0
C2—C3—C4121.3 (3)H9A—C9—H9B107.8
C2—C3—H3119.3O4—C10—O5123.6 (2)
C4—C3—H3119.3O4—C10—C9123.6 (2)
C3—C4—C5118.7 (3)O5—C10—C9112.9 (2)
C3—C4—C11120.5 (3)C4—C11—H11A109.5
C5—C4—C11120.8 (3)C4—C11—H11B109.5
C6—C5—C4121.0 (2)H11A—C11—H11B109.5
C6—C5—H5119.5C4—C11—H11C109.5
C4—C5—H5119.5H11A—C11—H11C109.5
C5—C6—C1119.3 (2)H11B—C11—H11C109.5
C5—C6—H6120.3C7—N1—S1124.26 (16)
C1—C6—H6120.3C7—N1—H1N120.1 (18)
O3—C7—N1122.2 (2)S1—N1—H1N111.6 (18)
O3—C7—C8123.9 (2)C10—O5—H5O111 (2)
N1—C7—C8113.78 (19)O2—S1—O1119.62 (11)
C7—C8—C9111.76 (19)O2—S1—N1108.68 (10)
C7—C8—H8A109.3O1—S1—N1103.54 (10)
C9—C8—H8A109.3O2—S1—C1109.68 (11)
C7—C8—H8B109.3O1—S1—C1109.01 (11)
C9—C8—H8B109.3N1—S1—C1105.27 (10)
C6—C1—C2—C31.0 (4)C8—C9—C10—O40.8 (3)
S1—C1—C2—C3177.0 (2)C8—C9—C10—O5178.6 (2)
C1—C2—C3—C40.2 (4)O3—C7—N1—S110.0 (3)
C2—C3—C4—C50.9 (5)C8—C7—N1—S1172.55 (15)
C2—C3—C4—C11179.2 (3)C7—N1—S1—O248.4 (2)
C3—C4—C5—C61.3 (4)C7—N1—S1—O1176.60 (18)
C11—C4—C5—C6178.8 (3)C7—N1—S1—C169.0 (2)
C4—C5—C6—C10.5 (4)C2—C1—S1—O2153.06 (19)
C2—C1—C6—C50.7 (4)C6—C1—S1—O228.8 (2)
S1—C1—C6—C5177.4 (2)C2—C1—S1—O120.3 (2)
O3—C7—C8—C923.2 (3)C6—C1—S1—O1161.55 (18)
N1—C7—C8—C9159.36 (19)C2—C1—S1—N190.2 (2)
C7—C8—C9—C1063.7 (3)C6—C1—S1—N187.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.14 (2)2.948 (2)164 (2)
O5—H5O···O4ii0.83 (2)1.83 (2)2.663 (3)178 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+2, z1.

Experimental details

Crystal data
Chemical formulaC11H13NO5S
Mr271.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2496 (9), 17.041 (2), 7.4721 (6)
β (°) 101.909 (9)
V3)1277.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.48 × 0.32 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.883, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
4739, 2597, 2107
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 1.12
No. of reflections2597
No. of parameters170
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.828 (16)2.144 (17)2.948 (2)164 (2)
O5—H5O···O4ii0.832 (18)1.832 (18)2.663 (3)178 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+2, z1.
 

Acknowledgements

HP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its INSPIRE Program. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationGowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.  CAS Google Scholar
First citationGowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303–3310.  CrossRef CAS Web of Science Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds