organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-2-phenyl-3-(2-phenyl­ethyn­yl)quinoxaline

aYoujiang Medical University for Nationalities, Baise, Guangxi 533000, People's Republic of China, and bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China
*Correspondence e-mail: shi.wen.huang@163.com

(Received 18 April 2012; accepted 8 May 2012; online 16 May 2012)

In the title compound, C22H13ClN2, the quinoxaline ring system is close to planar [maximum deviation = 0.061 (2) Å]. The phenyl ring at the 2-position and the phenyl ring of the phenyl­ethynyl substituent make dihedral angles of 49.32 (7) and 11.99 (7) °, respectively, with the quinoxaline mean plane. The two phenyl rings are inclined to one another by 61.27 (9)°. In the crystal, mol­ecules are linked by C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.6210 (12) and 3.8091 (12) Å].

Related literature

For the biological activity of quinoxaline derivatives, see: Rodrigo et al. (2002[Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137-143.]); Watkins et al. (2009[Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580-585.]); Sashidhara et al. (2009[Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813-1818.]). For the crystal structures of quinoxaline derivatives, see: Hegedus et al. (2003[Hegedus, L. S., Greenberg, M. M., Wendling, J. J. & Bullock, J. P. (2003). J. Org. Chem. 68, 4179-4188.]); Naraso et al. (2006[Naraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc. 128, 9598-9599.]); Hassan et al. (2010[Hassan, N. D., Abdullah, Z., Tajuddin, H. A., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2429.]); Ammermann et al. (2008[Ammermann, S., Daniliuc, C., Jones, P. G., Mont, W.-W. du & Johannes, H.-H. (2008). Acta Cryst. E64, o1205-o1206.]); Daouda et al. (2011[Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.]); Ramli et al. (2012[Ramli, Y., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o241.]).

[Scheme 1]

Experimental

Crystal data
  • C22H13ClN2

  • Mr = 340.79

  • Triclinic, [P \overline 1]

  • a = 8.8652 (13) Å

  • b = 9.8591 (8) Å

  • c = 10.9740 (17) Å

  • α = 73.032 (15)°

  • β = 81.036 (17)°

  • γ = 64.374 (13)°

  • V = 826.68 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 223 K

  • 0.70 × 0.45 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.649, Tmax = 0.954

  • 7504 measured reflections

  • 3714 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.07

  • 3714 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg2i 0.94 3.00 3.845 (2) 151
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2002[Rigaku (2002). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design of small molecular weight compounds has aroused much interest in the past decades due to the advances in targeted therapeutics coupled with novel techniques in target identification. It is well know that quinoxalines have broad applications in the fields of medicine and pharmaceuticals. It has been shown that many quinoxaline derivatives exhibit good biological activities, such as antituberculous activities (Rodrigo et al., 2002), antioxidative properties (Watkins et al., 2009), and antidyslipidemic (Sashidhara et al., 2009). Recently, a large number of crystal structures of quinoxaline derivatives have been reported (Hegedus et al., 2003; Naraso et al., 2006; Hassan et al., 2010; Ammermann et al., 2008; Daouda et al., 2011; Ramli et al., 2012).

In the title compound (Fig. 1) the phenyl ring of the phenylethynyl substituent is twisted by 11.99 (7)° out of the mean plane of the quinoxaline fused-ring system [planar to within 0.061 (2) Å]. The phenyl ring of the substituent at the 2-position, C7, makes dihedral angles of 49.32 (7)° and 61.27 (9)°, respectively, with the quinoxaline mean plane and the phenylethynyl phenyl ring.

In the crystal (Fig. 2), molecules are linked by C—H···π interactions involving the phenylethynyl phenyl ring (Table 1), and by ππ interactions involving inversion related quinoxaline rings and the phenylethynyl phenyl ring [Cg1···Cg1i 3.6210 (12) Å, interplanar spacing of 3.3635 (7) Å, slippage of 1.341 Å; Cg1···Cg2ii 3.8091 (12) Å; Cg1 is the centroid of the C1-C6 ring; Cg2 is the centroid of the C17-C22 ring; symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y, -z+2].

Footnote to Table 1: Cg2 is the centroid of the C17-C22 ring.

Related literature top

For the biological activity of quinoxaline derivatives, see: Rodrigo et al. (2002); Watkins et al. (2009); Sashidhara et al. (2009). For the crystal structures of quinoxaline derivatives, see: Hegedus et al. (2003); Naraso et al. (2006); Hassan et al. (2010); Ammermann et al. (2008); Daouda et al. (2011); Ramli et al. (2012).

Experimental top

4-Chloro-1,2-diaminobenzene (2.5 mmol), CuCl (0.1 mmol), chlorobenzene (3 ml) and phenylethynylene(1 mmol) were added to a sealed tube and heated to 343 K by stirring. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the reaction mixture was extracted with EtOAc. The mixture was separated after washed by saturated NaCl solution, then the oily layer was dried by anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product obtained was purified by column chromatography (eluent: 50:1 Petroleum ether–EtOAc) to give the title compound. Block-like yellow crystals were obtained by slow evaporation of the solvents.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule showing the atom-labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis.
6-Chloro-2-phenyl-3-(2-phenylethynyl)quinoxaline top
Crystal data top
C22H13ClN2Z = 2
Mr = 340.79F(000) = 352
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.8652 (13) ÅCell parameters from 3874 reflections
b = 9.8591 (8) Åθ = 3.2–27.5°
c = 10.9740 (17) ŵ = 0.24 mm1
α = 73.032 (15)°T = 223 K
β = 81.036 (17)°Block, yellow
γ = 64.374 (13)°0.70 × 0.45 × 0.20 mm
V = 826.68 (19) Å3
Data collection top
Rigaku Saturn
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube2855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 119
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1212
Tmin = 0.649, Tmax = 0.954l = 1410
7504 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
3714 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C22H13ClN2γ = 64.374 (13)°
Mr = 340.79V = 826.68 (19) Å3
Triclinic, P1Z = 2
a = 8.8652 (13) ÅMo Kα radiation
b = 9.8591 (8) ŵ = 0.24 mm1
c = 10.9740 (17) ÅT = 223 K
α = 73.032 (15)°0.70 × 0.45 × 0.20 mm
β = 81.036 (17)°
Data collection top
Rigaku Saturn
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2855 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.954Rint = 0.024
7504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
3714 reflectionsΔρmin = 0.37 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11370 (6)0.42900 (6)1.28280 (4)0.05093 (18)
N10.47258 (16)0.32096 (14)0.93213 (12)0.0299 (3)
N20.26481 (16)0.16607 (15)0.94729 (12)0.0314 (3)
C10.05364 (19)0.40009 (19)1.17229 (15)0.0344 (4)
C20.1450 (2)0.49110 (19)1.15630 (15)0.0349 (4)
H20.11210.56801.20120.042*
C30.28190 (19)0.46636 (18)1.07482 (15)0.0326 (4)
H30.34460.52551.06430.039*
C40.32946 (18)0.35241 (17)1.00641 (14)0.0286 (3)
C50.22960 (19)0.26891 (18)1.01856 (14)0.0298 (3)
C60.0918 (2)0.29202 (19)1.10582 (15)0.0338 (4)
H60.02760.23391.11780.041*
C70.51048 (19)0.21689 (17)0.86690 (14)0.0292 (3)
C80.40000 (18)0.14242 (17)0.87130 (14)0.0288 (3)
C90.67530 (19)0.17448 (17)0.79653 (15)0.0308 (3)
C100.8145 (2)0.14816 (19)0.85823 (17)0.0379 (4)
H100.80260.15690.94260.045*
C110.9711 (2)0.1090 (2)0.79661 (19)0.0456 (5)
H111.06490.08990.83960.055*
C120.9889 (2)0.0981 (2)0.6723 (2)0.0485 (5)
H121.09470.07140.63050.058*
C130.8506 (2)0.1266 (2)0.60934 (18)0.0459 (5)
H130.86280.12090.52410.055*
C140.6945 (2)0.16343 (19)0.67054 (16)0.0366 (4)
H140.60160.18100.62740.044*
C150.43695 (19)0.03324 (18)0.79721 (15)0.0322 (4)
C160.4708 (2)0.06017 (18)0.73719 (15)0.0339 (4)
C170.5261 (2)0.17824 (18)0.66936 (15)0.0324 (4)
C180.6633 (2)0.1962 (2)0.58335 (16)0.0397 (4)
H180.71190.12410.56380.048*
C190.7275 (2)0.3183 (2)0.52727 (17)0.0434 (4)
H190.82010.32990.46990.052*
C200.6561 (2)0.4245 (2)0.55506 (17)0.0420 (4)
H200.70170.50930.51790.050*
C210.5186 (2)0.4060 (2)0.63702 (17)0.0399 (4)
H210.46980.47770.65470.048*
C220.4516 (2)0.28344 (19)0.69351 (16)0.0364 (4)
H220.35620.27050.74810.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0412 (3)0.0698 (3)0.0470 (3)0.0267 (2)0.0169 (2)0.0255 (2)
N10.0286 (6)0.0311 (7)0.0339 (7)0.0147 (6)0.0008 (6)0.0106 (6)
N20.0298 (7)0.0338 (7)0.0353 (7)0.0166 (6)0.0003 (6)0.0103 (6)
C10.0287 (8)0.0418 (9)0.0311 (8)0.0133 (7)0.0021 (7)0.0102 (7)
C20.0334 (8)0.0378 (9)0.0358 (9)0.0136 (7)0.0004 (7)0.0151 (7)
C30.0332 (8)0.0334 (8)0.0358 (8)0.0158 (7)0.0027 (7)0.0112 (7)
C40.0255 (7)0.0310 (8)0.0307 (8)0.0131 (7)0.0008 (6)0.0075 (7)
C50.0287 (8)0.0306 (8)0.0309 (8)0.0127 (7)0.0032 (6)0.0070 (7)
C60.0306 (8)0.0387 (9)0.0356 (8)0.0181 (7)0.0014 (7)0.0092 (7)
C70.0277 (8)0.0296 (8)0.0308 (8)0.0129 (6)0.0011 (6)0.0062 (6)
C80.0272 (7)0.0281 (8)0.0325 (8)0.0115 (6)0.0018 (7)0.0089 (7)
C90.0287 (8)0.0277 (8)0.0386 (8)0.0145 (7)0.0044 (7)0.0100 (7)
C100.0348 (9)0.0410 (9)0.0446 (9)0.0194 (8)0.0025 (8)0.0164 (8)
C110.0289 (8)0.0484 (11)0.0660 (12)0.0191 (8)0.0024 (9)0.0207 (9)
C120.0356 (9)0.0501 (11)0.0656 (12)0.0230 (9)0.0192 (9)0.0254 (10)
C130.0480 (10)0.0495 (11)0.0443 (10)0.0244 (9)0.0154 (9)0.0195 (9)
C140.0358 (9)0.0390 (9)0.0380 (9)0.0177 (8)0.0043 (7)0.0130 (7)
C150.0297 (8)0.0339 (8)0.0372 (9)0.0161 (7)0.0002 (7)0.0105 (7)
C160.0333 (8)0.0340 (9)0.0372 (9)0.0165 (7)0.0018 (7)0.0082 (7)
C170.0331 (8)0.0313 (8)0.0343 (8)0.0132 (7)0.0034 (7)0.0096 (7)
C180.0445 (10)0.0375 (9)0.0411 (9)0.0212 (8)0.0023 (8)0.0107 (8)
C190.0442 (10)0.0480 (10)0.0386 (9)0.0195 (9)0.0078 (8)0.0157 (8)
C200.0511 (10)0.0369 (9)0.0404 (9)0.0144 (8)0.0025 (8)0.0182 (8)
C210.0454 (10)0.0386 (9)0.0447 (10)0.0219 (8)0.0052 (8)0.0140 (8)
C220.0357 (9)0.0385 (9)0.0406 (9)0.0177 (8)0.0005 (7)0.0143 (8)
Geometric parameters (Å, º) top
Cl1—C11.7401 (16)C11—C121.378 (3)
N1—C71.3168 (18)C11—H110.9400
N1—C41.3621 (18)C12—C131.383 (3)
N2—C81.3216 (19)C12—H120.9400
N2—C51.3602 (19)C13—C141.384 (2)
C1—C61.359 (2)C13—H130.9400
C1—C21.408 (2)C14—H140.9400
C2—C31.366 (2)C15—C161.194 (2)
C2—H20.9400C16—C171.431 (2)
C3—C41.410 (2)C17—C181.398 (2)
C3—H30.9400C17—C221.400 (2)
C4—C51.417 (2)C18—C191.373 (2)
C5—C61.408 (2)C18—H180.9400
C6—H60.9400C19—C201.384 (2)
C7—C81.445 (2)C19—H190.9400
C7—C91.488 (2)C20—C211.375 (2)
C8—C151.432 (2)C20—H200.9400
C9—C101.389 (2)C21—C221.378 (2)
C9—C141.397 (2)C21—H210.9400
C10—C111.389 (2)C22—H220.9400
C10—H100.9400
C7—N1—C4118.09 (11)C12—C11—C10119.90 (17)
C8—N2—C5117.11 (12)C12—C11—H11120.1
C6—C1—C2122.68 (14)C10—C11—H11120.1
C6—C1—Cl1119.67 (12)C11—C12—C13119.87 (16)
C2—C1—Cl1117.65 (12)C11—C12—H12120.1
C3—C2—C1119.21 (14)C13—C12—H12120.1
C3—C2—H2120.4C12—C13—C14120.66 (17)
C1—C2—H2120.4C12—C13—H13119.7
C2—C3—C4120.20 (13)C14—C13—H13119.7
C2—C3—H3119.9C13—C14—C9119.90 (16)
C4—C3—H3119.9C13—C14—H14120.0
N1—C4—C3119.84 (12)C9—C14—H14120.0
N1—C4—C5120.75 (13)C16—C15—C8178.49 (18)
C3—C4—C5119.39 (13)C15—C16—C17174.90 (17)
N2—C5—C6119.21 (12)C18—C17—C22118.90 (14)
N2—C5—C4121.04 (13)C18—C17—C16120.00 (13)
C6—C5—C4119.75 (13)C22—C17—C16120.97 (14)
C1—C6—C5118.58 (13)C19—C18—C17120.41 (14)
C1—C6—H6120.7C19—C18—H18119.8
C5—C6—H6120.7C17—C18—H18119.8
N1—C7—C8120.60 (12)C18—C19—C20120.15 (15)
N1—C7—C9116.64 (12)C18—C19—H19119.9
C8—C7—C9122.65 (12)C20—C19—H19119.9
N2—C8—C15116.82 (12)C21—C20—C19119.98 (14)
N2—C8—C7122.04 (12)C21—C20—H20120.0
C15—C8—C7121.08 (13)C19—C20—H20120.0
C10—C9—C14118.97 (14)C20—C21—C22120.73 (14)
C10—C9—C7118.40 (14)C20—C21—H21119.6
C14—C9—C7122.62 (15)C22—C21—H21119.6
C9—C10—C11120.69 (16)C21—C22—C17119.76 (15)
C9—C10—H10119.7C21—C22—H22120.1
C11—C10—H10119.7C17—C22—H22120.1
C6—C1—C2—C32.8 (3)N1—C7—C9—C1044.3 (2)
Cl1—C1—C2—C3176.92 (13)C8—C7—C9—C10132.03 (16)
C1—C2—C3—C40.9 (3)N1—C7—C9—C14134.37 (16)
C7—N1—C4—C3178.15 (14)C8—C7—C9—C1449.3 (2)
C7—N1—C4—C53.5 (2)C14—C9—C10—C111.0 (2)
C2—C3—C4—N1175.48 (15)C7—C9—C10—C11179.69 (14)
C2—C3—C4—C52.9 (2)C9—C10—C11—C120.9 (3)
C8—N2—C5—C6176.75 (14)C10—C11—C12—C130.1 (3)
C8—N2—C5—C43.1 (2)C11—C12—C13—C141.1 (3)
N1—C4—C5—N26.4 (2)C12—C13—C14—C91.0 (3)
C3—C4—C5—N2175.30 (14)C10—C9—C14—C130.0 (2)
N1—C4—C5—C6173.49 (14)C7—C9—C14—C13178.65 (14)
C3—C4—C5—C64.8 (2)N2—C8—C15—C16108 (6)
C2—C1—C6—C50.8 (3)C7—C8—C15—C1670 (6)
Cl1—C1—C6—C5178.91 (12)C8—C15—C16—C1723 (7)
N2—C5—C6—C1177.12 (15)C15—C16—C17—C1856.4 (18)
C4—C5—C6—C13.0 (2)C15—C16—C17—C22119.5 (18)
C4—N1—C7—C82.0 (2)C22—C17—C18—C192.4 (3)
C4—N1—C7—C9174.41 (13)C16—C17—C18—C19173.60 (16)
C5—N2—C8—C15179.58 (14)C17—C18—C19—C200.3 (3)
C5—N2—C8—C72.5 (2)C18—C19—C20—C211.3 (3)
N1—C7—C8—N25.3 (2)C19—C20—C21—C220.8 (3)
C9—C7—C8—N2170.89 (15)C20—C21—C22—C171.3 (3)
N1—C7—C8—C15177.74 (14)C18—C17—C22—C212.9 (3)
C9—C7—C8—C156.1 (2)C16—C17—C22—C21173.08 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg2i0.943.003.845 (2)151
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H13ClN2
Mr340.79
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.8652 (13), 9.8591 (8), 10.9740 (17)
α, β, γ (°)73.032 (15), 81.036 (17), 64.374 (13)
V3)826.68 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.70 × 0.45 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.649, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
7504, 3714, 2855
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.07
No. of reflections3714
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2002).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg2i0.943.003.845 (2)151
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was funded by the Project of the Education Department of Guangxi Province (No. 201106LX593) and the Youth Foundation of Hechi University (No. 2011B-N004).

References

First citationAmmermann, S., Daniliuc, C., Jones, P. G., Mont, W.-W. du & Johannes, H.-H. (2008). Acta Cryst. E64, o1205–o1206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, N. D., Abdullah, Z., Tajuddin, H. A., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHegedus, L. S., Greenberg, M. M., Wendling, J. J. & Bullock, J. P. (2003). J. Org. Chem. 68, 4179–4188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNaraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc. 128, 9598–9599.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRamli, Y., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2002). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.  CAS Google Scholar
First citationSashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds