organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1614-o1615

14,15-Dide­hydro­hellebrigenin

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 15 April 2012; accepted 25 April 2012; online 5 May 2012)

The title compound, C24H30O5, is the didehydro product of the steroid hellebrigenin (systematic name: 3β,5,14-trihy­droxy-19-oxo-5β-bufa-20,22-dienolide). It consists of three cyclo­hexane rings (A, B and C), a five-membered ring (D) and a six-membered lactone ring (E). The stereochemistry of the ring junctions are A/B cis, B/C trans and C/D cis. Cyclo­hexane rings A, B and C have normal chair conformations. The five-membered ring D with the C=C bond adopts an envelope conformation. Lactone ring E is essentially planar with a mean derivation of 0.006 (4) Å and is β-oriented at the C atom of ring D to which it is attached. There is an O—H⋯O hydrogen bond in the mol­ecule involving the hy­droxy groups. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into chains propagating along [010]. The chains are linked by C—H⋯O contacts into a three-dimensional network.

Related literature

For previous isolations of hellebrigenin, see: Urscheler et al. (1955[Urscheler, H. R., Tamm, C. & Reichstein, T. (1955). Helv. Chim. Acta, 38, 883-905.]); Yang et al. (2010[Yang, F. Y., Su, Y. F., Wang, Y., Chai, X., Han, X., Wu, Z. H. & Gao, X. M. (2010). Biochem. Syst. Ecol. 38, 759-763.]); Zhao et al. (2010[Zhao, H. Y., Wu, F. K., Qiu, Y. K., Wu, Z., Jiang, Y. T. & Chen, J. Y. (2010). J. Asian Nat. Prod. Res. 12, 793-800.]). For its inhibitory activity against adenosinetriphosphatase of the 3-acetate, 3,5-diacetate, 3-iodo­acetate and 3-bromo­acetate of hellebrigenin, see: Ruoho et al. (1968[Ruoho, A. E., Hokin, L. E., Hemingway, R. J. & Kupchan, S. M. (1968). Science, 159, 1354-1355.]). For the treatment of hellebrigenin with sodium hydroxide, see: Kupchan et al. (1969[Kupchan, S. M., Hemingway, R. J. & Hemingway, J. C. (1969). J. Org. Chem. 34, 3894-3898.]). For the stereochemistry of bufalin and secohellebrigeninamide, see: Rohrer et al. (1982[Rohrer, D. C., Fullerton, D. S., Kitatsuji, E., Nambara, T. & Yoshii, E. (1982). Acta Cryst. B38, 1865-1868.]); Yuan et al. (2012[Yuan, X.-F., Tian, H.-Y., Li, J.-H., Yu, T. & Jiang, R.-W. (2012). Acta Cryst. E68, o682.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30O5

  • Mr = 398.48

  • Monoclinic, P 21

  • a = 10.7628 (4) Å

  • b = 6.6016 (2) Å

  • c = 14.6376 (5) Å

  • β = 94.224 (3)°

  • V = 1037.20 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 291 K

  • 0.40 × 0.26 × 0.23 mm

Data collection
  • Oxford Gemini S Ultra Sapphire CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.819, Tmax = 1.000

  • 3100 measured reflections

  • 2238 independent reflections

  • 2042 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.04

  • 2238 reflections

  • 266 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 2.05 2.773 (3) 147
O1—H1⋯O2i 0.82 2.01 2.786 (3) 158
C9—H9⋯O3ii 0.98 2.58 3.545 (4) 169
C15—H15⋯O4iii 0.93 2.58 3.447 (4) 155
C22—H22⋯O4iv 0.93 2.60 3.233 (6) 126
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) x, y-1, z; (iii) x+1, y, z; (iv) [-x-1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: XPREP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hellebrigenin is a cardiac steroid that exists in the skin of toads (Urscheler, et al., 1955; Zhao, et al., 2010)) and the rhizomes of Helleborus thibetanus (Yang, et al., 2010). It is an inhibitor of adenosinetriphosphatase. The 3-acetate, 3,5-diacetate, 3-iodoacetate and 3-bromoacetate of hellebrigenin were shown to be potent irreversible inhibitors of the enzyme (Ruoho, et al., 1968). The lactone ring at atom C17 is not stable at base conditions. Treatment of hellebrigenin with sodium hydroxide in methanol afforded methyl isohellebrigeninate (Kupchan, et al., 1969). While treatment of hellebrigenin with N,N-dimethylformamide (DMF) resulted in a derivative named as secohellebrigeninamide (Yuan et al., 2012). Recently, hellebrigenin was treated with hydrochloric acid and the new derivative 14,15-didehydro hellebrigenin was obtained, and we report herein on its crystal structure.

The title molecule (Fig. 1) is composed of three cyclohexane rings (A, B and C), an unsaturated five-membered ring (D) and a six-membered lactone ring (E). The stereochemistry of the ring junctions are A/B cis, B/C trans and C/D cis. The cyclohexane rings A, B and C have normal chair conformations. The unsaturated five-membered ring D adopts an envelope conformation. The lactone ring E is planar with a mean derivation of 0.006 (4) Å and is β-oriented at C17 in ring D. The mean planes of the lactone ring E and ring D (atoms C13/C14/C15/C16) make a dihedral angle of 59.6 (1)°. There is an O-H···O hydrogen bond in the molecule involving the hydroxyl groups (Table 1).

In the crystal, O—H···O hydrogen bonds between the hydroxyl group at C3 and the hydroxyl group at C5 link adjacent molecules into dimers (Fig 2 and Table 1). Adjacent dimers are linked by short C–H···O contacts, between the methylene group at C6 and the lactone group, to form a three-dimensional network (Table 1 and Fig. 2).

The absolute configuration determined for bufalin (Rohrer et al., 1982) and secohellebrigeninamide, (Yuan et al., 2012), two similar steroids, were invoked, giving the assignments of the chiral centres in the molecule as shown in Fig. 1.

Related literature top

For previous isolations of hellebrigenin, see: Urscheler et al. (1955); Yang et al. (2010); Zhao et al. (2010). For its inhibitory activity against adenosinetriphosphatase of the 3-acetate, 3,5-diacetate, 3-iodoacetate and 3-bromoacetate of hellebrigenin, see: Ruoho et al. (1968). For the treatment of hellebrigenin with sodium hydroxide, see: Kupchan et al. (1969). For the stereochemistry of bufalin and secohellebrigeninamide, see: Rohrer et al. (1982); Yuan et al. (2012).

Experimental top

Hellebrigenin (104.32 mg) was dissolved in a mixture of dichloromethane (2 ml) and methanol (3 ml). Hydrochloric acid (36%, 10 ml) was added. The solution was stirred for three hours at room temperature. Then the mixture was then poured into cold water and extracted with ethyl acetate. The organic phase was washed twice with water and concentrated under reduced pressure. The residue was subjected to preparative HPLC to afford the title compound (41 mg). The compound was recrystallized in methanol at room temperature to afford colourless prism-like crystals.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.98, 0.96, 0.97 and 0.93 Å for CH, CH3, CH2 and CH(aryl) H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms and = 1.2 for other H-atoms. The absolute configuration of the title compound could not be determined crystallographically; the Flack parameter refined to -0.1 (3). It was assigned with reference to the known configuration of the closely related compounds bufalin (Rohrer et al., 1982) and secohellebrigeninamide (Yuan et al., 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: XPREP (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the intermolecular O—H···O hydrogen bonds and C—H···O short contacts (dashed lines; only selected H-atoms highlighting the hydrogen bondings and short contacts are shown; see Table 1 for details).
14,15-Didehydrohellebrigenin top
Crystal data top
C24H30O5F(000) = 428
Mr = 398.48Dx = 1.276 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 10.7628 (4) ÅCell parameters from 1435 reflections
b = 6.6016 (2) Åθ = 3.0–62.5°
c = 14.6376 (5) ŵ = 0.71 mm1
β = 94.224 (3)°T = 291 K
V = 1037.20 (6) Å3Prism, colourless
Z = 20.40 × 0.26 × 0.23 mm
Data collection top
Oxford Gemini S Ultra Sapphire CCD
diffractometer
2238 independent reflections
Radiation source: fine-focus sealed tube2042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 62.6°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 612
Tmin = 0.819, Tmax = 1.000k = 74
3100 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.1057P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2238 reflectionsΔρmax = 0.24 e Å3
266 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (12)
Crystal data top
C24H30O5V = 1037.20 (6) Å3
Mr = 398.48Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.7628 (4) ŵ = 0.71 mm1
b = 6.6016 (2) ÅT = 291 K
c = 14.6376 (5) Å0.40 × 0.26 × 0.23 mm
β = 94.224 (3)°
Data collection top
Oxford Gemini S Ultra Sapphire CCD
diffractometer
2238 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2042 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.023
3100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2238 reflectionsΔρmin = 0.20 e Å3
266 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40415 (18)0.7669 (4)1.06950 (14)0.0564 (7)
O20.3968 (2)0.9967 (4)0.91061 (15)0.0605 (8)
O30.1076 (3)1.2425 (4)0.8935 (2)0.0882 (11)
O40.6574 (2)0.2486 (7)0.5959 (2)0.0998 (13)
O50.4844 (3)0.2651 (7)0.69025 (19)0.1009 (13)
C10.1594 (2)0.8911 (5)0.98577 (16)0.0395 (8)
C20.1910 (3)0.6866 (5)1.02785 (18)0.0438 (9)
C30.3250 (3)0.6280 (5)1.01530 (18)0.0478 (9)
C40.3517 (3)0.6385 (5)0.91490 (19)0.0475 (9)
C50.3174 (2)0.8405 (5)0.86880 (19)0.0451 (9)
C60.3428 (3)0.8346 (7)0.7677 (2)0.0609 (13)
C70.2526 (3)0.6979 (6)0.71152 (19)0.0552 (10)
C80.1166 (2)0.7489 (5)0.72275 (17)0.0435 (9)
C90.0893 (2)0.7573 (5)0.82503 (16)0.0358 (8)
C100.1798 (2)0.9001 (4)0.88277 (16)0.0376 (8)
C110.0483 (2)0.8023 (5)0.83501 (19)0.0438 (9)
C120.1299 (2)0.6349 (5)0.79095 (17)0.0427 (9)
C130.1110 (2)0.6065 (5)0.68901 (16)0.0390 (8)
C140.0279 (2)0.6028 (5)0.67349 (16)0.0414 (8)
C150.0524 (3)0.4602 (6)0.61287 (19)0.0544 (10)
C160.0631 (3)0.3465 (6)0.5790 (2)0.0597 (10)
C170.1499 (3)0.3905 (5)0.65465 (18)0.0439 (9)
C180.1773 (3)0.7733 (6)0.6318 (2)0.0599 (11)
C190.1572 (3)1.1166 (5)0.8511 (2)0.0560 (11)
C200.2876 (3)0.3558 (5)0.63458 (18)0.0459 (9)
C210.3594 (3)0.3021 (8)0.7029 (2)0.0707 (13)
C220.3499 (3)0.3797 (7)0.5489 (2)0.0683 (13)
C230.4722 (3)0.3462 (7)0.5348 (2)0.0660 (13)
C240.5468 (3)0.2853 (7)0.6046 (3)0.0716 (13)
H10.470400.711201.085200.0850*
H1A0.210600.993801.017500.0470*
H1B0.073000.922300.994400.0470*
H20.407800.975400.965800.0910*
H2A0.135700.584900.999600.0530*
H2B0.178200.690501.092700.0530*
H30.340000.489701.037800.0570*
H4A0.305800.531300.882100.0570*
H4B0.439700.613500.909900.0570*
H6A0.336700.970900.743000.0730*
H6B0.427100.787100.762000.0730*
H7A0.267900.558400.729800.0660*
H7B0.268400.709700.647300.0660*
H80.100200.883700.696500.0520*
H90.104400.620500.849300.0430*
H11A0.062900.813000.899400.0530*
H11B0.070200.930800.806000.0530*
H12A0.216600.667000.797900.0510*
H12B0.111000.508600.822900.0510*
H150.131400.434100.593800.0650*
H16A0.047000.202600.573700.0720*
H16B0.097000.397900.520200.0720*
H170.124100.298200.704900.0530*
H18A0.264800.769900.640500.0900*
H18B0.164900.752200.568300.0900*
H18C0.143900.902800.650800.0900*
H190.184101.153400.794500.0670*
H210.321400.289800.761700.0850*
H220.305400.420100.499900.0820*
H230.509600.364100.476100.0790*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0446 (11)0.0602 (15)0.0613 (12)0.0074 (11)0.0164 (9)0.0076 (12)
O20.0543 (12)0.0632 (16)0.0627 (12)0.0261 (12)0.0045 (10)0.0051 (12)
O30.116 (2)0.0359 (15)0.112 (2)0.0128 (16)0.0031 (17)0.0009 (16)
O40.0522 (14)0.124 (3)0.120 (2)0.0018 (18)0.0148 (14)0.038 (2)
O50.0697 (16)0.150 (3)0.0816 (17)0.025 (2)0.0037 (13)0.007 (2)
C10.0372 (13)0.0389 (16)0.0414 (13)0.0009 (12)0.0037 (10)0.0075 (13)
C20.0453 (15)0.0443 (18)0.0412 (13)0.0040 (13)0.0007 (11)0.0019 (13)
C30.0476 (15)0.0405 (18)0.0535 (15)0.0029 (14)0.0081 (12)0.0001 (14)
C40.0372 (14)0.0475 (19)0.0573 (15)0.0057 (13)0.0012 (11)0.0085 (15)
C50.0384 (14)0.0475 (19)0.0486 (14)0.0148 (14)0.0012 (11)0.0030 (14)
C60.0495 (16)0.080 (3)0.0543 (16)0.0202 (18)0.0106 (13)0.0022 (18)
C70.0486 (16)0.075 (2)0.0433 (14)0.0173 (16)0.0113 (11)0.0056 (16)
C80.0496 (15)0.0422 (18)0.0382 (13)0.0053 (14)0.0008 (11)0.0031 (13)
C90.0392 (13)0.0307 (15)0.0370 (12)0.0043 (12)0.0011 (9)0.0034 (12)
C100.0413 (13)0.0304 (15)0.0404 (13)0.0012 (12)0.0026 (10)0.0007 (12)
C110.0411 (14)0.0432 (18)0.0458 (14)0.0023 (13)0.0048 (11)0.0111 (13)
C120.0375 (13)0.0494 (18)0.0408 (13)0.0058 (13)0.0007 (10)0.0094 (14)
C130.0458 (14)0.0342 (16)0.0361 (12)0.0023 (13)0.0039 (10)0.0006 (12)
C140.0467 (14)0.0467 (18)0.0306 (11)0.0092 (14)0.0020 (10)0.0004 (13)
C150.0555 (17)0.061 (2)0.0475 (15)0.0072 (17)0.0087 (12)0.0118 (17)
C160.0653 (18)0.062 (2)0.0520 (15)0.0126 (18)0.0053 (14)0.0218 (16)
C170.0509 (15)0.0412 (17)0.0388 (12)0.0044 (14)0.0010 (11)0.0025 (13)
C180.069 (2)0.0444 (19)0.0628 (18)0.0022 (17)0.0196 (14)0.0090 (17)
C190.069 (2)0.0352 (18)0.0610 (17)0.0103 (17)0.0131 (15)0.0044 (16)
C200.0526 (15)0.0406 (17)0.0431 (13)0.0074 (15)0.0064 (12)0.0031 (14)
C210.0501 (17)0.106 (3)0.0540 (17)0.021 (2)0.0095 (13)0.010 (2)
C220.072 (2)0.082 (3)0.0487 (16)0.021 (2)0.0097 (15)0.0023 (19)
C230.0618 (19)0.079 (3)0.0527 (16)0.0093 (19)0.0253 (15)0.0017 (18)
C240.0517 (18)0.079 (3)0.081 (2)0.002 (2)0.0169 (16)0.020 (2)
Geometric parameters (Å, º) top
O1—C31.448 (4)C20—C221.387 (4)
O2—C51.446 (4)C22—C231.336 (5)
O3—C191.187 (4)C23—C241.404 (5)
O4—C241.212 (4)C1—H1A0.9700
O5—C211.367 (5)C1—H1B0.9700
O5—C241.384 (5)C2—H2A0.9700
O1—H10.8200C2—H2B0.9700
O2—H20.8200C3—H30.9800
C1—C101.541 (3)C4—H4A0.9700
C1—C21.512 (4)C4—H4B0.9700
C2—C31.517 (5)C6—H6A0.9700
C3—C41.520 (4)C6—H6B0.9700
C4—C51.528 (5)C7—H7A0.9700
C5—C101.560 (3)C7—H7B0.9700
C5—C61.525 (4)C8—H80.9800
C6—C71.522 (5)C9—H90.9800
C7—C81.523 (4)C11—H11A0.9700
C8—C91.548 (3)C11—H11B0.9700
C8—C141.503 (4)C12—H12A0.9700
C9—C101.559 (4)C12—H12B0.9700
C9—C111.528 (3)C15—H150.9300
C10—C191.517 (4)C16—H16A0.9700
C11—C121.525 (4)C16—H16B0.9700
C12—C131.532 (3)C17—H170.9800
C13—C141.529 (3)C18—H18A0.9600
C13—C171.559 (5)C18—H18B0.9600
C13—C181.528 (5)C18—H18C0.9600
C14—C151.333 (4)C19—H190.9300
C15—C161.505 (5)C21—H210.9300
C16—C171.528 (4)C22—H220.9300
C17—C201.507 (5)C23—H230.9300
C20—C211.355 (4)
C21—O5—C24120.8 (3)C3—C2—H2A109.00
C3—O1—H1110.00C3—C2—H2B109.00
C5—O2—H2109.00H2A—C2—H2B108.00
C2—C1—C10112.9 (2)O1—C3—H3109.00
C1—C2—C3111.4 (2)C2—C3—H3109.00
O1—C3—C2107.4 (2)C4—C3—H3109.00
O1—C3—C4110.8 (3)C3—C4—H4A109.00
C2—C3—C4110.8 (2)C3—C4—H4B109.00
C3—C4—C5114.2 (3)C5—C4—H4A109.00
O2—C5—C10107.6 (2)C5—C4—H4B109.00
C4—C5—C6110.6 (3)H4A—C4—H4B108.00
C4—C5—C10111.3 (2)C5—C6—H6A109.00
C6—C5—C10111.9 (2)C5—C6—H6B109.00
O2—C5—C6106.6 (2)C7—C6—H6A109.00
O2—C5—C4108.6 (2)C7—C6—H6B109.00
C5—C6—C7112.8 (3)H6A—C6—H6B108.00
C6—C7—C8113.0 (3)C6—C7—H7A109.00
C9—C8—C14109.1 (2)C6—C7—H7B109.00
C7—C8—C9111.4 (2)C8—C7—H7A109.00
C7—C8—C14112.8 (3)C8—C7—H7B109.00
C8—C9—C10113.0 (2)H7A—C7—H7B108.00
C8—C9—C11110.72 (19)C7—C8—H8108.00
C10—C9—C11113.7 (2)C9—C8—H8108.00
C1—C10—C5108.88 (19)C14—C8—H8108.00
C5—C10—C9109.7 (2)C8—C9—H9106.00
C5—C10—C19109.3 (2)C10—C9—H9106.00
C9—C10—C19108.9 (2)C11—C9—H9106.00
C1—C10—C9112.3 (2)C9—C11—H11A110.00
C1—C10—C19107.7 (2)C9—C11—H11B110.00
C9—C11—C12110.5 (2)C12—C11—H11A110.00
C11—C12—C13112.8 (2)C12—C11—H11B110.00
C12—C13—C17112.0 (2)H11A—C11—H11B108.00
C12—C13—C14110.37 (18)C11—C12—H12A109.00
C14—C13—C18110.6 (2)C11—C12—H12B109.00
C17—C13—C18112.3 (2)C13—C12—H12A109.00
C12—C13—C18110.8 (2)C13—C12—H12B109.00
C14—C13—C17100.4 (2)H12A—C12—H12B108.00
C13—C14—C15110.7 (2)C14—C15—H15124.00
C8—C14—C13120.8 (2)C16—C15—H15124.00
C8—C14—C15128.5 (2)C15—C16—H16A112.00
C14—C15—C16111.9 (3)C15—C16—H16B111.00
C15—C16—C17101.6 (3)C17—C16—H16A112.00
C13—C17—C20116.0 (3)C17—C16—H16B111.00
C16—C17—C20118.3 (2)H16A—C16—H16B109.00
C13—C17—C16104.1 (2)C13—C17—H17106.00
O3—C19—C10124.6 (3)C16—C17—H17106.00
C17—C20—C22124.2 (3)C20—C17—H17106.00
C17—C20—C21120.1 (3)C13—C18—H18A109.00
C21—C20—C22115.7 (3)C13—C18—H18B110.00
O5—C21—C20123.8 (3)C13—C18—H18C109.00
C20—C22—C23121.8 (3)H18A—C18—H18B109.00
C22—C23—C24123.0 (3)H18A—C18—H18C109.00
O5—C24—C23114.9 (3)H18B—C18—H18C110.00
O4—C24—O5118.9 (4)O3—C19—H19118.00
O4—C24—C23126.2 (4)C10—C19—H19118.00
C2—C1—H1A109.00O5—C21—H21118.00
C2—C1—H1B109.00C20—C21—H21118.00
C10—C1—H1A109.00C20—C22—H22119.00
C10—C1—H1B109.00C23—C22—H22119.00
H1A—C1—H1B108.00C22—C23—H23118.00
C1—C2—H2A109.00C24—C23—H23119.00
C1—C2—H2B109.00
C24—O5—C21—C201.4 (8)C11—C9—C10—C158.1 (3)
C21—O5—C24—O4179.1 (5)C11—C9—C10—C5179.4 (2)
C21—O5—C24—C230.3 (7)C11—C9—C10—C1961.1 (3)
C10—C1—C2—C357.9 (3)C8—C9—C11—C1261.7 (3)
C2—C1—C10—C556.2 (3)C10—C9—C11—C12169.8 (2)
C2—C1—C10—C965.5 (3)C1—C10—C19—O314.4 (4)
C2—C1—C10—C19174.6 (2)C5—C10—C19—O3132.5 (3)
C1—C2—C3—O167.1 (3)C9—C10—C19—O3107.6 (3)
C1—C2—C3—C454.0 (3)C9—C11—C12—C1358.5 (3)
O1—C3—C4—C566.2 (3)C11—C12—C13—C1446.1 (3)
C2—C3—C4—C552.8 (3)C11—C12—C13—C17157.0 (2)
C3—C4—C5—O265.4 (3)C11—C12—C13—C1876.8 (3)
C3—C4—C5—C6177.9 (3)C12—C13—C14—C842.0 (4)
C3—C4—C5—C1052.9 (3)C12—C13—C14—C15138.7 (3)
O2—C5—C6—C7171.8 (3)C17—C13—C14—C8160.3 (2)
C4—C5—C6—C770.3 (3)C17—C13—C14—C1520.4 (3)
C10—C5—C6—C754.4 (4)C18—C13—C14—C881.0 (3)
O2—C5—C10—C166.4 (3)C18—C13—C14—C1598.3 (3)
O2—C5—C10—C9170.4 (2)C12—C13—C17—C16148.9 (2)
O2—C5—C10—C1951.1 (3)C12—C13—C17—C2079.3 (3)
C4—C5—C10—C152.5 (3)C14—C13—C17—C1631.8 (3)
C4—C5—C10—C970.7 (3)C14—C13—C17—C20163.6 (2)
C4—C5—C10—C19169.9 (2)C18—C13—C17—C1685.7 (3)
C6—C5—C10—C1176.8 (3)C18—C13—C17—C2046.1 (3)
C6—C5—C10—C953.6 (3)C8—C14—C15—C16179.7 (3)
C6—C5—C10—C1965.8 (3)C13—C14—C15—C160.4 (4)
C5—C6—C7—C853.6 (4)C14—C15—C16—C1720.3 (4)
C6—C7—C8—C952.0 (4)C15—C16—C17—C1331.8 (3)
C6—C7—C8—C14175.2 (3)C15—C16—C17—C20162.3 (3)
C7—C8—C9—C1052.9 (3)C13—C17—C20—C2185.2 (4)
C7—C8—C9—C11178.3 (3)C13—C17—C20—C2293.2 (4)
C14—C8—C9—C10178.1 (2)C16—C17—C20—C21149.9 (4)
C14—C8—C9—C1153.1 (3)C16—C17—C20—C2231.7 (5)
C7—C8—C14—C13169.8 (2)C17—C20—C21—O5179.0 (4)
C7—C8—C14—C1510.9 (4)C22—C20—C21—O52.4 (7)
C9—C8—C14—C1345.4 (3)C17—C20—C22—C23179.8 (4)
C9—C8—C14—C15135.3 (3)C21—C20—C22—C231.8 (6)
C8—C9—C10—C1174.6 (2)C20—C22—C23—C240.1 (7)
C8—C9—C10—C553.4 (3)C22—C23—C24—O4178.4 (5)
C8—C9—C10—C1966.2 (3)C22—C23—C24—O50.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.052.773 (3)147
O1—H1···O2i0.822.012.786 (3)158
C9—H9···O3ii0.982.583.545 (4)169
C15—H15···O4iii0.932.583.447 (4)155
C22—H22···O4iv0.932.603.233 (6)126
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1, z; (iii) x+1, y, z; (iv) x1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H30O5
Mr398.48
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)10.7628 (4), 6.6016 (2), 14.6376 (5)
β (°) 94.224 (3)
V3)1037.20 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.40 × 0.26 × 0.23
Data collection
DiffractometerOxford Gemini S Ultra Sapphire CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.819, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3100, 2238, 2042
Rint0.023
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.04
No. of reflections2238
No. of parameters266
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: CrysAlis PRO (Agilent, 2011), XPREP (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.052.773 (3)147
O1—H1···O2i0.822.012.786 (3)158
C9—H9···O3ii0.982.583.545 (4)169
C15—H15···O4iii0.932.583.447 (4)155
C22—H22···O4iv0.932.603.233 (6)126
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1, z; (iii) x+1, y, z; (iv) x1, y+1/2, z+1.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation of China (21072078), Guangdong High Level Talent Scheme and the Fundamental Research Funds for the Central Universities (21609202).

References

First citationKupchan, S. M., Hemingway, R. J. & Hemingway, J. C. (1969). J. Org. Chem. 34, 3894–3898.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRohrer, D. C., Fullerton, D. S., Kitatsuji, E., Nambara, T. & Yoshii, E. (1982). Acta Cryst. B38, 1865–1868.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRuoho, A. E., Hokin, L. E., Hemingway, R. J. & Kupchan, S. M. (1968). Science, 159, 1354–1355.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrscheler, H. R., Tamm, C. & Reichstein, T. (1955). Helv. Chim. Acta, 38, 883–905.  CrossRef CAS Web of Science Google Scholar
First citationYang, F. Y., Su, Y. F., Wang, Y., Chai, X., Han, X., Wu, Z. H. & Gao, X. M. (2010). Biochem. Syst. Ecol. 38, 759–763.  Web of Science CrossRef CAS Google Scholar
First citationYuan, X.-F., Tian, H.-Y., Li, J.-H., Yu, T. & Jiang, R.-W. (2012). Acta Cryst. E68, o682.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, H. Y., Wu, F. K., Qiu, Y. K., Wu, Z., Jiang, Y. T. & Chen, J. Y. (2010). J. Asian Nat. Prod. Res. 12, 793–800.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1614-o1615
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds