organic compounds
6-Chloro-2-phenyl-3-(2-phenylethynyl)quinoxaline
aYoujiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China, and bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China
*Correspondence e-mail: shi.wen.huang@163.com
In the title compound, C22H13ClN2, the quinoxaline ring system is close to planar [maximum deviation = 0.061 (2) Å]. The phenyl ring at the 2-position and the phenyl ring of the phenylethynyl substituent make dihedral angles of 49.32 (7) and 11.99 (7) °, respectively, with the quinoxaline mean plane. The two phenyl rings are inclined to one another by 61.27 (9)°. In the crystal, molecules are linked by C—H⋯π and π–π interactions [centroid–centroid distances = 3.6210 (12) and 3.8091 (12) Å].
Related literature
For the biological activity of quinoxaline derivatives, see: Rodrigo et al. (2002); Watkins et al. (2009); Sashidhara et al. (2009). For the crystal structures of quinoxaline derivatives, see: Hegedus et al. (2003); Naraso et al. (2006); Hassan et al. (2010); Ammermann et al. (2008); Daouda et al. (2011); Ramli et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2002); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2002); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812020776/su2414sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020776/su2414Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812020776/su2414Isup3.cml
4-Chloro-1,2-diaminobenzene (2.5 mmol), CuCl (0.1 mmol), chlorobenzene (3 ml) and phenylethynylene(1 mmol) were added to a sealed tube and heated to 343 K by stirring. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the reaction mixture was extracted with EtOAc. The mixture was separated after washed by saturated NaCl solution, then the oily layer was dried by anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product obtained was purified by
(eluent: 50:1 Petroleum ether–EtOAc) to give the title compound. Block-like yellow crystals were obtained by slow evaporation of the solvents.The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with Uiso(H) = 1.2 Ueq(C).
Data collection: CrystalClear (Rigaku, 2002); cell
CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C22H13ClN2 | Z = 2 |
Mr = 340.79 | F(000) = 352 |
Triclinic, P1 | Dx = 1.369 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 8.8652 (13) Å | Cell parameters from 3874 reflections |
b = 9.8591 (8) Å | θ = 3.2–27.5° |
c = 10.9740 (17) Å | µ = 0.24 mm−1 |
α = 73.032 (15)° | T = 223 K |
β = 81.036 (17)° | Block, yellow |
γ = 64.374 (13)° | 0.70 × 0.45 × 0.20 mm |
V = 826.68 (19) Å3 |
Rigaku Saturn diffractometer | 3714 independent reflections |
Radiation source: fine-focus sealed tube | 2855 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 14.63 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −11→9 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −12→12 |
Tmin = 0.649, Tmax = 0.954 | l = −14→10 |
7504 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0712P)2] where P = (Fo2 + 2Fc2)/3 |
3714 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C22H13ClN2 | γ = 64.374 (13)° |
Mr = 340.79 | V = 826.68 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.8652 (13) Å | Mo Kα radiation |
b = 9.8591 (8) Å | µ = 0.24 mm−1 |
c = 10.9740 (17) Å | T = 223 K |
α = 73.032 (15)° | 0.70 × 0.45 × 0.20 mm |
β = 81.036 (17)° |
Rigaku Saturn diffractometer | 3714 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2855 reflections with I > 2σ(I) |
Tmin = 0.649, Tmax = 0.954 | Rint = 0.024 |
7504 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.27 e Å−3 |
3714 reflections | Δρmin = −0.37 e Å−3 |
227 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.11370 (6) | 0.42900 (6) | 1.28280 (4) | 0.05093 (18) | |
N1 | 0.47258 (16) | 0.32096 (14) | 0.93213 (12) | 0.0299 (3) | |
N2 | 0.26481 (16) | 0.16607 (15) | 0.94729 (12) | 0.0314 (3) | |
C1 | 0.05364 (19) | 0.40009 (19) | 1.17229 (15) | 0.0344 (4) | |
C2 | 0.1450 (2) | 0.49110 (19) | 1.15630 (15) | 0.0349 (4) | |
H2 | 0.1121 | 0.5680 | 1.2012 | 0.042* | |
C3 | 0.28190 (19) | 0.46636 (18) | 1.07482 (15) | 0.0326 (4) | |
H3 | 0.3446 | 0.5255 | 1.0643 | 0.039* | |
C4 | 0.32946 (18) | 0.35241 (17) | 1.00641 (14) | 0.0286 (3) | |
C5 | 0.22960 (19) | 0.26891 (18) | 1.01856 (14) | 0.0298 (3) | |
C6 | 0.0918 (2) | 0.29202 (19) | 1.10582 (15) | 0.0338 (4) | |
H6 | 0.0276 | 0.2339 | 1.1178 | 0.041* | |
C7 | 0.51048 (19) | 0.21689 (17) | 0.86690 (14) | 0.0292 (3) | |
C8 | 0.40000 (18) | 0.14242 (17) | 0.87130 (14) | 0.0288 (3) | |
C9 | 0.67530 (19) | 0.17448 (17) | 0.79653 (15) | 0.0308 (3) | |
C10 | 0.8145 (2) | 0.14816 (19) | 0.85823 (17) | 0.0379 (4) | |
H10 | 0.8026 | 0.1569 | 0.9426 | 0.045* | |
C11 | 0.9711 (2) | 0.1090 (2) | 0.79661 (19) | 0.0456 (5) | |
H11 | 1.0649 | 0.0899 | 0.8396 | 0.055* | |
C12 | 0.9889 (2) | 0.0981 (2) | 0.6723 (2) | 0.0485 (5) | |
H12 | 1.0947 | 0.0714 | 0.6305 | 0.058* | |
C13 | 0.8506 (2) | 0.1266 (2) | 0.60934 (18) | 0.0459 (5) | |
H13 | 0.8628 | 0.1209 | 0.5241 | 0.055* | |
C14 | 0.6945 (2) | 0.16343 (19) | 0.67054 (16) | 0.0366 (4) | |
H14 | 0.6016 | 0.1810 | 0.6274 | 0.044* | |
C15 | 0.43695 (19) | 0.03324 (18) | 0.79721 (15) | 0.0322 (4) | |
C16 | 0.4708 (2) | −0.06017 (18) | 0.73719 (15) | 0.0339 (4) | |
C17 | 0.5261 (2) | −0.17824 (18) | 0.66936 (15) | 0.0324 (4) | |
C18 | 0.6633 (2) | −0.1962 (2) | 0.58335 (16) | 0.0397 (4) | |
H18 | 0.7119 | −0.1241 | 0.5638 | 0.048* | |
C19 | 0.7275 (2) | −0.3183 (2) | 0.52727 (17) | 0.0434 (4) | |
H19 | 0.8201 | −0.3299 | 0.4699 | 0.052* | |
C20 | 0.6561 (2) | −0.4245 (2) | 0.55506 (17) | 0.0420 (4) | |
H20 | 0.7017 | −0.5093 | 0.5179 | 0.050* | |
C21 | 0.5186 (2) | −0.4060 (2) | 0.63702 (17) | 0.0399 (4) | |
H21 | 0.4698 | −0.4777 | 0.6547 | 0.048* | |
C22 | 0.4516 (2) | −0.28344 (19) | 0.69351 (16) | 0.0364 (4) | |
H22 | 0.3562 | −0.2705 | 0.7481 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0412 (3) | 0.0698 (3) | 0.0470 (3) | −0.0267 (2) | 0.0169 (2) | −0.0255 (2) |
N1 | 0.0286 (6) | 0.0311 (7) | 0.0339 (7) | −0.0147 (6) | 0.0008 (6) | −0.0106 (6) |
N2 | 0.0298 (7) | 0.0338 (7) | 0.0353 (7) | −0.0166 (6) | −0.0003 (6) | −0.0103 (6) |
C1 | 0.0287 (8) | 0.0418 (9) | 0.0311 (8) | −0.0133 (7) | 0.0021 (7) | −0.0102 (7) |
C2 | 0.0334 (8) | 0.0378 (9) | 0.0358 (9) | −0.0136 (7) | 0.0004 (7) | −0.0151 (7) |
C3 | 0.0332 (8) | 0.0334 (8) | 0.0358 (8) | −0.0158 (7) | −0.0027 (7) | −0.0112 (7) |
C4 | 0.0255 (7) | 0.0310 (8) | 0.0307 (8) | −0.0131 (7) | −0.0008 (6) | −0.0075 (7) |
C5 | 0.0287 (8) | 0.0306 (8) | 0.0309 (8) | −0.0127 (7) | −0.0032 (6) | −0.0070 (7) |
C6 | 0.0306 (8) | 0.0387 (9) | 0.0356 (8) | −0.0181 (7) | 0.0014 (7) | −0.0092 (7) |
C7 | 0.0277 (8) | 0.0296 (8) | 0.0308 (8) | −0.0129 (6) | −0.0011 (6) | −0.0062 (6) |
C8 | 0.0272 (7) | 0.0281 (8) | 0.0325 (8) | −0.0115 (6) | −0.0018 (7) | −0.0089 (7) |
C9 | 0.0287 (8) | 0.0277 (8) | 0.0386 (8) | −0.0145 (7) | 0.0044 (7) | −0.0100 (7) |
C10 | 0.0348 (9) | 0.0410 (9) | 0.0446 (9) | −0.0194 (8) | 0.0025 (8) | −0.0164 (8) |
C11 | 0.0289 (8) | 0.0484 (11) | 0.0660 (12) | −0.0191 (8) | 0.0024 (9) | −0.0207 (9) |
C12 | 0.0356 (9) | 0.0501 (11) | 0.0656 (12) | −0.0230 (9) | 0.0192 (9) | −0.0254 (10) |
C13 | 0.0480 (10) | 0.0495 (11) | 0.0443 (10) | −0.0244 (9) | 0.0154 (9) | −0.0195 (9) |
C14 | 0.0358 (9) | 0.0390 (9) | 0.0380 (9) | −0.0177 (8) | 0.0043 (7) | −0.0130 (7) |
C15 | 0.0297 (8) | 0.0339 (8) | 0.0372 (9) | −0.0161 (7) | −0.0002 (7) | −0.0105 (7) |
C16 | 0.0333 (8) | 0.0340 (9) | 0.0372 (9) | −0.0165 (7) | −0.0018 (7) | −0.0082 (7) |
C17 | 0.0331 (8) | 0.0313 (8) | 0.0343 (8) | −0.0132 (7) | −0.0034 (7) | −0.0096 (7) |
C18 | 0.0445 (10) | 0.0375 (9) | 0.0411 (9) | −0.0212 (8) | 0.0023 (8) | −0.0107 (8) |
C19 | 0.0442 (10) | 0.0480 (10) | 0.0386 (9) | −0.0195 (9) | 0.0078 (8) | −0.0157 (8) |
C20 | 0.0511 (10) | 0.0369 (9) | 0.0404 (9) | −0.0144 (8) | −0.0025 (8) | −0.0182 (8) |
C21 | 0.0454 (10) | 0.0386 (9) | 0.0447 (10) | −0.0219 (8) | −0.0052 (8) | −0.0140 (8) |
C22 | 0.0357 (9) | 0.0385 (9) | 0.0406 (9) | −0.0177 (8) | −0.0005 (7) | −0.0143 (8) |
Cl1—C1 | 1.7401 (16) | C11—C12 | 1.378 (3) |
N1—C7 | 1.3168 (18) | C11—H11 | 0.9400 |
N1—C4 | 1.3621 (18) | C12—C13 | 1.383 (3) |
N2—C8 | 1.3216 (19) | C12—H12 | 0.9400 |
N2—C5 | 1.3602 (19) | C13—C14 | 1.384 (2) |
C1—C6 | 1.359 (2) | C13—H13 | 0.9400 |
C1—C2 | 1.408 (2) | C14—H14 | 0.9400 |
C2—C3 | 1.366 (2) | C15—C16 | 1.194 (2) |
C2—H2 | 0.9400 | C16—C17 | 1.431 (2) |
C3—C4 | 1.410 (2) | C17—C18 | 1.398 (2) |
C3—H3 | 0.9400 | C17—C22 | 1.400 (2) |
C4—C5 | 1.417 (2) | C18—C19 | 1.373 (2) |
C5—C6 | 1.408 (2) | C18—H18 | 0.9400 |
C6—H6 | 0.9400 | C19—C20 | 1.384 (2) |
C7—C8 | 1.445 (2) | C19—H19 | 0.9400 |
C7—C9 | 1.488 (2) | C20—C21 | 1.375 (2) |
C8—C15 | 1.432 (2) | C20—H20 | 0.9400 |
C9—C10 | 1.389 (2) | C21—C22 | 1.378 (2) |
C9—C14 | 1.397 (2) | C21—H21 | 0.9400 |
C10—C11 | 1.389 (2) | C22—H22 | 0.9400 |
C10—H10 | 0.9400 | ||
C7—N1—C4 | 118.09 (11) | C12—C11—C10 | 119.90 (17) |
C8—N2—C5 | 117.11 (12) | C12—C11—H11 | 120.1 |
C6—C1—C2 | 122.68 (14) | C10—C11—H11 | 120.1 |
C6—C1—Cl1 | 119.67 (12) | C11—C12—C13 | 119.87 (16) |
C2—C1—Cl1 | 117.65 (12) | C11—C12—H12 | 120.1 |
C3—C2—C1 | 119.21 (14) | C13—C12—H12 | 120.1 |
C3—C2—H2 | 120.4 | C12—C13—C14 | 120.66 (17) |
C1—C2—H2 | 120.4 | C12—C13—H13 | 119.7 |
C2—C3—C4 | 120.20 (13) | C14—C13—H13 | 119.7 |
C2—C3—H3 | 119.9 | C13—C14—C9 | 119.90 (16) |
C4—C3—H3 | 119.9 | C13—C14—H14 | 120.0 |
N1—C4—C3 | 119.84 (12) | C9—C14—H14 | 120.0 |
N1—C4—C5 | 120.75 (13) | C16—C15—C8 | 178.49 (18) |
C3—C4—C5 | 119.39 (13) | C15—C16—C17 | 174.90 (17) |
N2—C5—C6 | 119.21 (12) | C18—C17—C22 | 118.90 (14) |
N2—C5—C4 | 121.04 (13) | C18—C17—C16 | 120.00 (13) |
C6—C5—C4 | 119.75 (13) | C22—C17—C16 | 120.97 (14) |
C1—C6—C5 | 118.58 (13) | C19—C18—C17 | 120.41 (14) |
C1—C6—H6 | 120.7 | C19—C18—H18 | 119.8 |
C5—C6—H6 | 120.7 | C17—C18—H18 | 119.8 |
N1—C7—C8 | 120.60 (12) | C18—C19—C20 | 120.15 (15) |
N1—C7—C9 | 116.64 (12) | C18—C19—H19 | 119.9 |
C8—C7—C9 | 122.65 (12) | C20—C19—H19 | 119.9 |
N2—C8—C15 | 116.82 (12) | C21—C20—C19 | 119.98 (14) |
N2—C8—C7 | 122.04 (12) | C21—C20—H20 | 120.0 |
C15—C8—C7 | 121.08 (13) | C19—C20—H20 | 120.0 |
C10—C9—C14 | 118.97 (14) | C20—C21—C22 | 120.73 (14) |
C10—C9—C7 | 118.40 (14) | C20—C21—H21 | 119.6 |
C14—C9—C7 | 122.62 (15) | C22—C21—H21 | 119.6 |
C9—C10—C11 | 120.69 (16) | C21—C22—C17 | 119.76 (15) |
C9—C10—H10 | 119.7 | C21—C22—H22 | 120.1 |
C11—C10—H10 | 119.7 | C17—C22—H22 | 120.1 |
C6—C1—C2—C3 | −2.8 (3) | N1—C7—C9—C10 | 44.3 (2) |
Cl1—C1—C2—C3 | 176.92 (13) | C8—C7—C9—C10 | −132.03 (16) |
C1—C2—C3—C4 | 0.9 (3) | N1—C7—C9—C14 | −134.37 (16) |
C7—N1—C4—C3 | −178.15 (14) | C8—C7—C9—C14 | 49.3 (2) |
C7—N1—C4—C5 | 3.5 (2) | C14—C9—C10—C11 | −1.0 (2) |
C2—C3—C4—N1 | −175.48 (15) | C7—C9—C10—C11 | −179.69 (14) |
C2—C3—C4—C5 | 2.9 (2) | C9—C10—C11—C12 | 0.9 (3) |
C8—N2—C5—C6 | −176.75 (14) | C10—C11—C12—C13 | 0.1 (3) |
C8—N2—C5—C4 | 3.1 (2) | C11—C12—C13—C14 | −1.1 (3) |
N1—C4—C5—N2 | −6.4 (2) | C12—C13—C14—C9 | 1.0 (3) |
C3—C4—C5—N2 | 175.30 (14) | C10—C9—C14—C13 | 0.0 (2) |
N1—C4—C5—C6 | 173.49 (14) | C7—C9—C14—C13 | 178.65 (14) |
C3—C4—C5—C6 | −4.8 (2) | N2—C8—C15—C16 | −108 (6) |
C2—C1—C6—C5 | 0.8 (3) | C7—C8—C15—C16 | 70 (6) |
Cl1—C1—C6—C5 | −178.91 (12) | C8—C15—C16—C17 | −23 (7) |
N2—C5—C6—C1 | −177.12 (15) | C15—C16—C17—C18 | −56.4 (18) |
C4—C5—C6—C1 | 3.0 (2) | C15—C16—C17—C22 | 119.5 (18) |
C4—N1—C7—C8 | 2.0 (2) | C22—C17—C18—C19 | −2.4 (3) |
C4—N1—C7—C9 | −174.41 (13) | C16—C17—C18—C19 | 173.60 (16) |
C5—N2—C8—C15 | 179.58 (14) | C17—C18—C19—C20 | 0.3 (3) |
C5—N2—C8—C7 | 2.5 (2) | C18—C19—C20—C21 | 1.3 (3) |
N1—C7—C8—N2 | −5.3 (2) | C19—C20—C21—C22 | −0.8 (3) |
C9—C7—C8—N2 | 170.89 (15) | C20—C21—C22—C17 | −1.3 (3) |
N1—C7—C8—C15 | 177.74 (14) | C18—C17—C22—C21 | 2.9 (3) |
C9—C7—C8—C15 | −6.1 (2) | C16—C17—C22—C21 | −173.08 (15) |
Cg2 is the centroid of the C17–C22 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···Cg2i | 0.94 | 3.00 | 3.845 (2) | 151 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C22H13ClN2 |
Mr | 340.79 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 223 |
a, b, c (Å) | 8.8652 (13), 9.8591 (8), 10.9740 (17) |
α, β, γ (°) | 73.032 (15), 81.036 (17), 64.374 (13) |
V (Å3) | 826.68 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.70 × 0.45 × 0.20 |
Data collection | |
Diffractometer | Rigaku Saturn diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.649, 0.954 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7504, 3714, 2855 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.128, 1.07 |
No. of reflections | 3714 |
No. of parameters | 227 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.37 |
Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2002).
Cg2 is the centroid of the C17–C22 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···Cg2i | 0.94 | 3.00 | 3.845 (2) | 151 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
This work was funded by the Project of the Education Department of Guangxi Province (No. 201106LX593) and the Youth Foundation of Hechi University (No. 2011B-N004).
References
Ammermann, S., Daniliuc, C., Jones, P. G., Mont, W.-W. du & Johannes, H.-H. (2008). Acta Cryst. E64, o1205–o1206. Web of Science CSD CrossRef IUCr Journals Google Scholar
Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassan, N. D., Abdullah, Z., Tajuddin, H. A., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2429. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hegedus, L. S., Greenberg, M. M., Wendling, J. J. & Bullock, J. P. (2003). J. Org. Chem. 68, 4179–4188. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Naraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc. 128, 9598–9599. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ramli, Y., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2002). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143. CAS Google Scholar
Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design of small molecular weight compounds has aroused much interest in the past decades due to the advances in targeted therapeutics coupled with novel techniques in target identification. It is well know that quinoxalines have broad applications in the fields of medicine and pharmaceuticals. It has been shown that many quinoxaline derivatives exhibit good biological activities, such as antituberculous activities (Rodrigo et al., 2002), antioxidative properties (Watkins et al., 2009), and antidyslipidemic (Sashidhara et al., 2009). Recently, a large number of crystal structures of quinoxaline derivatives have been reported (Hegedus et al., 2003; Naraso et al., 2006; Hassan et al., 2010; Ammermann et al., 2008; Daouda et al., 2011; Ramli et al., 2012).
In the title compound (Fig. 1) the phenyl ring of the phenylethynyl substituent is twisted by 11.99 (7)° out of the mean plane of the quinoxaline fused-ring system [planar to within 0.061 (2) Å]. The phenyl ring of the substituent at the 2-position, C7, makes dihedral angles of 49.32 (7)° and 61.27 (9)°, respectively, with the quinoxaline mean plane and the phenylethynyl phenyl ring.
In the crystal (Fig. 2), molecules are linked by C—H···π interactions involving the phenylethynyl phenyl ring (Table 1), and by π–π interactions involving inversion related quinoxaline rings and the phenylethynyl phenyl ring [Cg1···Cg1i 3.6210 (12) Å, interplanar spacing of 3.3635 (7) Å, slippage of 1.341 Å; Cg1···Cg2ii 3.8091 (12) Å; Cg1 is the centroid of the C1-C6 ring; Cg2 is the centroid of the C17-C22 ring; symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y, -z+2].
Footnote to Table 1: Cg2 is the centroid of the C17-C22 ring.