metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[bis­­(3,5-di­methyl-1H-pyrazol-1-yl-κN2)meth­yl]pyridine-κN}cobalt(II) dinitrate

aKey Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: nkbenbenyi@hotmail.com

(Received 22 April 2012; accepted 11 May 2012; online 31 May 2012)

The central CoII ion in the title complex, [Co(C16H19N5)2](NO3)2, is located on a twofold rotation axis and has a slightly distorted octa­hedral coordination sphere. It is bonded to six N atoms from two 2-[bis­(3,5-dimethyl-1H-pyrazol-1-yl)meth­yl]pyridine ligands. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions.

Related literature

For potential applications of similar rigid ligands in electrochemistry, see: Morin et al. (2011[Morin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). J. Chem. Soc. Dalton Trans. 40, 8024-8034.]), in catalysis, see: Zhang et al. (2009[Zhang, J., Li, A. F. & Andy Hor, T. S. (2009). Dalton Trans. pp. 9327-9333.]), and for their fluxional behaviour, see: Otten et al. (2009[Otten, E., Batinas, A. A., Meetsma, A. & Hessen, B. (2009). J. Am. Chem. Soc. 131, 5298-5312.]); Arroyo et al. (2000[Arroyo, N., Torre, F. G., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174-184.]). For N-heterocyclic rigid scorpion-type ligands, see: Reger et al. (2005[Reger, D. L., Gardinier, J. R., Christian Grattan, T. & Smith, M. D. (2005). J. Organomet. Chem. 690, 1901-1912.]); Liu et al. (2011[Liu, J.-C., Guo, G.-Z., Xiao, C.-H., Song, X.-Y. & Li, M. (2011). Acta Cryst. E67, m1691.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H19N5)2](NO3)2

  • Mr = 745.67

  • Monoclinic, I 2/a

  • a = 17.700 (14) Å

  • b = 10.965 (9) Å

  • c = 18.37 (2) Å

  • β = 90.431 (6)°

  • V = 3565 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.805, Tmax = 0.841

  • 8860 measured reflections

  • 3297 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.10

  • 3297 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.45 3.345 (6) 162
C5—H5A⋯O2ii 0.96 2.56 3.405 (7) 147
C10—H10B⋯O3iii 0.96 2.56 3.498 (7) 167
C10—H10C⋯O3ii 0.96 2.29 3.197 (7) 156
C12—H12⋯O1iv 0.93 2.39 3.193 (6) 145
C13—H13⋯O1v 0.93 2.57 3.286 (7) 134
C14—H14⋯O3ii 0.93 2.47 3.322 (6) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rigid ligands have captivated attention not only because of their various coordination possibilities and high structural stability, but also because of their potential applications in electrochemistry (Morin et al., 2011), catalysis (Zhang et al., 2009), and fluxional behaviour (Otten et al., 2009; Arroyo et al., 2000). In addition, N-heterocyclic rigid scorpion-type ligands have attracted increased attention due to their nitrogen coordination sites (Reger et al., 2005; Liu et al., 2011). Herein, we report on the synthesis and crystal structure the title complex, [CO(bpz*mpy)2](NO3)2, synthesized by the reaction of 2-(bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (bpz*mpy), with Co(NO3).6H2O.

The molecular structure of the title complex is shown in Fig. 1. The Co atom is situated on a twofold rotation axis and is coordinated by 6 N- atoms from two (bpz*mpy) ligands. The Co—N bond lengths range from 2.131 (2) to 2.149 (3) Å, hence the central cobalt ion has a slightly distorted octahedral coordination sphere.

In the crystal, molecules are linked by weak C—H···O interactions (Table 1 and Fig. 2).

Related literature top

For potential applications of similar rigid ligands in electrochemistry, see: Morin et al. (2011), in catalysis, see: Zhang et al. (2009), and for their fluxional behaviour, see: Otten et al. (2009); Arroyo et al. (2000). For N-heterocyclic rigid scorpion-type ligands, see: Reger et al. (2005); Liu et al. (2011).

Experimental top

To a solution of 2-(bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (0.2 mmol, 56.3 mg) in 10 ml of methanol, Co(NO3).6H2O (0.1 mmol, 29.1 mg) was added. The solution was stirred at r.t. for 30 min. Yellow and block-like crystals were obtained by evaporation after one week [Yield: 46 wt%].

Refinement top

All the H atoms were included in calculated position and refined in the riding-model approximation: C—H = 0.93, 0.96 and 0.98 Å CH(aromatic), CH3 and CH(methine), respectively, with Uiso(H)= k ×Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level [only one of the nitrate anions is shown; H atoms have been omitted for clarity].
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Weak C-H···O and C-H···N interaction are shown as dashed lines.
Bis{2-[bis(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]pyridine- κN}cobalt(II) dinitrate top
Crystal data top
[Co(C16H19N5)2](NO3)2F(000) = 1556
Mr = 745.67Dx = 1.389 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 3198 reflections
a = 17.700 (14) Åθ = 3.1–25.0°
b = 10.965 (9) ŵ = 0.54 mm1
c = 18.37 (2) ÅT = 296 K
β = 90.431 (6)°Block, yellow
V = 3565 (6) Å30.40 × 0.36 × 0.32 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3297 independent reflections
Radiation source: fine-focus sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2120
Tmin = 0.805, Tmax = 0.841k = 1313
8860 measured reflectionsl = 2214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.048P)2 + 5.1694P]
where P = (Fo2 + 2Fc2)/3
3297 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Co(C16H19N5)2](NO3)2V = 3565 (6) Å3
Mr = 745.67Z = 4
Monoclinic, I2/aMo Kα radiation
a = 17.700 (14) ŵ = 0.54 mm1
b = 10.965 (9) ÅT = 296 K
c = 18.37 (2) Å0.40 × 0.36 × 0.32 mm
β = 90.431 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3297 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2334 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.841Rint = 0.033
8860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.10Δρmax = 0.46 e Å3
3297 reflectionsΔρmin = 0.40 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.250000.48144 (5)0.500000.0385 (2)
N10.30500 (13)0.4768 (2)0.39615 (13)0.0435 (8)
N20.25949 (14)0.4837 (2)0.33569 (13)0.0437 (8)
N30.17509 (14)0.6129 (2)0.45372 (14)0.0471 (9)
N40.15529 (14)0.5976 (2)0.38206 (14)0.0440 (9)
N50.17558 (14)0.3508 (2)0.45023 (13)0.0408 (8)
C10.37561 (18)0.4765 (3)0.37070 (18)0.0493 (11)
C20.3744 (2)0.4835 (3)0.2951 (2)0.0619 (14)
C30.3009 (2)0.4882 (3)0.27378 (18)0.0570 (11)
C40.4428 (2)0.4700 (4)0.4198 (2)0.0730 (15)
C50.2655 (3)0.4970 (5)0.1993 (2)0.098 (2)
C60.14640 (19)0.7205 (3)0.4735 (2)0.0584 (14)
C70.1088 (2)0.7730 (3)0.4140 (3)0.0724 (16)
C80.11550 (19)0.6944 (3)0.3566 (2)0.0604 (14)
C90.1552 (3)0.7711 (4)0.5482 (2)0.0830 (17)
C100.0875 (3)0.7046 (4)0.2799 (3)0.096 (2)
C110.1499 (2)0.2504 (3)0.48366 (18)0.0521 (11)
C120.0989 (2)0.1722 (3)0.4522 (2)0.0626 (14)
C130.0733 (2)0.1950 (3)0.3826 (2)0.0647 (14)
C140.09957 (19)0.2970 (3)0.34717 (18)0.0532 (11)
C150.14991 (16)0.3725 (3)0.38241 (15)0.0378 (9)
C160.17815 (17)0.4864 (3)0.34485 (16)0.0411 (9)
O10.9501 (3)0.9744 (3)0.40558 (19)0.1213 (19)
O20.8920 (2)0.8352 (4)0.3465 (2)0.137 (2)
O30.9660 (2)0.9549 (3)0.29408 (17)0.1124 (15)
N60.93398 (18)0.9236 (3)0.34876 (17)0.0573 (11)
H20.416200.484700.264700.0740*
H4A0.428600.493400.468200.1090*
H4B0.481200.524300.402500.1090*
H4C0.462000.388100.420500.1090*
H5A0.236100.425100.189800.1460*
H5B0.304400.504000.163400.1460*
H5C0.233400.567500.197000.1460*
H70.083900.847600.413600.0870*
H9A0.169300.706900.581200.1250*
H9B0.108300.806400.563400.1250*
H9C0.193800.832600.548300.1250*
H10A0.129700.713000.247700.1430*
H10B0.055300.774700.275400.1430*
H10C0.059500.632600.267300.1430*
H110.167600.233200.530300.0630*
H120.081800.104400.477600.0750*
H130.039000.142800.360000.0770*
H140.083500.314600.300000.0640*
H160.155300.488200.296100.0490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0381 (3)0.0442 (3)0.0330 (3)0.00000.0040 (2)0.0000
N10.0362 (14)0.0570 (16)0.0372 (14)0.0025 (11)0.0030 (11)0.0051 (12)
N20.0422 (14)0.0556 (16)0.0332 (14)0.0038 (12)0.0014 (11)0.0093 (12)
N30.0456 (15)0.0466 (16)0.0491 (17)0.0057 (12)0.0076 (12)0.0009 (12)
N40.0404 (14)0.0433 (15)0.0480 (16)0.0011 (11)0.0096 (12)0.0079 (12)
N50.0487 (15)0.0442 (15)0.0296 (13)0.0063 (11)0.0017 (11)0.0055 (11)
C10.0429 (18)0.0565 (19)0.0487 (19)0.0004 (15)0.0063 (15)0.0060 (16)
C20.054 (2)0.080 (3)0.052 (2)0.0016 (18)0.0191 (17)0.0083 (18)
C30.065 (2)0.068 (2)0.0382 (18)0.0038 (18)0.0082 (16)0.0114 (16)
C40.0379 (19)0.102 (3)0.079 (3)0.0016 (19)0.0014 (18)0.005 (2)
C50.097 (3)0.159 (5)0.037 (2)0.004 (3)0.005 (2)0.020 (3)
C60.051 (2)0.047 (2)0.077 (3)0.0039 (16)0.0050 (18)0.0030 (18)
C70.054 (2)0.042 (2)0.121 (4)0.0073 (16)0.016 (2)0.010 (2)
C80.050 (2)0.047 (2)0.084 (3)0.0003 (16)0.0178 (19)0.0205 (19)
C90.092 (3)0.063 (3)0.094 (3)0.020 (2)0.003 (3)0.023 (2)
C100.108 (4)0.077 (3)0.101 (4)0.005 (3)0.052 (3)0.031 (3)
C110.071 (2)0.0503 (19)0.0351 (18)0.0071 (17)0.0008 (16)0.0088 (15)
C120.081 (3)0.052 (2)0.055 (2)0.0218 (19)0.0063 (19)0.0017 (17)
C130.076 (3)0.061 (2)0.057 (2)0.0229 (19)0.004 (2)0.0063 (18)
C140.057 (2)0.060 (2)0.0425 (19)0.0131 (17)0.0052 (16)0.0012 (16)
C150.0388 (16)0.0419 (16)0.0326 (16)0.0018 (12)0.0008 (13)0.0026 (13)
C160.0446 (17)0.0462 (17)0.0324 (15)0.0060 (13)0.0084 (13)0.0086 (13)
O10.212 (5)0.093 (2)0.059 (2)0.021 (3)0.018 (2)0.0085 (18)
O20.152 (4)0.151 (4)0.107 (3)0.085 (3)0.006 (3)0.013 (3)
O30.151 (3)0.129 (3)0.0576 (19)0.058 (3)0.021 (2)0.0059 (19)
N60.069 (2)0.0579 (18)0.0448 (19)0.0007 (16)0.0044 (15)0.0120 (15)
Geometric parameters (Å, º) top
Co1—N12.149 (3)C8—C101.494 (7)
Co1—N32.131 (3)C11—C121.370 (5)
Co1—N52.146 (3)C12—C131.376 (5)
Co1—N1i2.149 (3)C13—C141.377 (5)
Co1—N3i2.131 (3)C14—C151.375 (5)
Co1—N5i2.146 (3)C15—C161.514 (5)
O1—N61.215 (5)C2—H20.9300
O2—N61.222 (5)C4—H4A0.9600
O3—N61.207 (5)C4—H4B0.9600
N1—N21.369 (4)C4—H4C0.9600
N1—C11.338 (4)C5—H5C0.9600
N2—C31.359 (4)C5—H5A0.9600
N2—C161.451 (4)C5—H5B0.9600
N3—N41.370 (4)C7—H70.9300
N3—C61.336 (4)C9—H9A0.9600
N4—C161.457 (4)C9—H9B0.9600
N4—C81.355 (4)C9—H9C0.9600
N5—C111.342 (4)C10—H10A0.9600
N5—C151.344 (4)C10—H10B0.9600
C1—C21.391 (5)C10—H10C0.9600
C1—C41.489 (5)C11—H110.9300
C2—C31.357 (5)C12—H120.9300
C3—C51.504 (5)C13—H130.9300
C6—C71.399 (6)C14—H140.9300
C6—C91.487 (5)C16—H160.9800
C7—C81.368 (6)
N1—Co1—N386.93 (9)C11—C12—C13119.3 (3)
N1—Co1—N583.49 (9)C12—C13—C14118.5 (3)
N1—Co1—N1i177.29 (9)C13—C14—C15119.1 (3)
N1—Co1—N3i94.91 (9)C14—C15—C16119.8 (3)
N1—Co1—N5i94.69 (9)N5—C15—C16117.3 (3)
N3—Co1—N584.46 (9)N5—C15—C14122.9 (3)
N1i—Co1—N394.91 (9)N2—C16—N4110.5 (2)
N3—Co1—N3i94.88 (9)N2—C16—C15111.6 (2)
N3—Co1—N5i178.29 (9)N4—C16—C15112.5 (2)
N1i—Co1—N594.69 (9)C1—C2—H2126.00
N3i—Co1—N5178.29 (9)C3—C2—H2126.00
N5—Co1—N5i96.25 (9)C1—C4—H4C110.00
N1i—Co1—N3i86.93 (9)H4A—C4—H4C109.00
N1i—Co1—N5i83.49 (9)H4B—C4—H4C109.00
N3i—Co1—N5i84.46 (9)H4A—C4—H4B109.00
Co1—N1—N2116.82 (17)C1—C4—H4A110.00
Co1—N1—C1137.8 (2)C1—C4—H4B110.00
N2—N1—C1105.2 (2)H5A—C5—H5B109.00
N1—N2—C3111.3 (2)H5A—C5—H5C109.00
N1—N2—C16119.0 (2)H5B—C5—H5C109.00
C3—N2—C16129.7 (3)C3—C5—H5A110.00
Co1—N3—N4117.03 (17)C3—C5—H5B110.00
Co1—N3—C6136.5 (2)C3—C5—H5C110.00
N4—N3—C6105.9 (2)C6—C7—H7126.00
N3—N4—C8111.4 (2)C8—C7—H7126.00
N3—N4—C16118.9 (2)C6—C9—H9A109.00
C8—N4—C16129.7 (3)H9A—C9—H9C109.00
Co1—N5—C11124.2 (2)H9B—C9—H9C109.00
Co1—N5—C15118.61 (19)C6—C9—H9C109.00
C11—N5—C15117.1 (3)H9A—C9—H9B109.00
O1—N6—O2122.1 (4)C6—C9—H9B110.00
O1—N6—O3118.4 (4)C8—C10—H10A110.00
O2—N6—O3119.1 (3)C8—C10—H10B109.00
C2—C1—C4127.9 (3)H10B—C10—H10C109.00
N1—C1—C4122.2 (3)H10A—C10—H10C109.00
N1—C1—C2110.0 (3)C8—C10—H10C109.00
C1—C2—C3107.3 (3)H10A—C10—H10B110.00
C2—C3—C5131.1 (4)N5—C11—H11118.00
N2—C3—C5122.7 (3)C12—C11—H11119.00
N2—C3—C2106.2 (3)C11—C12—H12120.00
N3—C6—C7109.3 (3)C13—C12—H12120.00
N3—C6—C9122.9 (3)C12—C13—H13121.00
C7—C6—C9127.8 (3)C14—C13—H13121.00
C6—C7—C8107.4 (3)C15—C14—H14120.00
C7—C8—C10130.5 (3)C13—C14—H14120.00
N4—C8—C7106.0 (3)N2—C16—H16107.00
N4—C8—C10123.5 (3)N4—C16—H16107.00
N5—C11—C12123.0 (3)C15—C16—H16107.00
N3—Co1—N1—N238.51 (18)C6—N3—N4—C80.7 (3)
N3—Co1—N1—C1136.0 (3)N4—N3—C6—C70.3 (3)
N5—Co1—N1—N246.26 (18)Co1—N3—C6—C99.4 (5)
N5—Co1—N1—C1139.3 (3)C6—N3—N4—C16179.3 (3)
N3i—Co1—N1—N2133.15 (18)Co1—N3—N4—C8172.3 (2)
N3i—Co1—N1—C141.3 (3)Co1—N3—C6—C7170.7 (2)
N5i—Co1—N1—N2142.02 (18)Co1—N3—N4—C167.7 (3)
N5i—Co1—N1—C143.5 (3)N4—N3—C6—C9179.7 (3)
N1—Co1—N3—N436.26 (19)C8—N4—C16—C15122.9 (3)
N1—Co1—N3—C6133.9 (3)N3—N4—C8—C10178.8 (3)
N5—Co1—N3—N447.50 (19)N3—N4—C16—N268.3 (3)
N5—Co1—N3—C6142.3 (3)N3—N4—C8—C70.9 (4)
N1i—Co1—N3—N4141.75 (19)C16—N4—C8—C7179.2 (3)
N1i—Co1—N3—C648.1 (3)N3—N4—C16—C1557.1 (3)
N3i—Co1—N3—N4130.92 (19)C8—N4—C16—N2111.6 (3)
N3i—Co1—N3—C639.3 (3)C16—N4—C8—C101.1 (5)
N1—Co1—N5—C11137.7 (3)C11—N5—C15—C16179.4 (3)
N1—Co1—N5—C1545.4 (2)Co1—N5—C15—C162.3 (3)
N3—Co1—N5—C11134.8 (3)C15—N5—C11—C120.9 (5)
N3—Co1—N5—C1542.1 (2)C11—N5—C15—C140.1 (4)
N1i—Co1—N5—C1140.3 (3)Co1—N5—C15—C14177.2 (2)
N1i—Co1—N5—C15136.6 (2)Co1—N5—C11—C12176.0 (3)
N5i—Co1—N5—C1143.7 (3)C4—C1—C2—C3179.7 (4)
N5i—Co1—N5—C15139.5 (2)N1—C1—C2—C30.0 (4)
Co1—N1—N2—C3175.87 (19)C1—C2—C3—N20.2 (4)
Co1—N1—N2—C163.6 (3)C1—C2—C3—C5179.7 (4)
C1—N1—N2—C30.3 (3)N3—C6—C7—C80.3 (4)
C1—N1—N2—C16179.7 (3)C9—C6—C7—C8179.8 (4)
N2—N1—C1—C4179.9 (3)C6—C7—C8—C10179.0 (4)
Co1—N1—C1—C2174.7 (2)C6—C7—C8—N40.7 (4)
N2—N1—C1—C20.2 (3)N5—C11—C12—C131.3 (5)
Co1—N1—C1—C45.0 (5)C11—C12—C13—C140.6 (5)
C3—N2—C16—C15120.1 (3)C12—C13—C14—C150.3 (5)
N1—N2—C16—C1560.6 (3)C13—C14—C15—C16178.8 (3)
N1—N2—C3—C20.3 (3)C13—C14—C15—N50.7 (5)
C16—N2—C3—C50.2 (5)N5—C15—C16—N261.6 (3)
N1—N2—C3—C5179.6 (3)C14—C15—C16—N2119.0 (3)
C3—N2—C16—N4113.9 (3)C14—C15—C16—N4116.2 (3)
C16—N2—C3—C2179.6 (3)N5—C15—C16—N463.3 (3)
N1—N2—C16—N465.4 (3)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3ii0.932.453.345 (6)162
C5—H5A···O2iii0.962.563.405 (7)147
C10—H10B···O3iv0.962.563.498 (7)167
C10—H10C···O3iii0.962.293.197 (7)156
C12—H12···O1v0.932.393.193 (6)145
C13—H13···O1vi0.932.573.286 (7)134
C14—H14···O3iii0.932.473.322 (6)152
Symmetry codes: (ii) x+3/2, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Co(C16H19N5)2](NO3)2
Mr745.67
Crystal system, space groupMonoclinic, I2/a
Temperature (K)296
a, b, c (Å)17.700 (14), 10.965 (9), 18.37 (2)
β (°) 90.431 (6)
V3)3565 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.40 × 0.36 × 0.32
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.805, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
8860, 3297, 2334
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.10
No. of reflections3297
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.453.345 (6)162
C5—H5A···O2ii0.962.563.405 (7)147
C10—H10B···O3iii0.962.563.498 (7)167
C10—H10C···O3ii0.962.293.197 (7)156
C12—H12···O1iv0.932.393.193 (6)145
C13—H13···O1v0.932.573.286 (7)134
C14—H14···O3ii0.932.473.322 (6)152
Symmetry codes: (i) x+3/2, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x1, y1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Gansu (No. 0710RJZA113).

References

First citationArroyo, N., Torre, F. G., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, J.-C., Guo, G.-Z., Xiao, C.-H., Song, X.-Y. & Li, M. (2011). Acta Cryst. E67, m1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). J. Chem. Soc. Dalton Trans. 40, 8024–8034.  CrossRef CAS Google Scholar
First citationOtten, E., Batinas, A. A., Meetsma, A. & Hessen, B. (2009). J. Am. Chem. Soc. 131, 5298–5312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReger, D. L., Gardinier, J. R., Christian Grattan, T. & Smith, M. D. (2005). J. Organomet. Chem. 690, 1901–1912.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Li, A. F. & Andy Hor, T. S. (2009). Dalton Trans. pp. 9327–9333.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds