organic compounds
1-(3,3-Dichloroallyloxy)-4-methyl-2-nitrobenzene
aSecurity and Environment Engineering College, Capital University of Economics and Business, Beijing 10070, People's Republic of China
*Correspondence e-mail: nanoren@126.com
In the title compound, C10H9Cl2NO3, the dihedral angle between the benzene ring and the plane of the nitro group is 39.1 (1)°, while that between the benzene ring and the plane through the three C and two Cl atoms of the dichloroallyloxy unit is 40.1 (1)°. In the crystal, C—H⋯O hydrogen bonds to the nitro groups form chains along the b axis. These chains are linked by inversion-related pairs of Cl⋯O interactions at a distance of 3.060 (3) Å, forming sheets approximately parallel to [-201] and generating R22(18) rings. π–π contacts between benzene rings in adjacent sheets, with centroid–centroid distances of 3.671 (2) Å, stack molecules along c.
Related literature
For background to the applications of the title compound, see: Kolosov et al. (2002). For its synthesis, see: Walker et al. (2005). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812023057/sj5235sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023057/sj5235Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812023057/sj5235Isup3.cml
The title compound, (I) was prepared by a method reported in literature (Walker et al., 2005). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.
All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram of (I). |
C10H9Cl2NO3 | Z = 2 |
Mr = 262.08 | F(000) = 268 |
Triclinic, P1 | Dx = 1.514 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5430 (15) Å | Cell parameters from 25 reflections |
b = 7.7630 (16) Å | θ = 10–13° |
c = 10.713 (2) Å | µ = 0.56 mm−1 |
α = 83.69 (3)° | T = 293 K |
β = 88.78 (3)° | Block, colourless |
γ = 67.23 (3)° | 0.30 × 0.20 × 0.10 mm |
V = 574.8 (2) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1638 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
Graphite monochromator | θmax = 25.4°, θmin = 1.9° |
ω/2θ scans | h = 0→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→9 |
Tmin = 0.851, Tmax = 0.947 | l = −12→12 |
2277 measured reflections | 3 standard reflections every 200 reflections |
2103 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.130P] where P = (Fo2 + 2Fc2)/3 |
2103 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C10H9Cl2NO3 | γ = 67.23 (3)° |
Mr = 262.08 | V = 574.8 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5430 (15) Å | Mo Kα radiation |
b = 7.7630 (16) Å | µ = 0.56 mm−1 |
c = 10.713 (2) Å | T = 293 K |
α = 83.69 (3)° | 0.30 × 0.20 × 0.10 mm |
β = 88.78 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1638 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.021 |
Tmin = 0.851, Tmax = 0.947 | 3 standard reflections every 200 reflections |
2277 measured reflections | intensity decay: 1% |
2103 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.28 e Å−3 |
2103 reflections | Δρmin = −0.28 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.35049 (14) | 0.31042 (13) | 0.40617 (7) | 0.0723 (3) | |
Cl2 | 0.20254 (13) | 0.53282 (12) | 0.60994 (8) | 0.0713 (3) | |
O1 | 0.8637 (4) | −0.2999 (3) | 0.8304 (2) | 0.0767 (8) | |
O2 | 0.7766 (4) | −0.4263 (3) | 0.9976 (2) | 0.0731 (7) | |
O3 | 0.6554 (3) | 0.0677 (3) | 0.82149 (17) | 0.0542 (5) | |
N | 0.8110 (4) | −0.2976 (3) | 0.9385 (2) | 0.0534 (6) | |
C1 | 0.6985 (4) | 0.1898 (4) | 1.0130 (3) | 0.0506 (7) | |
H1A | 0.6478 | 0.3133 | 0.9755 | 0.061* | |
C2 | 0.7574 (4) | 0.1533 (4) | 1.1372 (3) | 0.0511 (7) | |
H2A | 0.7446 | 0.2537 | 1.1816 | 0.061* | |
C3 | 0.8352 (4) | −0.0276 (4) | 1.1987 (2) | 0.0461 (6) | |
C4 | 0.8481 (4) | −0.1727 (4) | 1.1298 (2) | 0.0457 (6) | |
H4A | 0.8972 | −0.2958 | 1.1681 | 0.055* | |
C5 | 0.7892 (4) | −0.1372 (4) | 1.0055 (2) | 0.0411 (6) | |
C6 | 0.7139 (4) | 0.0451 (4) | 0.9434 (2) | 0.0417 (6) | |
C7 | 0.9018 (5) | −0.0623 (5) | 1.3344 (3) | 0.0661 (9) | |
H7A | 0.8808 | 0.0554 | 1.3652 | 0.099* | |
H7B | 1.0364 | −0.1409 | 1.3409 | 0.099* | |
H7C | 0.8306 | −0.1235 | 1.3835 | 0.099* | |
C8 | 0.5768 (5) | 0.2544 (4) | 0.7592 (3) | 0.0515 (7) | |
H8A | 0.6681 | 0.3142 | 0.7612 | 0.062* | |
H8B | 0.4597 | 0.3296 | 0.7989 | 0.062* | |
C9 | 0.5358 (5) | 0.2340 (4) | 0.6279 (3) | 0.0537 (7) | |
H9A | 0.6257 | 0.1337 | 0.5915 | 0.064* | |
C10 | 0.3856 (5) | 0.3433 (4) | 0.5586 (3) | 0.0517 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0946 (7) | 0.0785 (6) | 0.0430 (4) | −0.0320 (5) | −0.0101 (4) | −0.0062 (4) |
Cl2 | 0.0730 (6) | 0.0587 (5) | 0.0630 (5) | −0.0040 (4) | −0.0091 (4) | −0.0066 (4) |
O1 | 0.112 (2) | 0.0556 (14) | 0.0473 (13) | −0.0128 (13) | −0.0062 (13) | −0.0175 (10) |
O2 | 0.0858 (17) | 0.0430 (12) | 0.0966 (18) | −0.0307 (12) | 0.0023 (14) | −0.0107 (12) |
O3 | 0.0765 (14) | 0.0393 (10) | 0.0438 (11) | −0.0199 (10) | −0.0116 (10) | 0.0006 (8) |
N | 0.0584 (15) | 0.0364 (12) | 0.0599 (16) | −0.0107 (11) | −0.0099 (12) | −0.0090 (11) |
C1 | 0.0641 (18) | 0.0350 (14) | 0.0531 (16) | −0.0199 (13) | −0.0054 (13) | −0.0024 (12) |
C2 | 0.0625 (18) | 0.0450 (15) | 0.0504 (16) | −0.0239 (13) | 0.0007 (13) | −0.0127 (12) |
C3 | 0.0460 (15) | 0.0525 (16) | 0.0410 (14) | −0.0199 (12) | 0.0037 (11) | −0.0078 (12) |
C4 | 0.0489 (15) | 0.0438 (14) | 0.0412 (14) | −0.0166 (12) | 0.0006 (11) | 0.0027 (11) |
C5 | 0.0426 (14) | 0.0373 (13) | 0.0453 (14) | −0.0170 (11) | 0.0030 (11) | −0.0065 (11) |
C6 | 0.0453 (14) | 0.0415 (14) | 0.0376 (13) | −0.0165 (11) | −0.0009 (11) | −0.0020 (11) |
C7 | 0.076 (2) | 0.076 (2) | 0.0444 (16) | −0.0263 (18) | −0.0025 (15) | −0.0086 (15) |
C8 | 0.0635 (18) | 0.0411 (14) | 0.0446 (15) | −0.0158 (13) | −0.0059 (13) | 0.0023 (12) |
C9 | 0.0617 (18) | 0.0477 (16) | 0.0449 (15) | −0.0139 (14) | 0.0011 (13) | −0.0051 (12) |
C10 | 0.0648 (18) | 0.0487 (16) | 0.0413 (15) | −0.0218 (14) | −0.0014 (13) | −0.0033 (12) |
Cl1—C10 | 1.721 (3) | C3—C7 | 1.510 (4) |
Cl2—C10 | 1.717 (3) | C4—C5 | 1.378 (4) |
O1—N | 1.216 (3) | C4—H4A | 0.9300 |
O2—N | 1.233 (3) | C5—C6 | 1.398 (4) |
O3—C6 | 1.358 (3) | C7—H7A | 0.9600 |
O3—C8 | 1.427 (3) | C7—H7B | 0.9600 |
N—C5 | 1.458 (3) | C7—H7C | 0.9600 |
C1—C2 | 1.375 (4) | C8—C9 | 1.484 (4) |
C1—C6 | 1.383 (4) | C8—H8A | 0.9700 |
C1—H1A | 0.9300 | C8—H8B | 0.9700 |
C2—C3 | 1.388 (4) | C9—C10 | 1.307 (4) |
C2—H2A | 0.9300 | C9—H9A | 0.9300 |
C3—C4 | 1.384 (4) | ||
C6—O3—C8 | 117.7 (2) | O3—C6—C5 | 118.1 (2) |
O1—N—O2 | 123.7 (2) | C1—C6—C5 | 116.9 (2) |
O1—N—C5 | 119.6 (3) | C3—C7—H7A | 109.5 |
O2—N—C5 | 116.6 (2) | C3—C7—H7B | 109.5 |
C2—C1—C6 | 120.8 (3) | H7A—C7—H7B | 109.5 |
C2—C1—H1A | 119.6 | C3—C7—H7C | 109.5 |
C6—C1—H1A | 119.6 | H7A—C7—H7C | 109.5 |
C1—C2—C3 | 122.5 (3) | H7B—C7—H7C | 109.5 |
C1—C2—H2A | 118.7 | O3—C8—C9 | 105.5 (2) |
C3—C2—H2A | 118.7 | O3—C8—H8A | 110.6 |
C4—C3—C2 | 116.9 (2) | C9—C8—H8A | 110.6 |
C4—C3—C7 | 122.2 (3) | O3—C8—H8B | 110.6 |
C2—C3—C7 | 120.9 (3) | C9—C8—H8B | 110.6 |
C5—C4—C3 | 120.9 (3) | H8A—C8—H8B | 108.8 |
C5—C4—H4A | 119.5 | C10—C9—C8 | 126.3 (3) |
C3—C4—H4A | 119.5 | C10—C9—H9A | 116.9 |
C4—C5—C6 | 122.0 (3) | C8—C9—H9A | 116.9 |
C4—C5—N | 117.7 (2) | C9—C10—Cl2 | 123.7 (2) |
C6—C5—N | 120.3 (2) | C9—C10—Cl1 | 123.2 (2) |
O3—C6—C1 | 124.9 (2) | Cl2—C10—Cl1 | 113.06 (18) |
C6—C1—C2—C3 | 0.3 (5) | C8—O3—C6—C5 | 179.3 (2) |
C1—C2—C3—C4 | −1.3 (4) | C2—C1—C6—O3 | 178.3 (3) |
C1—C2—C3—C7 | 178.8 (3) | C2—C1—C6—C5 | 0.7 (4) |
C2—C3—C4—C5 | 1.2 (4) | C4—C5—C6—O3 | −178.6 (2) |
C7—C3—C4—C5 | −178.9 (3) | N—C5—C6—O3 | 2.5 (4) |
C3—C4—C5—C6 | −0.2 (4) | C4—C5—C6—C1 | −0.8 (4) |
C3—C4—C5—N | 178.7 (3) | N—C5—C6—C1 | −179.7 (3) |
O1—N—C5—C4 | −140.1 (3) | C6—O3—C8—C9 | 177.3 (2) |
O2—N—C5—C4 | 38.8 (4) | O3—C8—C9—C10 | 140.5 (3) |
O1—N—C5—C6 | 38.9 (4) | C8—C9—C10—Cl2 | −1.1 (5) |
O2—N—C5—C6 | −142.3 (3) | C8—C9—C10—Cl1 | 179.4 (2) |
C8—O3—C6—C1 | 1.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.93 | 2.59 | 3.241 (4) | 127 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C10H9Cl2NO3 |
Mr | 262.08 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.5430 (15), 7.7630 (16), 10.713 (2) |
α, β, γ (°) | 83.69 (3), 88.78 (3), 67.23 (3) |
V (Å3) | 574.8 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.56 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.851, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2277, 2103, 1638 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.156, 1.01 |
No. of reflections | 2103 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.28 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.9300 | 2.5900 | 3.241 (4) | 127.00 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
This study was supported financially by the Capital University of Economics and Business (00891162721716) and by the Scientific Research Level Project of the Beijing Education Commission Foundation. The author thanks the Center of Testing and Analysis, Nanjing University, for the data collection.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537–6540. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is an important intermediate in the synthesis of phenanthrenes, which can be utilized to synthesize organic semiconductors and conjugated polymers (Walker et al., 2005). These materials are of wide current interest with applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002). We report here the crystal structure of the title compound, (I), as we have interests in this field.
The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the (C1···C6) rings and the (C8/C9/C10/Cl1/Cl2/H9A) segment of the alloyloxy substituent is 40.1 (1)° with the nitro group (N/O1/O2) inclined at 39.1 (1)° to the ring plane. Bond distances in the molecule are normal (Allen et al. 1987).
In the crystal structure there is an intermolecular C1—H1A···O2 hydrogen bond that links molecules into chains along the b axis (Table 1, Fig. 2). Short Cl1···O1i (i = 1-x, -y, 1-z) contacts at a distance of 3.060 (3) Å form inversion dimers and generate R22(18) rings (Bernstein et al., 1995). These contacts link the hydrogen bonded chains into sheets approximately parallel to [-2 0 1]. Additional π···π contacts with centroid to centroid distances 3.671 (2) Å between benzene rings in adjacent sheets, stack molecules along c and generate a three dimensional network structure.