organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,3-Di­chloro­all­yl­oxy)-4-methyl-2-nitro­benzene

aSecurity and Environment Engineering College, Capital University of Economics and Business, Beijing 10070, People's Republic of China
*Correspondence e-mail: nanoren@126.com

(Received 2 May 2012; accepted 20 May 2012; online 31 May 2012)

In the title compound, C10H9Cl2NO3, the dihedral angle between the benzene ring and the plane of the nitro group is 39.1 (1)°, while that between the benzene ring and the plane through the three C and two Cl atoms of the dichloro­all­yloxy unit is 40.1 (1)°. In the crystal, C—H⋯O hydrogen bonds to the nitro groups form chains along the b axis. These chains are linked by inversion-related pairs of Cl⋯O inter­actions at a distance of 3.060 (3) Å, forming sheets approximately parallel to [-201] and generating R22(18) rings. ππ contacts between benzene rings in adjacent sheets, with centroid–centroid distances of 3.671 (2) Å, stack mol­ecules along c.

Related literature

For background to the applications of the title compound, see: Kolosov et al. (2002[Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945-9954.]). For its synthesis, see: Walker et al. (2005[Walker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537-6540.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2NO3

  • Mr = 262.08

  • Triclinic, [P \overline 1]

  • a = 7.5430 (15) Å

  • b = 7.7630 (16) Å

  • c = 10.713 (2) Å

  • α = 83.69 (3)°

  • β = 88.78 (3)°

  • γ = 67.23 (3)°

  • V = 574.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.851, Tmax = 0.947

  • 2277 measured reflections

  • 2103 independent reflections

  • 1638 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.156

  • S = 1.01

  • 2103 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.93 2.59 3.241 (4) 127
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of phenanthrenes, which can be utilized to synthesize organic semiconductors and conjugated polymers (Walker et al., 2005). These materials are of wide current interest with applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002). We report here the crystal structure of the title compound, (I), as we have interests in this field.

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the (C1···C6) rings and the (C8/C9/C10/Cl1/Cl2/H9A) segment of the alloyloxy substituent is 40.1 (1)° with the nitro group (N/O1/O2) inclined at 39.1 (1)° to the ring plane. Bond distances in the molecule are normal (Allen et al. 1987).

In the crystal structure there is an intermolecular C1—H1A···O2 hydrogen bond that links molecules into chains along the b axis (Table 1, Fig. 2). Short Cl1···O1i (i = 1-x, -y, 1-z) contacts at a distance of 3.060 (3) Å form inversion dimers and generate R22(18) rings (Bernstein et al., 1995). These contacts link the hydrogen bonded chains into sheets approximately parallel to [-2 0 1]. Additional π···π contacts with centroid to centroid distances 3.671 (2) Å between benzene rings in adjacent sheets, stack molecules along c and generate a three dimensional network structure.

Related literature top

For background to the applications of the title compound, see: Kolosov et al. (2002). For its synthesis, see: Walker et al. (2005). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Walker et al., 2005). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
1-(3,3-Dichloroallyloxy)-4-methyl-2-nitrobenzene top
Crystal data top
C10H9Cl2NO3Z = 2
Mr = 262.08F(000) = 268
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5430 (15) ÅCell parameters from 25 reflections
b = 7.7630 (16) Åθ = 10–13°
c = 10.713 (2) ŵ = 0.56 mm1
α = 83.69 (3)°T = 293 K
β = 88.78 (3)°Block, colourless
γ = 67.23 (3)°0.30 × 0.20 × 0.10 mm
V = 574.8 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1638 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 89
Tmin = 0.851, Tmax = 0.947l = 1212
2277 measured reflections3 standard reflections every 200 reflections
2103 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.130P]
where P = (Fo2 + 2Fc2)/3
2103 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H9Cl2NO3γ = 67.23 (3)°
Mr = 262.08V = 574.8 (2) Å3
Triclinic, P1Z = 2
a = 7.5430 (15) ÅMo Kα radiation
b = 7.7630 (16) ŵ = 0.56 mm1
c = 10.713 (2) ÅT = 293 K
α = 83.69 (3)°0.30 × 0.20 × 0.10 mm
β = 88.78 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1638 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.851, Tmax = 0.9473 standard reflections every 200 reflections
2277 measured reflections intensity decay: 1%
2103 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
2103 reflectionsΔρmin = 0.28 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35049 (14)0.31042 (13)0.40617 (7)0.0723 (3)
Cl20.20254 (13)0.53282 (12)0.60994 (8)0.0713 (3)
O10.8637 (4)0.2999 (3)0.8304 (2)0.0767 (8)
O20.7766 (4)0.4263 (3)0.9976 (2)0.0731 (7)
O30.6554 (3)0.0677 (3)0.82149 (17)0.0542 (5)
N0.8110 (4)0.2976 (3)0.9385 (2)0.0534 (6)
C10.6985 (4)0.1898 (4)1.0130 (3)0.0506 (7)
H1A0.64780.31330.97550.061*
C20.7574 (4)0.1533 (4)1.1372 (3)0.0511 (7)
H2A0.74460.25371.18160.061*
C30.8352 (4)0.0276 (4)1.1987 (2)0.0461 (6)
C40.8481 (4)0.1727 (4)1.1298 (2)0.0457 (6)
H4A0.89720.29581.16810.055*
C50.7892 (4)0.1372 (4)1.0055 (2)0.0411 (6)
C60.7139 (4)0.0451 (4)0.9434 (2)0.0417 (6)
C70.9018 (5)0.0623 (5)1.3344 (3)0.0661 (9)
H7A0.88080.05541.36520.099*
H7B1.03640.14091.34090.099*
H7C0.83060.12351.38350.099*
C80.5768 (5)0.2544 (4)0.7592 (3)0.0515 (7)
H8A0.66810.31420.76120.062*
H8B0.45970.32960.79890.062*
C90.5358 (5)0.2340 (4)0.6279 (3)0.0537 (7)
H9A0.62570.13370.59150.064*
C100.3856 (5)0.3433 (4)0.5586 (3)0.0517 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0946 (7)0.0785 (6)0.0430 (4)0.0320 (5)0.0101 (4)0.0062 (4)
Cl20.0730 (6)0.0587 (5)0.0630 (5)0.0040 (4)0.0091 (4)0.0066 (4)
O10.112 (2)0.0556 (14)0.0473 (13)0.0128 (13)0.0062 (13)0.0175 (10)
O20.0858 (17)0.0430 (12)0.0966 (18)0.0307 (12)0.0023 (14)0.0107 (12)
O30.0765 (14)0.0393 (10)0.0438 (11)0.0199 (10)0.0116 (10)0.0006 (8)
N0.0584 (15)0.0364 (12)0.0599 (16)0.0107 (11)0.0099 (12)0.0090 (11)
C10.0641 (18)0.0350 (14)0.0531 (16)0.0199 (13)0.0054 (13)0.0024 (12)
C20.0625 (18)0.0450 (15)0.0504 (16)0.0239 (13)0.0007 (13)0.0127 (12)
C30.0460 (15)0.0525 (16)0.0410 (14)0.0199 (12)0.0037 (11)0.0078 (12)
C40.0489 (15)0.0438 (14)0.0412 (14)0.0166 (12)0.0006 (11)0.0027 (11)
C50.0426 (14)0.0373 (13)0.0453 (14)0.0170 (11)0.0030 (11)0.0065 (11)
C60.0453 (14)0.0415 (14)0.0376 (13)0.0165 (11)0.0009 (11)0.0020 (11)
C70.076 (2)0.076 (2)0.0444 (16)0.0263 (18)0.0025 (15)0.0086 (15)
C80.0635 (18)0.0411 (14)0.0446 (15)0.0158 (13)0.0059 (13)0.0023 (12)
C90.0617 (18)0.0477 (16)0.0449 (15)0.0139 (14)0.0011 (13)0.0051 (12)
C100.0648 (18)0.0487 (16)0.0413 (15)0.0218 (14)0.0014 (13)0.0033 (12)
Geometric parameters (Å, º) top
Cl1—C101.721 (3)C3—C71.510 (4)
Cl2—C101.717 (3)C4—C51.378 (4)
O1—N1.216 (3)C4—H4A0.9300
O2—N1.233 (3)C5—C61.398 (4)
O3—C61.358 (3)C7—H7A0.9600
O3—C81.427 (3)C7—H7B0.9600
N—C51.458 (3)C7—H7C0.9600
C1—C21.375 (4)C8—C91.484 (4)
C1—C61.383 (4)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.388 (4)C9—C101.307 (4)
C2—H2A0.9300C9—H9A0.9300
C3—C41.384 (4)
C6—O3—C8117.7 (2)O3—C6—C5118.1 (2)
O1—N—O2123.7 (2)C1—C6—C5116.9 (2)
O1—N—C5119.6 (3)C3—C7—H7A109.5
O2—N—C5116.6 (2)C3—C7—H7B109.5
C2—C1—C6120.8 (3)H7A—C7—H7B109.5
C2—C1—H1A119.6C3—C7—H7C109.5
C6—C1—H1A119.6H7A—C7—H7C109.5
C1—C2—C3122.5 (3)H7B—C7—H7C109.5
C1—C2—H2A118.7O3—C8—C9105.5 (2)
C3—C2—H2A118.7O3—C8—H8A110.6
C4—C3—C2116.9 (2)C9—C8—H8A110.6
C4—C3—C7122.2 (3)O3—C8—H8B110.6
C2—C3—C7120.9 (3)C9—C8—H8B110.6
C5—C4—C3120.9 (3)H8A—C8—H8B108.8
C5—C4—H4A119.5C10—C9—C8126.3 (3)
C3—C4—H4A119.5C10—C9—H9A116.9
C4—C5—C6122.0 (3)C8—C9—H9A116.9
C4—C5—N117.7 (2)C9—C10—Cl2123.7 (2)
C6—C5—N120.3 (2)C9—C10—Cl1123.2 (2)
O3—C6—C1124.9 (2)Cl2—C10—Cl1113.06 (18)
C6—C1—C2—C30.3 (5)C8—O3—C6—C5179.3 (2)
C1—C2—C3—C41.3 (4)C2—C1—C6—O3178.3 (3)
C1—C2—C3—C7178.8 (3)C2—C1—C6—C50.7 (4)
C2—C3—C4—C51.2 (4)C4—C5—C6—O3178.6 (2)
C7—C3—C4—C5178.9 (3)N—C5—C6—O32.5 (4)
C3—C4—C5—C60.2 (4)C4—C5—C6—C10.8 (4)
C3—C4—C5—N178.7 (3)N—C5—C6—C1179.7 (3)
O1—N—C5—C4140.1 (3)C6—O3—C8—C9177.3 (2)
O2—N—C5—C438.8 (4)O3—C8—C9—C10140.5 (3)
O1—N—C5—C638.9 (4)C8—C9—C10—Cl21.1 (5)
O2—N—C5—C6142.3 (3)C8—C9—C10—Cl1179.4 (2)
C8—O3—C6—C11.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.932.593.241 (4)127
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9Cl2NO3
Mr262.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5430 (15), 7.7630 (16), 10.713 (2)
α, β, γ (°)83.69 (3), 88.78 (3), 67.23 (3)
V3)574.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.851, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
2277, 2103, 1638
Rint0.021
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.156, 1.01
No. of reflections2103
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.93002.59003.241 (4)127.00
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This study was supported financially by the Capital University of Economics and Business (00891162721716) and by the Scientific Research Level Project of the Beijing Education Commission Foundation. The author thanks the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537–6540.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds