metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m727-m728

cyclo-Tetra­kis{μ-N′-[(8-oxidoquinolin-7-yl)methyl­­idene]isonicotino­hydrazidato}tetra­zinc tetra­hydrate

aCollege of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: yubindong@sdnu.edu.cn

(Received 19 April 2012; accepted 27 April 2012; online 5 May 2012)

In the title compound, [Zn4(C16H10N4O2)4]·4H2O, the N′-[(8-oxidoquinolin-7-yl)methyl­idene]isonicotinohydrazidate (L2−) ligand binds to the metal ions, forming stable five- and six-membered chelate rings, leaving the pyridyl groups free. The compound is a tetra­nuclear ZnII complex centered about a fourfold roto-inversion axis, with the ligand coordinating in the doubly deprotonated form. The ZnII atom has a distorted square-pyramidal geometry being coordinated by one N and two O-atom donors from the doubly deprotonated L2− ligand, and by one N atom and one O-atom donor from a symmetry-related L2− ligand. In the crystal, four symmetry-related lattice water mol­ecules, centred about a fourfold roto-inversion axis, form a cyclic tetra­mer through O—H⋯O hydrogen bonds. These tetra­mers connect to the complex mol­ecules through O—H⋯N hydrogen bonds, forming a chain propagating along [100]. Neighbouring mol­ecules are linked by ππ inter­actions [centroid–centroid distance = 3.660 (2) Å] involving the quinolidine rings.

Related literature

For heterometallic coordination polymers and coordination compounds involving bridging N-donor ligands, see: Palacios et al. (2008[Palacios, M. A., Wang, Z., Montes, V. A., Zyryanov, G. V. & Anzenbacher, P. Jr (2008). J. Am. Chem. Soc. 130, 10307-10314.]); Tao et al. (2002[Tao, J., Zhang, Y., Tong, M.-L., Chen, X.-M., Yuen, T., Lin, C. L., Huang, X. & Li, J. (2002). Chem. Commun. pp. 1342-1343.]); Dong et al. (2005[Dong, Y.-B., Zhang, H.-Q., Ma, J.-P., Huang, R.-Q. & Su, C.-Y. (2005). Cryst. Growth Des. 5, 1857-1866.]). For details of bond lengths in similar zinc(II) complexes, see: Kumar et al. (2006[Kumar, D. K., Das, A. & Dastidar, P. C. (2006). Cryst. Growth Des. 6, 1903-1909.]); Woodward et al. (2006[Woodward, J. D., Backov, R. V., Abboud, K. A. & Talham, D. R. (2006). Polyhedron, 25, 2605-2615.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn4(C16H10N4O2)4]·4H2O

  • Mr = 1494.66

  • Tetragonal, I 41 /a

  • a = 21.407 (2) Å

  • c = 13.626 (3) Å

  • V = 6244.1 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.13 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.897

  • 16035 measured reflections

  • 2900 independent reflections

  • 2324 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.03

  • 2900 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯N3 0.85 2.08 2.912 (4) 168
O3—H3A⋯O3i 0.85 1.99 2.835 (5) 173
Symmetry code: (i) [-y+{\script{5\over 4}}, x-{\script{3\over 4}}, -z+{\script{5\over 4}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of metal-containing compounds is the first and an important step in a promising route to novel heterometallic coordination polymers (Tao et al., 2002). It is well known that the relative orientations of N donors and the variation of the bridging spacer may lead to the construction of supramolecular motifs that have not been achieved using normal linear organic ligands. The ligand N'-((8-hydroxyquinolin-7-yl)methylene)isonicotinohydrazide ligand (LH2) is unsymmetrical, containing two different terminal coordinating sites, i.e. a pyridyl and a 7-hydrazinylidene-8-hydroxyquinoline chelator. The latter contains the N/O-bidentate chelating motif, which usually binds to metal ions in a deprotonated manner (Palacios et al., 2008). It was also found that this chelator binds to metal ions in preference to the pyridine N atom. This could provide a favourable coordination strategy for the synthesis of multinuclear metal-containing compounds. As part of our continuing studies of coordination compounds with bridging N-donor ligands (Dong et al., 2005), we report herein on the synthesis and crystal structure of a novel ZnII compound with free pyridyl groups.

The title compound is a tetranuclear ZnII complex, centred about a fourfold roto-inversion axis, and crystallizes as a tetrahydrate (Fig. 1). The ZnII atom has distorted square-pyramidal geometry, being coordinated by one N (N2) and two O donors (O1 and O2) from a doubly deprotonated LH2 ligand, and one N (N1i) and one O donor (O2i) from a symmetry-related L2- ligand [symmetry code :(i) -y + 5/4, x - 3/4, -z + 9/4]. The N atoms of the pyridine rings are not involved in coordination. The dihedral angle between the pyridine and quinoline ring mean planes is 14.01 (15)°. The Zn—N distances are 2.081 (2) for N1i and 2.036 (2) Å for N2, which are consistent with values reported previously (Kumar et al., 2006). The Zn—O bond lengths, 2.0329 (19) Å for O1, 2.0350 (18) Å for O2i and 2.0604 (18) Å for O2, are very close to the Zn—O bond lengths reported by (Woodward et al., 2006).

In the crystal, four symmetry-related lattice water molecules form a cyclic tetramer through O—H···O hydrogen bonds (Fig. 2 and Table 1). These water tetramers are linked to the complex molecules through O—H···N hydrogen bonds (Table 1), so forming a one-dimensional chain propagating parallel to the [001] direction. Parallel chains are connected by π-π interactions involving rings (C4—C9) and (N1/C1—C5)ii [centroid-to-centroid distance 3.660 (2) Å; symmetry code: (iv) -x+2, -y+1, -z+2] resulting in the formation of a two-dimensional network (Fig. 3).

Related literature top

For heterometallic coordination polymers and coordination compounds involving bridging N-donor ligands, see: Palacios et al. (2008); Tao et al. (2002); Dong et al. (2005). For details of bond lengths in similar zinc(II) complexes, see: Kumar et al. (2006); Woodward et al. (2006).

Experimental top

A solution of LH2 (5.3 mg,0.02 mmol) in MeOH (8 ml) was layered onto a solution of ZnSO4 (5.8 mg, 0.04 mmol) in water (8 mL). The system was left for about two weeks at room temperature and yellow crystals of the title complex were obtained (yield 5.6 mg, 79%). Analysis, calc. for C64H48N16O12Zn4: C 51.43, H 3.24, N 14.99%; found: C 51.39, H 3.30, N 14.93%.

Refinement top

The C-bound H atoms were placed in geometrically idealized positions and included as riding atoms: C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier maps and refined with distance O—H restrained to 0.85 (2) Å and Uiso(H) = 1.2Ueq(O)

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title ZnII complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity; only one of the symmetry related water molecules are shown; symmetry codes: (i) -y + 5/4, x - 3/4, -z + 9/4; (ii) y + 3/4, -x + 5/4, -z + 9/4; (iii) -x + 2, -y + 1/2, z.
[Figure 2] Fig. 2. A view of the cyclic tetramer cluster formed between uncoordinated water molecules related by a four-fold roto-inversion axis.
[Figure 3] Fig. 3. The two-dimensional supramolecular sheet of the title ZnII complex, formed by hydrogen bonds and π-π interactions (dashed lines) between two symmetry-related quinoline rings [centroid-to-centroid distance 3.660 (2) Å [symmetry code: -x+2, -y+1, -z+2].
cyclo-Tetrakis{µ-N'-[(8-oxidoquinolin-7- yl)methylidene]isonicotinohydrazidato}tetrazinc tetrahydrate top
Crystal data top
[Zn4(C16H10N4O2)4]·4H2ODx = 1.590 Mg m3
Mr = 1494.66Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 2897 reflections
Hall symbol: I 41/aθ = 2.6–22.7°
a = 21.407 (2) ŵ = 1.60 mm1
c = 13.626 (3) ÅT = 298 K
V = 6244.1 (15) Å3Block, yellow
Z = 40.13 × 0.11 × 0.07 mm
F(000) = 3040
Data collection top
Bruker SMART CCD area-detector
diffractometer
2900 independent reflections
Radiation source: fine-focus sealed tube2324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2225
Tmin = 0.819, Tmax = 0.897k = 2525
16035 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0372P)2 + 5.0654P]
where P = (Fo2 + 2Fc2)/3
2900 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Zn4(C16H10N4O2)4]·4H2OZ = 4
Mr = 1494.66Mo Kα radiation
Tetragonal, I41/aµ = 1.60 mm1
a = 21.407 (2) ÅT = 298 K
c = 13.626 (3) Å0.13 × 0.11 × 0.07 mm
V = 6244.1 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2900 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2324 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.897Rint = 0.054
16035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
2900 reflectionsΔρmin = 0.23 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.10071 (14)0.45462 (15)1.1624 (3)0.0485 (8)
H11.11190.45301.22830.058*
C21.12416 (16)0.50312 (16)1.1052 (3)0.0611 (10)
H21.15060.53291.13240.073*
C31.10790 (16)0.50630 (15)1.0094 (3)0.0590 (10)
H31.12300.53880.97070.071*
C41.06842 (14)0.46097 (14)0.9677 (3)0.0442 (8)
C51.04647 (12)0.41352 (13)1.0312 (2)0.0336 (6)
C61.00568 (12)0.36577 (12)0.9960 (2)0.0303 (6)
C70.98754 (13)0.36698 (13)0.8981 (2)0.0361 (7)
C81.01152 (15)0.41496 (15)0.8363 (2)0.0497 (8)
H81.00030.41490.77040.060*
C91.04951 (15)0.46024 (16)0.8689 (3)0.0538 (9)
H91.06330.49110.82620.065*
C100.94522 (13)0.32259 (14)0.8548 (2)0.0394 (7)
H100.93970.32410.78710.047*
C110.84867 (13)0.20093 (13)0.9058 (2)0.0374 (7)
C120.80184 (14)0.15938 (14)0.8575 (3)0.0453 (8)
C130.77607 (18)0.17239 (18)0.7669 (3)0.0684 (11)
H130.78960.20650.73030.082*
C140.7291 (2)0.1330 (2)0.7317 (4)0.0865 (15)
H140.71060.14340.67210.104*
C150.7364 (2)0.0697 (2)0.8615 (4)0.0953 (16)
H150.72440.03320.89350.114*
C160.78125 (17)0.10645 (17)0.9055 (3)0.0641 (10)
H160.79740.09580.96660.077*
N11.06328 (10)0.41084 (10)1.12773 (18)0.0352 (6)
N20.91453 (11)0.28117 (11)0.90248 (18)0.0356 (6)
N30.87505 (12)0.24302 (11)0.84775 (18)0.0418 (6)
N40.70908 (18)0.0828 (2)0.7760 (3)0.0948 (13)
O10.85836 (9)0.19375 (9)0.99696 (16)0.0407 (5)
O20.98781 (8)0.32250 (8)1.06007 (13)0.0321 (4)
O30.90970 (15)0.23053 (16)0.6420 (2)0.1038 (11)
H3A0.94340.20980.63710.125*
H3B0.89480.23090.69980.125*
Zn10.910323 (15)0.265779 (15)1.04977 (2)0.03319 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (18)0.0485 (19)0.053 (2)0.0001 (15)0.0103 (16)0.0125 (16)
C20.055 (2)0.048 (2)0.080 (3)0.0168 (16)0.010 (2)0.009 (2)
C30.056 (2)0.0398 (19)0.081 (3)0.0139 (16)0.004 (2)0.0075 (19)
C40.0402 (17)0.0385 (17)0.054 (2)0.0054 (14)0.0016 (15)0.0072 (15)
C50.0317 (15)0.0319 (15)0.0371 (17)0.0010 (11)0.0006 (13)0.0033 (13)
C60.0312 (14)0.0295 (14)0.0301 (16)0.0012 (11)0.0024 (12)0.0056 (12)
C70.0407 (16)0.0377 (16)0.0299 (16)0.0028 (13)0.0030 (13)0.0026 (13)
C80.056 (2)0.059 (2)0.0336 (18)0.0082 (17)0.0018 (16)0.0167 (16)
C90.058 (2)0.052 (2)0.051 (2)0.0124 (17)0.0043 (17)0.0212 (17)
C100.0448 (17)0.0518 (18)0.0214 (15)0.0025 (14)0.0032 (13)0.0025 (14)
C110.0369 (16)0.0375 (16)0.0378 (18)0.0022 (13)0.0078 (14)0.0077 (14)
C120.0392 (17)0.0460 (18)0.051 (2)0.0003 (14)0.0057 (15)0.0151 (16)
C130.077 (3)0.062 (2)0.066 (3)0.008 (2)0.033 (2)0.008 (2)
C140.089 (3)0.090 (3)0.080 (3)0.004 (3)0.043 (3)0.022 (3)
C150.103 (4)0.092 (3)0.091 (4)0.053 (3)0.001 (3)0.016 (3)
C160.069 (2)0.066 (2)0.057 (3)0.0237 (19)0.004 (2)0.004 (2)
N10.0334 (13)0.0337 (13)0.0386 (15)0.0000 (10)0.0030 (11)0.0050 (11)
N20.0406 (14)0.0419 (14)0.0244 (13)0.0053 (11)0.0040 (11)0.0006 (11)
N30.0492 (15)0.0483 (15)0.0279 (14)0.0088 (12)0.0102 (12)0.0038 (12)
N40.082 (3)0.105 (3)0.097 (3)0.035 (2)0.019 (2)0.029 (3)
O10.0476 (12)0.0410 (11)0.0335 (12)0.0098 (9)0.0072 (10)0.0006 (10)
O20.0395 (11)0.0339 (10)0.0228 (10)0.0075 (8)0.0038 (8)0.0046 (8)
O30.128 (3)0.144 (3)0.0396 (17)0.007 (2)0.0108 (17)0.0185 (19)
Zn10.0380 (2)0.0382 (2)0.02344 (19)0.00629 (14)0.00228 (14)0.00205 (14)
Geometric parameters (Å, º) top
C1—N11.321 (4)C11—C121.493 (4)
C1—C21.392 (5)C12—C131.380 (5)
C1—H10.9300C12—C161.381 (5)
C2—C31.353 (5)C13—C141.397 (5)
C2—H20.9300C13—H130.9300
C3—C41.406 (5)C14—N41.305 (6)
C3—H30.9300C14—H140.9300
C4—C91.406 (5)C15—N41.333 (6)
C4—C51.414 (4)C15—C161.379 (5)
C5—N11.365 (4)C15—H150.9300
C5—C61.427 (4)C16—H160.9300
C6—O21.329 (3)N1—Zn1i2.081 (2)
C6—C71.390 (4)N2—N31.392 (3)
C7—C81.423 (4)N2—Zn12.036 (2)
C7—C101.439 (4)O1—Zn12.0329 (19)
C8—C91.341 (4)O2—Zn1i2.0350 (18)
C8—H80.9300O2—Zn12.0605 (18)
C9—H90.9300O3—H3A0.8499
C10—N21.281 (3)O3—H3B0.8502
C10—H100.9300Zn1—O2ii2.0350 (18)
C11—O11.269 (4)Zn1—N1ii2.081 (2)
C11—N31.325 (4)
N1—C1—C2123.2 (3)C12—C13—C14118.2 (4)
N1—C1—H1118.4C12—C13—H13120.9
C2—C1—H1118.4C14—C13—H13120.9
C3—C2—C1119.0 (3)N4—C14—C13125.1 (4)
C3—C2—H2120.5N4—C14—H14117.5
C1—C2—H2120.5C13—C14—H14117.5
C2—C3—C4120.6 (3)N4—C15—C16124.4 (4)
C2—C3—H3119.7N4—C15—H15117.8
C4—C3—H3119.7C16—C15—H15117.8
C9—C4—C3124.5 (3)C15—C16—C12119.0 (4)
C9—C4—C5118.8 (3)C15—C16—H16120.5
C3—C4—C5116.7 (3)C12—C16—H16120.5
N1—C5—C4122.1 (3)C1—N1—C5118.4 (3)
N1—C5—C6117.0 (2)C1—N1—Zn1i130.2 (2)
C4—C5—C6120.8 (3)C5—N1—Zn1i111.07 (17)
O2—C6—C7124.3 (2)C10—N2—N3116.5 (2)
O2—C6—C5117.0 (2)C10—N2—Zn1129.4 (2)
C7—C6—C5118.7 (2)N3—N2—Zn1113.97 (17)
C6—C7—C8118.7 (3)C11—N3—N2109.7 (2)
C6—C7—C10123.9 (3)C14—N4—C15115.7 (4)
C8—C7—C10117.5 (3)C11—O1—Zn1110.12 (18)
C9—C8—C7123.0 (3)C6—O2—Zn1i113.95 (16)
C9—C8—H8118.5C6—O2—Zn1126.71 (17)
C7—C8—H8118.5Zn1i—O2—Zn1114.03 (8)
C8—C9—C4120.0 (3)H3A—O3—H3B113.4
C8—C9—H9120.0O1—Zn1—O2ii102.00 (8)
C4—C9—H9120.0O1—Zn1—N278.35 (9)
N2—C10—C7124.9 (3)O2ii—Zn1—N2164.76 (8)
N2—C10—H10117.6O1—Zn1—O2155.73 (8)
C7—C10—H10117.6O2ii—Zn1—O287.94 (8)
O1—C11—N3126.7 (3)N2—Zn1—O286.34 (8)
O1—C11—C12118.0 (3)O1—Zn1—N1ii97.94 (8)
N3—C11—C12115.3 (3)O2ii—Zn1—N1ii80.24 (8)
C13—C12—C16117.5 (3)N2—Zn1—N1ii114.92 (9)
C13—C12—C11122.9 (3)O2—Zn1—N1ii105.61 (8)
C16—C12—C11119.6 (3)
N1—C1—C2—C30.4 (5)C4—C5—N1—Zn1i174.9 (2)
C1—C2—C3—C40.7 (5)C6—C5—N1—Zn1i5.5 (3)
C2—C3—C4—C9179.5 (3)C7—C10—N2—N3179.0 (3)
C2—C3—C4—C51.0 (5)C7—C10—N2—Zn13.4 (4)
C9—C4—C5—N1179.4 (3)O1—C11—N3—N22.2 (4)
C3—C4—C5—N11.0 (4)C12—C11—N3—N2176.2 (2)
C9—C4—C5—C60.2 (4)C10—N2—N3—C11177.3 (3)
C3—C4—C5—C6179.4 (3)Zn1—N2—N3—C116.4 (3)
N1—C5—C6—O20.4 (4)C13—C14—N4—C150.4 (8)
C4—C5—C6—O2179.2 (2)C16—C15—N4—C142.6 (8)
N1—C5—C6—C7180.0 (2)N3—C11—O1—Zn19.4 (4)
C4—C5—C6—C70.4 (4)C12—C11—O1—Zn1169.0 (2)
O2—C6—C7—C8178.2 (3)C7—C6—O2—Zn1i174.1 (2)
C5—C6—C7—C81.4 (4)C5—C6—O2—Zn1i6.3 (3)
O2—C6—C7—C102.3 (4)C7—C6—O2—Zn121.6 (4)
C5—C6—C7—C10178.1 (3)C5—C6—O2—Zn1158.79 (18)
C6—C7—C8—C92.0 (5)C11—O1—Zn1—O2ii173.51 (18)
C10—C7—C8—C9177.6 (3)C11—O1—Zn1—N29.08 (19)
C7—C8—C9—C41.3 (5)C11—O1—Zn1—O261.1 (3)
C3—C4—C9—C8179.8 (3)C11—O1—Zn1—N1ii104.85 (19)
C5—C4—C9—C80.2 (5)C10—N2—Zn1—O1175.7 (3)
C6—C7—C10—N27.5 (5)N3—N2—Zn1—O18.59 (18)
C8—C7—C10—N2172.0 (3)C10—N2—Zn1—O2ii82.8 (4)
O1—C11—C12—C13163.3 (3)N3—N2—Zn1—O2ii101.5 (3)
N3—C11—C12—C1315.3 (5)C10—N2—Zn1—O214.7 (3)
O1—C11—C12—C1614.5 (4)N3—N2—Zn1—O2169.66 (19)
N3—C11—C12—C16166.9 (3)C10—N2—Zn1—N1ii90.9 (3)
C16—C12—C13—C142.8 (6)N3—N2—Zn1—N1ii84.83 (19)
C11—C12—C13—C14175.1 (3)C6—O2—Zn1—O173.9 (3)
C12—C13—C14—N43.1 (7)Zn1i—O2—Zn1—O1133.61 (16)
N4—C15—C16—C122.7 (7)C6—O2—Zn1—O2ii170.8 (2)
C13—C12—C16—C150.2 (6)Zn1i—O2—Zn1—O2ii18.38 (9)
C11—C12—C16—C15177.8 (4)C6—O2—Zn1—N223.3 (2)
C2—C1—N1—C50.4 (4)Zn1i—O2—Zn1—N2175.75 (10)
C2—C1—N1—Zn1i173.3 (2)C6—O2—Zn1—N1ii91.6 (2)
C4—C5—N1—C10.8 (4)Zn1i—O2—Zn1—N1ii60.89 (11)
C6—C5—N1—C1179.6 (2)
Symmetry codes: (i) y+3/4, x+5/4, z+9/4; (ii) y+5/4, x3/4, z+9/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···N30.852.082.912 (4)168
O3—H3A···O3iii0.851.992.835 (5)173
Symmetry code: (iii) y+5/4, x3/4, z+5/4.

Experimental details

Crystal data
Chemical formula[Zn4(C16H10N4O2)4]·4H2O
Mr1494.66
Crystal system, space groupTetragonal, I41/a
Temperature (K)298
a, c (Å)21.407 (2), 13.626 (3)
V3)6244.1 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.13 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.819, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
16035, 2900, 2324
Rint0.054
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.03
No. of reflections2900
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···N30.852.082.912 (4)168
O3—H3A···O3i0.851.992.835 (5)173
Symmetry code: (i) y+5/4, x3/4, z+5/4.
 

Acknowledgements

This work was supported by the NSFC (Nos. 91027003 and 21072118), the 973 Program (No. 2012CB821705), the PCSIRT, Shangdong Natural Science Foundation (No. JQ200803) and Taishan Scholars' Construction Project Special Fund.

References

First citationBruker (2003). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Zhang, H.-Q., Ma, J.-P., Huang, R.-Q. & Su, C.-Y. (2005). Cryst. Growth Des. 5, 1857–1866.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. C. (2006). Cryst. Growth Des. 6, 1903–1909.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalacios, M. A., Wang, Z., Montes, V. A., Zyryanov, G. V. & Anzenbacher, P. Jr (2008). J. Am. Chem. Soc. 130, 10307–10314.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Zhang, Y., Tong, M.-L., Chen, X.-M., Yuen, T., Lin, C. L., Huang, X. & Li, J. (2002). Chem. Commun. pp. 1342–1343.  Web of Science CSD CrossRef Google Scholar
First citationWoodward, J. D., Backov, R. V., Abboud, K. A. & Talham, D. R. (2006). Polyhedron, 25, 2605–2615.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m727-m728
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds