organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium 3-carb­­oxy­benzoate

aDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: srlovelacecameron@ysu.edu

(Received 17 April 2012; accepted 8 May 2012; online 19 May 2012)

The asymmetric unit of the title organic salt, C2H8N+·C8H5O4, consists of two dimethyl­ammonium cations and two 3-carb­oxy­benzoate anions. The 3-carb­oxy­benzoate anions are linked via strong inter­molecular and nearly symmetrical O—H⋯O hydrogen bonds forming infinite chains parallel to [111]. Neighbouring chains are further connected by the dimethyl­ammonium cations via N—H⋯O bonds, resulting in a double-chain-like structure. The dihedral angles of all carboxylate groups with respect to the phenylene rings are in the range 7.9 (1)–20.48 (9)°.

Related literature

For supra­molecular structures comprising 3-carb­oxy­benzo­ates, see: Guo et al. (2010[Guo, Y., Wang, C. & Chen, H.-X. (2010). Acta Cryst. E66, o2328.]); Liu et al. (2007[Liu, C., Wang, J.-G., Qu, L., Zhang, D. & Yao, J.-C. (2007). Acta Cryst. E63, o2535-o2536.]); Weyna et al. (2009[Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.]). For similar chain-like structures, see: Ballabh et al. (2005[Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 9, 1545-1553.]). For hydrolysis of formamides, see: Cottineau et al. (2011[Cottineau, T., Plouet, M. R., Mevellec, J. Y. & Brohan, L. (2011). J. Phys. Chem. C. 115, 12269-12274.]); Hine et al. (1981[Hine, J., King, R. S. M., Midden, W. R. & Sinha, A. (1981). J. Org. Chem. 46, 3186-3189.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen bonding, see: Gilli & Gilli (2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography Monographs on Crystallography 23. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8N+·C8H5O4

  • Mr = 211.21

  • Triclinic, [P \overline 1]

  • a = 8.439 (5) Å

  • b = 10.133 (8) Å

  • c = 12.304 (9) Å

  • α = 91.858 (14)°

  • β = 94.599 (17)°

  • γ = 90.009 (14)°

  • V = 1048.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.32 × 0.21 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc, Madison, WI, USA.]) Tmin = 0.684, Tmax = 0.746

  • 13304 measured reflections

  • 6417 independent reflections

  • 4906 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.125

  • S = 1.06

  • 6417 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.92 2.00 2.869 (2) 157
N1—H1B⋯O2i 0.92 1.84 2.744 (2) 166
N2—H2A⋯O4ii 0.92 1.93 2.822 (2) 164
N2—H2B⋯O6 0.92 1.88 2.784 (2) 166
O7—H3A⋯O3 1.18 (3) 1.26 (3) 2.4177 (19) 166 (3)
O7—H3A⋯O4 1.18 (3) 2.56 (3) 3.329 (2) 121.1 (18)
O5—H5A⋯O1iii 1.18 (2) 1.27 (2) 2.4483 (19) 171 (2)
O5—H5A⋯O2iii 1.18 (2) 2.66 (2) 3.462 (2) 124.2 (15)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+1, -z+1; (iii) x-1, y+1, z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc, Madison, WI, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc, Madison, WI, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, dimethylammonium 3-carboxybenzoate, was obtained as part of our investigations into the solvothermal synthesis of metal organic frameworks of magnesium with aromatic dicarboxylates. Reaction of magnesium nitrate with isophthalic acid and piperazine at 373 K did not yield an extended metal organic framework, but partial decomposition of the DMF solvent let to formation of the title dimethylammonium organic salt, which was isolated as a minor side product in the form of colourless plate-like crystals. Under the rather harsh solvothermal conditions used for the synthesis of many coordination compounds and metal organic frameworks formamides become unstable towards hydrolysis or Lewis acid catalyzed decarbonylation (Hine et al., 1981; Cottineau et al., 2011). This is also evidenced by the high number of dimethyl ammonium salts reported in the Cambridge Structural Database (CSD; Allen et al., 2002; 597 entries up to Feb. 2012), counting only structures that also contain at least one metal ion. With dimethyl amine itself being a gas and being used not extensively as a reagent, it can be safely assumed that most of these structures originated from in situ hydrolysis of a dimethyl amide such as DMF. Twenty eight of these entries in the CSD with dimethyl ammonium ions also contain formate ions, the other product of DMF hydrolysis. The title compound, the dimethylammonium salt of isophtalic acid, is one such example that incorporates ammonium cations formed in situ through decomposition of a formamide.

The asymmetric unit of the title compound is composed of two hydrogen-3-carboxybenzoate anions and two dimethyl ammonium cations (Fig. 1), which are connected with each other through an intricate network of N—H···O and O—H···O hydrogen bonds (Figs. 2–4). Details of the hydrogen bonding are given in Table 1. Individual 3-carboxybenzoate anions are monoprotonated, and are connected with each other through very strong and nearly symmetric O—H···O hydrogen bonds to form infinite chains parallel to the space diagonal of the unit cell (Fig. 2). Molecules in the chains are arranged in an ABAB···fashion, with crystallographically different monoanions alternating with each other. The O—H···O hydrogen bonds are characterized by nearly equidistant D—H and A—H distances (Table 1), as is typical for very strong hydrogen bonds with very electronegative donor and acceptor atoms (Gilli & Gilli, 2009). The keto oxygen atoms of the carboxylate units, which are not involved in the O—H···O hydrogen bonds, act as acceptors for N—H···O hydrogen bonds that originate from both of the dimethylammonium cations, which double bridge the carboxylic acid and carboxylate groups of the anions into a bis(dimethylammonium)—bis(COO-···H+···-OOC) cluster (Fig. 3). In such a manner parallel infinite 3-carboxybenzoate chains are connected into an inversion symmetric double chain like structure (Fig. 4).

Supramolecular structures comprising 3-carboxybenzoates have been reported previously (Guo et al., 2010; Liu et al., 2007; Weyna et al., 2009). Similar one-dimensional chain-like structures have been reported by (Ballabh et al., 2005).

Related literature top

For supramolecular structures comprising 3-carboxybenzoates, see: Guo et al. (2010); Liu et al. (2007); Weyna et al. (2009). For similar chain-like structures, see: Ballabh et al. (2005). For hydrolysis of formamides, see: Cottineau et al. (2011); Hine et al. (1981). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen bonding, see: Gilli & Gilli (2009).

Experimental top

The compound was synthesized under solvothermal conditions. In a typical synthesis, Mg(NO3)2.6H2O (0.064 g, 0.25 mmol) was dissolved in a 1:1 mixture of DMF (5.0 ml) and EtOH (5.0 ml). Then, alumina (Sorbent Technologies, Atlanta, GA) (0.051 g, 0.5 mmol), isophthalic acid (0.166 g, 1.0 mmol) and piperazine (0.043 g, 0.5 mmol) were added to the reaction mixture which was stirred for one hour before transferring the mixture into a glass vial. The final mixture was heated to 373 K for 48 h. The vial was then slowly cooled to room temperature. Slow cooling of the reaction mixture yielded colourless plate-like crystals of the title compound as a minor product.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H bond distances of 0.95 Å (aromatic H), 0.99 Å (methyl H) or 0.88 Å (N—H). Methyl group H atoms were allowed to rotate around the C—C bond to best fit the experimental electron density. Carboxylic acid hydrogen atoms were located in difference electron density maps, but were placed in calculated positions with fixed C—O—H angles, but with the C—C—O—H dihedral angles and the O—H distances freely refined (AFIX 148 command in SHELXTL (Sheldrick, 2008)). Uiso(H) values for all H atoms were constrained to a multiple of Ueq of their respective carrier atom (1.2 times for aromatic and ammonium H atoms, 1.5 times for methyl and carboxylic acid H atoms).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011) and SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the one-dimensional 3-carboxybenzoate chains formed through intermolecular nearly symmetrical O—H···O bonds parallel to the (111) direction.
[Figure 3] Fig. 3. View of one bis(dimethylammonium)—bis(COO-···H+···-OOC) cluster with the dimethylammonium cations bridging between neighboring 3-carboxybenzoate chains through inter-molecular N—H···O bonds. For clarity, only the ipso carbon atoms of the phenylene rings are shown.
[Figure 4] Fig. 4. View of the double chain-like structure. A crystallographic inversion center between the two central phenylene rings relates the parallel chains with each other.
Dimethylammonium 3-carboxybenzoate top
Crystal data top
C2H8N+·C8H5O4Z = 4
Mr = 211.21F(000) = 448
Triclinic, P1Dx = 1.338 Mg m3
a = 8.439 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.133 (8) ÅCell parameters from 832 reflections
c = 12.304 (9) Åθ = 2.6–31.1°
α = 91.858 (14)°µ = 0.10 mm1
β = 94.599 (17)°T = 100 K
γ = 90.009 (14)°Plate, colourless
V = 1048.2 (13) Å30.32 × 0.21 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6417 independent reflections
Radiation source: fine-focus sealed tube4906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 31.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1212
Tmin = 0.684, Tmax = 0.746k = 1414
13304 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.3839P]
where P = (Fo2 + 2Fc2)/3
6417 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C2H8N+·C8H5O4γ = 90.009 (14)°
Mr = 211.21V = 1048.2 (13) Å3
Triclinic, P1Z = 4
a = 8.439 (5) ÅMo Kα radiation
b = 10.133 (8) ŵ = 0.10 mm1
c = 12.304 (9) ÅT = 100 K
α = 91.858 (14)°0.32 × 0.21 × 0.09 mm
β = 94.599 (17)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6417 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
4906 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.746Rint = 0.029
13304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
6417 reflectionsΔρmin = 0.29 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59587 (16)0.02460 (14)0.25653 (10)0.0162 (3)
C20.58993 (16)0.13501 (13)0.17228 (10)0.0156 (2)
C30.48388 (15)0.12628 (13)0.09138 (10)0.0146 (2)
H30.41530.05190.09100.018*
C40.47801 (16)0.22626 (13)0.01100 (10)0.0155 (2)
C50.57738 (17)0.33635 (14)0.01340 (11)0.0180 (3)
H50.57450.40430.04140.022*
C60.68042 (18)0.34716 (14)0.09543 (12)0.0207 (3)
H60.74580.42320.09760.025*
C70.68748 (17)0.24595 (14)0.17441 (11)0.0186 (3)
H70.75890.25250.22990.022*
C80.35934 (16)0.21816 (14)0.07316 (11)0.0171 (3)
C90.11755 (16)0.80121 (13)0.53099 (11)0.0163 (3)
C100.11194 (15)0.71996 (13)0.42712 (10)0.0153 (2)
C110.01076 (16)0.62967 (13)0.41715 (11)0.0152 (2)
H110.08990.62040.47580.018*
C120.01843 (16)0.55276 (13)0.32181 (11)0.0156 (2)
C130.09707 (17)0.56792 (14)0.23523 (11)0.0183 (3)
H130.09160.51670.16960.022*
C140.21941 (18)0.65736 (15)0.24494 (11)0.0200 (3)
H140.29790.66730.18600.024*
C150.22774 (17)0.73288 (14)0.34092 (11)0.0181 (3)
H150.31270.79340.34760.022*
C160.15174 (16)0.45605 (14)0.31194 (11)0.0166 (3)
C170.60139 (18)0.23158 (16)0.50279 (12)0.0246 (3)
H17A0.52850.16600.52800.037*
H17B0.61470.30490.55670.037*
H17C0.70480.19050.49360.037*
C180.64148 (18)0.37914 (15)0.35102 (12)0.0230 (3)
H18A0.74380.33730.33950.035*
H18B0.65860.45500.40210.035*
H18C0.59240.40910.28130.035*
C190.07030 (19)1.03645 (15)0.80345 (14)0.0268 (3)
H19A0.08961.07960.87570.040*
H19B0.01101.08550.76010.040*
H19C0.16911.03500.76670.040*
C200.13291 (19)0.82098 (16)0.88063 (13)0.0262 (3)
H20A0.09220.73130.88740.039*
H20B0.15300.86280.95330.039*
H20C0.23220.81710.84440.039*
N10.53500 (14)0.28220 (12)0.39679 (9)0.0178 (2)
H1A0.43860.32160.40610.021*
H1B0.51740.21230.34770.021*
N20.01442 (14)0.89893 (12)0.81537 (9)0.0178 (2)
H2A0.07950.90060.84860.021*
H2B0.00500.85900.74740.021*
O10.72388 (12)0.01992 (10)0.30648 (8)0.0205 (2)
O20.48067 (12)0.05209 (10)0.27252 (8)0.0221 (2)
O30.38017 (13)0.30395 (11)0.15297 (8)0.0237 (2)
H3A0.255 (4)0.332 (3)0.198 (2)0.092 (10)*
O40.24967 (12)0.13580 (10)0.06142 (8)0.0210 (2)
O50.24912 (12)0.86489 (11)0.53935 (9)0.0223 (2)
H5A0.260 (3)0.933 (2)0.618 (2)0.066 (8)*
O60.00266 (12)0.80375 (11)0.59990 (8)0.0212 (2)
O70.13688 (12)0.38054 (11)0.22481 (8)0.0220 (2)
O80.26436 (12)0.45389 (10)0.38262 (8)0.0204 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (6)0.0175 (6)0.0131 (5)0.0032 (5)0.0005 (5)0.0018 (5)
C20.0163 (6)0.0160 (6)0.0140 (6)0.0037 (5)0.0003 (5)0.0020 (5)
C30.0143 (6)0.0145 (6)0.0147 (6)0.0016 (5)0.0001 (4)0.0020 (5)
C40.0159 (6)0.0156 (6)0.0146 (6)0.0046 (5)0.0005 (5)0.0014 (5)
C50.0211 (7)0.0142 (6)0.0181 (6)0.0023 (5)0.0009 (5)0.0025 (5)
C60.0234 (7)0.0153 (6)0.0234 (7)0.0017 (5)0.0016 (5)0.0001 (5)
C70.0203 (6)0.0180 (6)0.0178 (6)0.0001 (5)0.0039 (5)0.0005 (5)
C80.0156 (6)0.0198 (6)0.0155 (6)0.0058 (5)0.0000 (5)0.0021 (5)
C90.0167 (6)0.0157 (6)0.0167 (6)0.0000 (5)0.0030 (5)0.0015 (5)
C100.0147 (6)0.0164 (6)0.0148 (6)0.0012 (5)0.0019 (5)0.0015 (5)
C110.0141 (6)0.0159 (6)0.0157 (6)0.0005 (5)0.0015 (5)0.0012 (5)
C120.0157 (6)0.0156 (6)0.0155 (6)0.0012 (5)0.0030 (5)0.0016 (5)
C130.0227 (7)0.0189 (6)0.0129 (6)0.0006 (5)0.0011 (5)0.0025 (5)
C140.0221 (7)0.0221 (7)0.0152 (6)0.0026 (5)0.0029 (5)0.0001 (5)
C150.0174 (6)0.0185 (6)0.0183 (6)0.0023 (5)0.0008 (5)0.0003 (5)
C160.0157 (6)0.0181 (6)0.0164 (6)0.0006 (5)0.0049 (5)0.0026 (5)
C170.0206 (7)0.0306 (8)0.0221 (7)0.0038 (6)0.0030 (5)0.0021 (6)
C180.0219 (7)0.0226 (7)0.0242 (7)0.0064 (6)0.0000 (6)0.0001 (6)
C190.0229 (7)0.0225 (7)0.0340 (8)0.0042 (6)0.0045 (6)0.0024 (6)
C200.0233 (7)0.0266 (8)0.0271 (7)0.0006 (6)0.0080 (6)0.0003 (6)
N10.0151 (5)0.0197 (6)0.0182 (5)0.0001 (4)0.0002 (4)0.0036 (4)
N20.0156 (5)0.0219 (6)0.0156 (5)0.0007 (4)0.0006 (4)0.0027 (4)
O10.0183 (5)0.0244 (5)0.0189 (5)0.0018 (4)0.0052 (4)0.0058 (4)
O20.0196 (5)0.0229 (5)0.0231 (5)0.0016 (4)0.0027 (4)0.0090 (4)
O30.0203 (5)0.0294 (6)0.0209 (5)0.0012 (4)0.0038 (4)0.0111 (4)
O40.0194 (5)0.0249 (5)0.0188 (5)0.0002 (4)0.0042 (4)0.0034 (4)
O50.0165 (5)0.0254 (5)0.0241 (5)0.0048 (4)0.0013 (4)0.0095 (4)
O60.0171 (5)0.0276 (6)0.0179 (5)0.0029 (4)0.0006 (4)0.0064 (4)
O70.0201 (5)0.0247 (5)0.0205 (5)0.0024 (4)0.0024 (4)0.0099 (4)
O80.0179 (5)0.0213 (5)0.0214 (5)0.0043 (4)0.0006 (4)0.0051 (4)
Geometric parameters (Å, º) top
C1—O21.2438 (18)C14—H140.9500
C1—O11.2850 (17)C15—H150.9500
C1—C21.504 (2)C16—O81.2364 (17)
C2—C71.395 (2)C16—O71.2945 (17)
C2—C31.396 (2)C17—N11.485 (2)
C3—C41.3964 (19)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—C51.398 (2)C17—H17C0.9800
C4—C81.501 (2)C18—N11.485 (2)
C5—C61.391 (2)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.394 (2)C18—H18C0.9800
C6—H60.9500C19—N21.487 (2)
C7—H70.9500C19—H19A0.9800
C8—O41.2427 (18)C19—H19B0.9800
C8—O31.2915 (18)C19—H19C0.9800
C9—O61.2354 (17)C20—N21.477 (2)
C9—O51.2938 (17)C20—H20A0.9800
C9—C101.502 (2)C20—H20B0.9800
C10—C111.392 (2)C20—H20C0.9800
C10—C151.393 (2)N1—H1A0.9200
C11—C121.3931 (19)N1—H1B0.9200
C11—H110.9500N2—H2A0.9200
C12—C131.397 (2)N2—H2B0.9200
C12—C161.502 (2)O3—H3A1.26 (3)
C13—C141.384 (2)O5—H5A1.18 (2)
C13—H130.9500O7—H3A1.18 (3)
C14—C151.393 (2)
O2—C1—O1125.98 (13)C14—C15—H15119.9
O2—C1—C2119.15 (12)O8—C16—O7125.23 (13)
O1—C1—C2114.87 (12)O8—C16—C12120.54 (12)
C7—C2—C3119.73 (12)O7—C16—C12114.22 (12)
C7—C2—C1121.09 (13)N1—C17—H17A109.5
C3—C2—C1119.17 (12)N1—C17—H17B109.5
C2—C3—C4120.34 (13)H17A—C17—H17B109.5
C2—C3—H3119.8N1—C17—H17C109.5
C4—C3—H3119.8H17A—C17—H17C109.5
C3—C4—C5119.39 (13)H17B—C17—H17C109.5
C3—C4—C8119.84 (13)N1—C18—H18A109.5
C5—C4—C8120.69 (12)N1—C18—H18B109.5
C6—C5—C4120.52 (13)H18A—C18—H18B109.5
C6—C5—H5119.7N1—C18—H18C109.5
C4—C5—H5119.7H18A—C18—H18C109.5
C5—C6—C7119.77 (13)H18B—C18—H18C109.5
C5—C6—H6120.1N2—C19—H19A109.5
C7—C6—H6120.1N2—C19—H19B109.5
C6—C7—C2120.22 (13)H19A—C19—H19B109.5
C6—C7—H7119.9N2—C19—H19C109.5
C2—C7—H7119.9H19A—C19—H19C109.5
O4—C8—O3125.16 (13)H19B—C19—H19C109.5
O4—C8—C4120.20 (12)N2—C20—H20A109.5
O3—C8—C4114.61 (13)N2—C20—H20B109.5
O6—C9—O5125.27 (13)H20A—C20—H20B109.5
O6—C9—C10120.41 (13)N2—C20—H20C109.5
O5—C9—C10114.32 (12)H20A—C20—H20C109.5
C11—C10—C15119.48 (12)H20B—C20—H20C109.5
C11—C10—C9119.35 (12)C17—N1—C18112.80 (12)
C15—C10—C9121.16 (13)C17—N1—H1A109.0
C10—C11—C12120.50 (12)C18—N1—H1A109.0
C10—C11—H11119.7C17—N1—H1B109.0
C12—C11—H11119.7C18—N1—H1B109.0
C11—C12—C13119.54 (13)H1A—N1—H1B107.8
C11—C12—C16119.98 (12)C20—N2—C19111.54 (12)
C13—C12—C16120.48 (12)C20—N2—H2A109.3
C14—C13—C12120.12 (13)C19—N2—H2A109.3
C14—C13—H13119.9C20—N2—H2B109.3
C12—C13—H13119.9C19—N2—H2B109.3
C13—C14—C15120.16 (13)H2A—N2—H2B108.0
C13—C14—H14119.9C8—O3—H3A114.0 (13)
C15—C14—H14119.9C9—O5—H5A117.8 (12)
C10—C15—C14120.19 (13)C16—O7—H3A115.5 (14)
C10—C15—H15119.9
O2—C1—C2—C7159.33 (13)O6—C9—C10—C1111.4 (2)
O1—C1—C2—C720.32 (18)O5—C9—C10—C11168.79 (12)
O2—C1—C2—C320.12 (19)O6—C9—C10—C15169.00 (13)
O1—C1—C2—C3160.23 (12)O5—C9—C10—C1510.86 (19)
C7—C2—C3—C41.72 (19)C15—C10—C11—C120.1 (2)
C1—C2—C3—C4178.82 (12)C9—C10—C11—C12179.78 (12)
C2—C3—C4—C51.13 (19)C10—C11—C12—C130.8 (2)
C2—C3—C4—C8177.77 (12)C10—C11—C12—C16179.79 (12)
C3—C4—C5—C60.5 (2)C11—C12—C13—C141.0 (2)
C8—C4—C5—C6176.10 (13)C16—C12—C13—C14179.93 (13)
C4—C5—C6—C71.6 (2)C12—C13—C14—C150.2 (2)
C5—C6—C7—C21.0 (2)C11—C10—C15—C140.9 (2)
C3—C2—C7—C60.7 (2)C9—C10—C15—C14179.43 (13)
C1—C2—C7—C6179.87 (13)C13—C14—C15—C100.8 (2)
C3—C4—C8—O412.05 (19)C11—C12—C16—O87.9 (2)
C5—C4—C8—O4164.55 (13)C13—C12—C16—O8171.06 (13)
C3—C4—C8—O3169.72 (12)C11—C12—C16—O7172.93 (12)
C5—C4—C8—O313.68 (18)C13—C12—C16—O78.10 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.922.002.869 (2)157
N1—H1B···O2i0.921.842.744 (2)166
N2—H2A···O4ii0.921.932.822 (2)164
N2—H2B···O60.921.882.784 (2)166
O7—H3A···O31.18 (3)1.26 (3)2.4177 (19)166 (3)
O7—H3A···O41.18 (3)2.56 (3)3.329 (2)121.1 (18)
O5—H5A···O1iii1.18 (2)1.27 (2)2.4483 (19)171 (2)
O5—H5A···O2iii1.18 (2)2.66 (2)3.462 (2)124.2 (15)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC2H8N+·C8H5O4
Mr211.21
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.439 (5), 10.133 (8), 12.304 (9)
α, β, γ (°)91.858 (14), 94.599 (17), 90.009 (14)
V3)1048.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.21 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.684, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
13304, 6417, 4906
Rint0.029
(sin θ/λ)max1)0.741
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.06
No. of reflections6417
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011) and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.922.002.869 (2)156.8
N1—H1B···O2i0.921.842.744 (2)165.7
N2—H2A···O4ii0.921.932.822 (2)164.4
N2—H2B···O60.921.882.784 (2)165.8
O7—H3A···O31.18 (3)1.26 (3)2.4177 (19)166 (3)
O7—H3A···O41.18 (3)2.56 (3)3.329 (2)121.1 (18)
O5—H5A···O1iii1.18 (2)1.27 (2)2.4483 (19)171 (2)
O5—H5A···O2iii1.18 (2)2.66 (2)3.462 (2)124.2 (15)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x1, y+1, z+1.
 

Acknowledgements

We thank the Department of Energy (DOE) and the National Energy Technology Laboratory (NETL), USA, for financial support. The X-ray diffractometer was funded by National Science Foundation grant 0087210, Ohio Board of Regents grant CAP-491, and by Youngstown State University.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBallabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 9, 1545–1553.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc, Madison, WI, USA.  Google Scholar
First citationCottineau, T., Plouet, M. R., Mevellec, J. Y. & Brohan, L. (2011). J. Phys. Chem. C. 115, 12269–12274.  Web of Science CrossRef CAS Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. International Union of Crystallography Monographs on Crystallography 23. Oxford University Press.  Google Scholar
First citationGuo, Y., Wang, C. & Chen, H.-X. (2010). Acta Cryst. E66, o2328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHine, J., King, R. S. M., Midden, W. R. & Sinha, A. (1981). J. Org. Chem. 46, 3186–3189.  CrossRef CAS Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, C., Wang, J.-G., Qu, L., Zhang, D. & Yao, J.-C. (2007). Acta Cryst. E63, o2535–o2536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds