organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Meth­­oxy-2-[(5-meth­­oxy-1H-indol-1-yl)carbon­yl]-1H-indole

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 May 2012; accepted 7 May 2012; online 19 May 2012)

The asymmetric unit of the title compound, C19H16N2O3, comprises three independent mol­ecules (A, B and C). The inversion-related molecule of A is virtually superimposable upon the other two molecules. In each mol­ecule, there is a twist in the link between the approximately syn carbonyl and amine groups [the N—C—C—O torsion angles range from 19.73 (19) to −21.2 (2)°]. Each mol­ecule has a bent shape quanti­fied in terms of the dihedral angle between the indole and indole fused-ring systems [range = 45.69 (5)–47.91 (5)°]. In the crystal, the A and B mol­ecules form dimeric aggregates via ten-membered {⋯HNC2O}2 synthons, while the C mol­ecules self-associate similarly but about a centre of inversion.

Related literature

For background to melatonin and melatonin preparations, see: Barrenetxe et al. (2004[Barrenetxe, J., Delagrange, P. & Martinez, J. A. (2004). J. Physiol. Biochem. 60, 61-72.]); Williamson et al. (1998[Williamson, B. L., Tomlinson, A. J., Mishra, P. K., Gleich, G. J. & Naylor, S. (1998). Chem. Res. Toxicol. 11, 234-240.]). For background to melatonin receptor ligands, see: Bedini et al. (2006[Bedini, A., Spadoni, G., Gatti, G., Lucarini, S., Tarzia, G., Rivara, S., Lorenzi, S., Lodola, A., Mor, M., Lucini, V., Pannacci, M. & Scaglione, F. (2006). J. Med. Chem. 49, 7393-7403.]); Attia et al. (2008[Attia, M. I., Witt-Enderby, P. A. & Julius, J. (2008). Bioorg. Med. Chem. 16, 7654-7661.]). For a related structure, see: Attia et al. (2012[Attia, M. I., El-Brollosy, N. R., Ghabbour, H. A., Arshad, S. & Fun, H.-K. (2012). Acta Cryst. E68, o971.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O3

  • Mr = 320.34

  • Triclinic, [P \overline 1]

  • a = 11.3153 (4) Å

  • b = 12.1183 (5) Å

  • c = 17.1300 (6) Å

  • α = 76.251 (3)°

  • β = 79.747 (3)°

  • γ = 88.913 (3)°

  • V = 2244.50 (15) Å3

  • Z = 6

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.367, Tmax = 1.000

  • 17372 measured reflections

  • 9182 independent reflections

  • 7534 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.02

  • 9182 reflections

  • 661 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O5 0.91 (2) 1.98 (2) 2.8536 (16) 159 (2)
N3—H3n⋯O2 0.91 (2) 1.97 (2) 2.8384 (16) 159.0 (19)
N5—H5n⋯O8i 0.90 (2) 2.00 (2) 2.8796 (15) 163.9 (19)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Melatonin (N-acetyl-5-methoxytryptamine, MLT) is primarily produced by the pineal gland in the brain with a marked circadian rhythm normally peaking in the dark to regulate sleep patterns (Barrenetxe et al., 2004). It has been reported that commercial melatonin preparations contain N-{2-[1-({3-[2-(acetylamino)ethyl]-5-methoxy-1H-indol-2-yl}-methyl)-5-methoxy-1H-indol-3-yl]ethyl}acetamide (1) as a contaminant (Williamson et al., 1998). The title compound, namely (5-methoxy-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)methanone (I), can be elaborated to give compound 1, in four steps. The synthesis of compound 1 on a preparative scale is required for the development of an analytical method for the determination of MLT in the presence of this contaminant in commercial MLT preparations. Herein, the crystal and molecular structure of the title compound (I) is described in continuation of on-going studies of melatonin receptor ligands (Bedini et al., 2006; Attia et al., 2008; Attia et al., 2012).

Three crystallographically independent molecules comprises the asymmetric unit of the title compound (I), Fig. 1. In each molecule there is a twist in the link between the carbonyl and amine groups but, each of these is approximately syn with the N1—C9—C10—O2, N3—C28—C29—O5 and N5—C47—C48—O8 torsion angles being 19.73 (19), -20.34 (19) and -21.2 (2)°, respectively. Each molecule has a bent shape quantified in terms of the dihedral angle between the indole and indonyl fused ring systems. For the N1-containing molecule this angle is 45.69 (5)° which compares to 45.86 (5) and 47.91 (5)° in the other two molecules. If the inversion-related N1-containing molecule is overlapped with the N2- and N3-containing molecules, it can be seen that all three molecules are virtually superimposable, as shown in Fig. 2. The major differences are apparent in the relative orientations of the terminal methoxy groups of the indonyl rings. In the N1- and N-3 containing molecules, the methyl group is orientated in almost the opposite direction to that seen in the N2-containing molecule. Further, in the N3-containing molecule, the methoxy group is slightly twisted out of the plane of the benzene ring to which it is connected. This is quantified in the values of the C16—C17—O3—C19, C35—C36—O6—C37 and C54—C55—O9—C57 torsion angles of -179.18 (14), 0.06 (2) and 168.68 (13)°, respectively.

In the crystal, the N1- and N2-containing molecules associate via NH···O(carbonyl) hydrogen bonds to form dimeric aggregates via 10-membered {···HNC2O}2 synthons, Fig. 3. The N3-containing molecules self-associate similarly but about a centre of inversion. Molecules assemble into a three-dimensional architecture via ππ interactions with the closest of these occurring between five-membered (N2,C11–C14) and six-membered C32–C37 rings [inter-centroid distance = 3.5307 (9) Å for symmetry operation (i) = -x+1, -y+1, -z+1].

Related literature top

For background to melatonin and melatonin preparations, see: Barrenetxe et al. (2004); Williamson et al. (1998). For background to melatonin receptor ligands, see: Bedini et al. (2006); Attia et al. (2008). For a related structure, see: Attia et al. (2012).

Experimental top

A mixture of (5-methoxy-2,3-dihydro-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)- methanone (0.20 g, 0.62 mmol) and 2,3-dichloro-5,6-dicyanobenzoquinone (0.19 g, 0.68 mmol) in ethyl acetate (30 ml) was heated at reflux temperature for 18 h. The reaction mixture was evaporated under reduced pressure and the residue was purified by silica gel chromatography (chloroform/methanol/ammonia, 10:1:0.1) to furnish 0.19 g (96%) of (5-methoxy-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)methanone as a light-red powder which was recrystallized from ethanol to give colourless crystals of the title compound (I); M.pt: 451–452 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were refined freely. The (5 11 17) reflection was omitted owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Qmol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I), showing the atom-labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the N1- (red), N3- (green) and N5- (blue) containing molecules in (I) aligned so that the central amide residues are coincident.
[Figure 3] Fig. 3. A view of a dimeric aggregate in (I) sustained by N—H···O hydrogen bonds, shown as blue dashed lines.
5-Methoxy-2-[(5-methoxy-1H-indol-1-yl)carbonyl]-1H-indole top
Crystal data top
C19H16N2O3Z = 6
Mr = 320.34F(000) = 1008
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 11.3153 (4) ÅCell parameters from 7164 reflections
b = 12.1183 (5) Åθ = 2.7–76.2°
c = 17.1300 (6) ŵ = 0.80 mm1
α = 76.251 (3)°T = 100 K
β = 79.747 (3)°Plate, colourless
γ = 88.913 (3)°0.30 × 0.20 × 0.02 mm
V = 2244.50 (15) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9182 independent reflections
Radiation source: SuperNova (Mo) X-ray Source7534 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 76.4°, θmin = 2.7°
ω scanh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1015
Tmin = 0.367, Tmax = 1.000l = 2121
17372 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.3331P]
where P = (Fo2 + 2Fc2)/3
9182 reflections(Δ/σ)max < 0.001
661 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H16N2O3γ = 88.913 (3)°
Mr = 320.34V = 2244.50 (15) Å3
Triclinic, P1Z = 6
a = 11.3153 (4) ÅCu Kα radiation
b = 12.1183 (5) ŵ = 0.80 mm1
c = 17.1300 (6) ÅT = 100 K
α = 76.251 (3)°0.30 × 0.20 × 0.02 mm
β = 79.747 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9182 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
7534 reflections with I > 2σ(I)
Tmin = 0.367, Tmax = 1.000Rint = 0.029
17372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
9182 reflectionsΔρmin = 0.30 e Å3
661 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87563 (11)0.89787 (9)0.11597 (6)0.0252 (2)
O20.71161 (10)0.56194 (8)0.59096 (7)0.0228 (2)
O30.72114 (11)0.68238 (10)0.93945 (7)0.0270 (2)
O40.45990 (10)0.07927 (9)0.91666 (6)0.0247 (2)
O50.59785 (10)0.42667 (8)0.44330 (6)0.0220 (2)
O60.62516 (11)0.29566 (9)0.09143 (6)0.0261 (2)
O70.92792 (11)0.40367 (9)0.10246 (7)0.0279 (2)
O80.91510 (10)0.07096 (8)0.57278 (7)0.0252 (2)
O90.81693 (11)0.19031 (9)0.92812 (7)0.0278 (2)
N10.71116 (11)0.64193 (10)0.42505 (8)0.0187 (2)
N20.71456 (10)0.74048 (9)0.61092 (7)0.0173 (2)
N30.60355 (11)0.34591 (10)0.60844 (7)0.0178 (2)
N40.60440 (10)0.24863 (9)0.42172 (7)0.0165 (2)
N50.97901 (11)0.14977 (10)0.40478 (8)0.0210 (2)
N60.91034 (11)0.24988 (9)0.59292 (8)0.0192 (2)
C10.92781 (15)1.00741 (13)0.10623 (9)0.0258 (3)
H1A0.95281.04250.04790.039*
H1B0.99791.00000.13330.039*
H1C0.86861.05510.13080.039*
C20.74608 (12)0.69609 (11)0.34483 (9)0.0178 (3)
C30.73470 (13)0.66026 (12)0.27422 (9)0.0206 (3)
H3A0.69740.58940.27740.025*
C40.78003 (13)0.73241 (12)0.20039 (9)0.0214 (3)
H40.77350.71080.15150.026*
C50.83610 (13)0.83791 (12)0.19513 (9)0.0208 (3)
C60.84677 (12)0.87432 (11)0.26392 (9)0.0183 (3)
H60.88380.94560.25990.022*
C70.80051 (12)0.80150 (11)0.34081 (9)0.0174 (3)
C80.79569 (12)0.80978 (11)0.42263 (9)0.0176 (3)
H80.82520.87140.43970.021*
C90.73965 (12)0.71070 (11)0.47286 (9)0.0174 (3)
C100.72046 (12)0.66481 (11)0.56109 (9)0.0175 (3)
C110.67545 (12)0.85333 (11)0.59257 (9)0.0187 (3)
H110.66280.89470.54030.022*
C120.65860 (13)0.89380 (11)0.66068 (9)0.0193 (3)
H120.63270.96770.66440.023*
C130.68686 (12)0.80492 (11)0.72678 (9)0.0180 (3)
C140.72090 (12)0.71065 (11)0.69460 (9)0.0171 (3)
C150.75692 (12)0.61024 (11)0.74267 (9)0.0194 (3)
H150.78170.54720.72030.023*
C160.75493 (13)0.60653 (12)0.82426 (9)0.0213 (3)
H160.77890.53940.85860.026*
C170.71818 (13)0.69985 (13)0.85763 (9)0.0210 (3)
C180.68459 (13)0.79993 (12)0.80932 (9)0.0204 (3)
H180.66070.86320.83160.024*
C190.68398 (19)0.77366 (16)0.97647 (11)0.0368 (4)
H19A0.69010.75171.03450.055*
H19B0.60050.79150.97110.055*
H19C0.73570.84070.94930.055*
C200.39862 (14)0.02612 (13)0.92700 (9)0.0248 (3)
H20A0.37920.06340.98530.037*
H20B0.45010.07510.89820.037*
H20C0.32430.01240.90470.037*
C210.57271 (12)0.29019 (11)0.68871 (9)0.0172 (3)
C220.58362 (13)0.32549 (11)0.75945 (9)0.0189 (3)
H220.61690.39810.75640.023*
C230.54416 (13)0.25078 (12)0.83326 (9)0.0204 (3)
H230.55080.27210.88220.024*
C240.49362 (13)0.14248 (12)0.83807 (9)0.0187 (3)
C250.48224 (12)0.10716 (11)0.76895 (8)0.0175 (3)
H250.44800.03470.77260.021*
C260.52316 (12)0.18238 (11)0.69255 (8)0.0166 (3)
C270.52691 (12)0.17516 (11)0.61035 (8)0.0169 (3)
H270.49990.11270.59300.020*
C280.57739 (12)0.27657 (11)0.56054 (8)0.0166 (3)
C290.59421 (12)0.32370 (11)0.47242 (8)0.0172 (3)
C300.64991 (13)0.13806 (11)0.43902 (9)0.0191 (3)
H300.66160.09640.49140.023*
C310.67440 (12)0.10014 (11)0.36993 (9)0.0191 (3)
H310.70520.02790.36560.023*
C320.64556 (12)0.18867 (11)0.30381 (9)0.0176 (3)
C330.60260 (12)0.28048 (11)0.33724 (8)0.0163 (3)
C340.56364 (12)0.37893 (11)0.28954 (9)0.0179 (3)
H340.53320.43980.31270.022*
C350.57070 (12)0.38537 (12)0.20640 (9)0.0193 (3)
H350.54480.45170.17230.023*
C360.61554 (13)0.29522 (12)0.17255 (9)0.0201 (3)
C370.65297 (12)0.19634 (12)0.22104 (9)0.0197 (3)
H370.68300.13530.19790.024*
C380.58807 (15)0.39437 (14)0.03902 (9)0.0278 (3)
H38A0.59940.38400.01680.042*
H38B0.63620.46030.04000.042*
H38C0.50300.40700.05780.042*
C390.87551 (14)0.51225 (13)0.09507 (10)0.0265 (3)
H39A0.87350.54660.03740.040*
H39B0.92340.56110.11630.040*
H39C0.79350.50400.12640.040*
C400.97262 (12)0.20264 (12)0.32586 (9)0.0204 (3)
C411.00957 (13)0.16588 (12)0.25382 (10)0.0226 (3)
H411.04550.09420.25480.027*
C420.99184 (13)0.23744 (12)0.18191 (10)0.0240 (3)
H421.01650.21490.13210.029*
C430.93764 (13)0.34427 (12)0.18016 (10)0.0227 (3)
C440.90086 (12)0.38164 (12)0.25020 (9)0.0205 (3)
H440.86480.45340.24840.025*
C450.91865 (12)0.30930 (11)0.32534 (9)0.0192 (3)
C460.89379 (12)0.31841 (12)0.40774 (9)0.0203 (3)
H460.85770.38070.42690.024*
C470.93202 (12)0.21964 (12)0.45500 (9)0.0200 (3)
C480.91909 (12)0.17394 (12)0.54301 (9)0.0202 (3)
C490.96108 (13)0.36113 (11)0.57014 (10)0.0216 (3)
H490.98990.40220.51560.026*
C500.96235 (13)0.40024 (11)0.63750 (9)0.0213 (3)
H500.99160.47280.63840.026*
C510.91153 (12)0.31241 (11)0.70786 (9)0.0196 (3)
C520.87999 (12)0.22017 (11)0.67885 (9)0.0189 (3)
C530.82490 (12)0.12172 (12)0.73196 (10)0.0214 (3)
H530.80140.06020.71210.026*
C540.80601 (13)0.11751 (12)0.81456 (10)0.0227 (3)
H540.76830.05170.85210.027*
C550.84108 (13)0.20794 (12)0.84477 (9)0.0223 (3)
C560.89355 (13)0.30686 (12)0.79158 (9)0.0212 (3)
H560.91640.36860.81150.025*
C570.86969 (15)0.26861 (13)0.96288 (10)0.0278 (3)
H57A0.84590.24711.02250.042*
H57B0.84210.34530.94190.042*
H57C0.95740.26730.94820.042*
H1n0.671 (2)0.5735 (19)0.4445 (14)0.038 (6)*
H3n0.6380 (19)0.4170 (18)0.5893 (13)0.028 (5)*
H5n1.0089 (19)0.0807 (18)0.4222 (13)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (6)0.0214 (5)0.0176 (5)0.0048 (4)0.0031 (4)0.0048 (4)
O20.0308 (5)0.0136 (5)0.0236 (5)0.0013 (4)0.0054 (4)0.0034 (4)
O30.0347 (6)0.0282 (5)0.0183 (5)0.0064 (4)0.0064 (4)0.0054 (4)
O40.0347 (6)0.0228 (5)0.0152 (5)0.0044 (4)0.0024 (4)0.0032 (4)
O50.0316 (5)0.0128 (4)0.0210 (5)0.0020 (4)0.0047 (4)0.0032 (4)
O60.0355 (6)0.0267 (5)0.0155 (5)0.0019 (4)0.0026 (4)0.0053 (4)
O70.0359 (6)0.0227 (5)0.0237 (6)0.0047 (4)0.0032 (4)0.0044 (4)
O80.0305 (5)0.0130 (5)0.0295 (6)0.0030 (4)0.0019 (4)0.0028 (4)
O90.0310 (6)0.0265 (5)0.0225 (5)0.0047 (4)0.0003 (4)0.0020 (4)
N10.0203 (5)0.0151 (5)0.0213 (6)0.0019 (4)0.0028 (4)0.0063 (4)
N20.0203 (5)0.0134 (5)0.0172 (6)0.0025 (4)0.0018 (4)0.0032 (4)
N30.0220 (6)0.0138 (5)0.0175 (6)0.0008 (4)0.0028 (4)0.0039 (4)
N40.0187 (5)0.0137 (5)0.0163 (6)0.0026 (4)0.0022 (4)0.0029 (4)
N50.0212 (6)0.0149 (5)0.0268 (6)0.0047 (4)0.0042 (5)0.0054 (5)
N60.0198 (6)0.0122 (5)0.0241 (6)0.0012 (4)0.0031 (5)0.0023 (4)
C10.0313 (8)0.0222 (7)0.0214 (7)0.0047 (6)0.0006 (6)0.0034 (6)
C20.0183 (6)0.0150 (6)0.0211 (7)0.0045 (5)0.0036 (5)0.0064 (5)
C30.0214 (6)0.0177 (6)0.0250 (7)0.0048 (5)0.0059 (5)0.0087 (5)
C40.0244 (7)0.0213 (7)0.0220 (7)0.0070 (5)0.0070 (5)0.0102 (5)
C50.0230 (7)0.0199 (6)0.0192 (7)0.0087 (5)0.0044 (5)0.0043 (5)
C60.0188 (6)0.0165 (6)0.0196 (7)0.0039 (5)0.0026 (5)0.0051 (5)
C70.0162 (6)0.0163 (6)0.0203 (7)0.0036 (5)0.0030 (5)0.0058 (5)
C80.0169 (6)0.0159 (6)0.0197 (7)0.0037 (5)0.0013 (5)0.0052 (5)
C90.0171 (6)0.0157 (6)0.0200 (7)0.0030 (5)0.0016 (5)0.0067 (5)
C100.0167 (6)0.0147 (6)0.0209 (7)0.0023 (5)0.0028 (5)0.0045 (5)
C110.0205 (6)0.0136 (6)0.0203 (7)0.0033 (5)0.0021 (5)0.0023 (5)
C120.0208 (6)0.0143 (6)0.0216 (7)0.0021 (5)0.0019 (5)0.0036 (5)
C130.0161 (6)0.0155 (6)0.0213 (7)0.0008 (5)0.0015 (5)0.0039 (5)
C140.0159 (6)0.0161 (6)0.0188 (6)0.0004 (5)0.0022 (5)0.0041 (5)
C150.0193 (6)0.0152 (6)0.0227 (7)0.0018 (5)0.0027 (5)0.0034 (5)
C160.0208 (6)0.0184 (6)0.0227 (7)0.0030 (5)0.0040 (5)0.0011 (5)
C170.0196 (6)0.0241 (7)0.0188 (7)0.0004 (5)0.0031 (5)0.0044 (5)
C180.0206 (6)0.0189 (6)0.0219 (7)0.0019 (5)0.0027 (5)0.0063 (5)
C190.0534 (11)0.0373 (9)0.0236 (8)0.0136 (8)0.0114 (7)0.0125 (7)
C200.0283 (7)0.0227 (7)0.0206 (7)0.0027 (6)0.0016 (6)0.0019 (5)
C210.0170 (6)0.0153 (6)0.0193 (7)0.0034 (5)0.0024 (5)0.0051 (5)
C220.0211 (6)0.0158 (6)0.0212 (7)0.0015 (5)0.0042 (5)0.0067 (5)
C230.0236 (7)0.0205 (7)0.0190 (7)0.0018 (5)0.0044 (5)0.0081 (5)
C240.0201 (6)0.0191 (6)0.0160 (6)0.0021 (5)0.0020 (5)0.0036 (5)
C250.0183 (6)0.0162 (6)0.0177 (6)0.0016 (5)0.0025 (5)0.0041 (5)
C260.0158 (6)0.0152 (6)0.0189 (7)0.0026 (5)0.0031 (5)0.0045 (5)
C270.0183 (6)0.0140 (6)0.0186 (6)0.0014 (5)0.0030 (5)0.0043 (5)
C280.0185 (6)0.0143 (6)0.0174 (6)0.0031 (5)0.0034 (5)0.0049 (5)
C290.0177 (6)0.0148 (6)0.0189 (7)0.0024 (5)0.0032 (5)0.0039 (5)
C300.0227 (6)0.0126 (6)0.0206 (7)0.0022 (5)0.0031 (5)0.0023 (5)
C310.0201 (6)0.0143 (6)0.0220 (7)0.0025 (5)0.0018 (5)0.0044 (5)
C320.0166 (6)0.0150 (6)0.0202 (7)0.0001 (5)0.0005 (5)0.0041 (5)
C330.0154 (6)0.0149 (6)0.0178 (6)0.0006 (5)0.0004 (5)0.0040 (5)
C340.0180 (6)0.0159 (6)0.0187 (6)0.0017 (5)0.0015 (5)0.0031 (5)
C350.0189 (6)0.0185 (6)0.0187 (7)0.0005 (5)0.0029 (5)0.0014 (5)
C360.0197 (6)0.0228 (7)0.0168 (6)0.0028 (5)0.0005 (5)0.0048 (5)
C370.0189 (6)0.0185 (6)0.0214 (7)0.0003 (5)0.0008 (5)0.0072 (5)
C380.0344 (8)0.0289 (8)0.0187 (7)0.0026 (6)0.0061 (6)0.0016 (6)
C390.0283 (7)0.0213 (7)0.0274 (8)0.0012 (6)0.0039 (6)0.0021 (6)
C400.0173 (6)0.0159 (6)0.0270 (7)0.0009 (5)0.0031 (5)0.0039 (5)
C410.0210 (6)0.0167 (6)0.0298 (8)0.0027 (5)0.0015 (6)0.0075 (6)
C420.0227 (7)0.0210 (7)0.0278 (8)0.0001 (5)0.0000 (6)0.0086 (6)
C430.0221 (7)0.0194 (7)0.0249 (7)0.0011 (5)0.0022 (5)0.0034 (6)
C440.0182 (6)0.0160 (6)0.0263 (7)0.0016 (5)0.0040 (5)0.0034 (5)
C450.0164 (6)0.0161 (6)0.0247 (7)0.0010 (5)0.0023 (5)0.0046 (5)
C460.0180 (6)0.0146 (6)0.0282 (7)0.0017 (5)0.0037 (5)0.0055 (5)
C470.0183 (6)0.0157 (6)0.0263 (7)0.0015 (5)0.0032 (5)0.0065 (5)
C480.0173 (6)0.0150 (6)0.0276 (7)0.0030 (5)0.0031 (5)0.0046 (5)
C490.0221 (7)0.0136 (6)0.0264 (7)0.0003 (5)0.0007 (5)0.0021 (5)
C500.0214 (6)0.0137 (6)0.0266 (7)0.0002 (5)0.0015 (5)0.0025 (5)
C510.0163 (6)0.0152 (6)0.0260 (7)0.0019 (5)0.0030 (5)0.0031 (5)
C520.0167 (6)0.0144 (6)0.0244 (7)0.0036 (5)0.0030 (5)0.0029 (5)
C530.0173 (6)0.0154 (6)0.0302 (8)0.0017 (5)0.0030 (5)0.0035 (5)
C540.0188 (6)0.0174 (6)0.0283 (8)0.0008 (5)0.0013 (5)0.0000 (5)
C550.0192 (6)0.0208 (7)0.0240 (7)0.0024 (5)0.0004 (5)0.0022 (6)
C560.0198 (6)0.0169 (6)0.0251 (7)0.0010 (5)0.0018 (5)0.0029 (5)
C570.0346 (8)0.0212 (7)0.0261 (8)0.0014 (6)0.0020 (6)0.0050 (6)
Geometric parameters (Å, º) top
O1—C51.3765 (18)C20—H20A0.9800
O1—C11.4240 (19)C20—H20B0.9800
O2—C101.2285 (17)C20—H20C0.9800
O3—C171.3732 (18)C21—C221.403 (2)
O3—C191.422 (2)C21—C261.4140 (19)
O4—C241.3721 (17)C22—C231.374 (2)
O4—C201.4232 (18)C22—H220.9500
O5—C291.2273 (17)C23—C241.420 (2)
O6—C361.3732 (18)C23—H230.9500
O6—C381.4204 (19)C24—C251.378 (2)
O7—C431.3768 (19)C25—C261.4111 (19)
O7—C391.4202 (18)C25—H250.9500
O8—C481.2292 (18)C26—C271.4245 (19)
O9—C551.3703 (19)C27—C281.3854 (19)
O9—C571.424 (2)C27—H270.9500
N1—C21.3649 (19)C28—C291.4604 (19)
N1—C91.3775 (18)C30—C311.351 (2)
N1—H1n0.91 (2)C30—H300.9500
N2—C101.3868 (18)C31—C321.4426 (19)
N2—C141.4070 (18)C31—H310.9500
N2—C111.4097 (17)C32—C371.386 (2)
N3—C211.3658 (18)C32—C331.4091 (18)
N3—C281.3751 (18)C33—C341.3894 (19)
N3—H3n0.91 (2)C34—C351.396 (2)
N4—C291.3897 (18)C34—H340.9500
N4—C301.4099 (16)C35—C361.401 (2)
N4—C331.4099 (18)C35—H350.9500
N5—C401.366 (2)C36—C371.392 (2)
N5—C471.3805 (18)C37—H370.9500
N5—H5n0.90 (2)C38—H38A0.9800
N6—C481.3886 (19)C38—H38B0.9800
N6—C521.4096 (19)C38—H38C0.9800
N6—C491.4139 (18)C39—H39A0.9800
C1—H1A0.9800C39—H39B0.9800
C1—H1B0.9800C39—H39C0.9800
C1—H1C0.9800C40—C411.402 (2)
C2—C31.405 (2)C40—C451.4177 (18)
C2—C71.4103 (19)C41—C421.372 (2)
C3—C41.374 (2)C41—H410.9500
C3—H3A0.9500C42—C431.418 (2)
C4—C51.415 (2)C42—H420.9500
C4—H40.9500C43—C441.375 (2)
C5—C61.378 (2)C44—C451.420 (2)
C6—C71.4167 (19)C44—H440.9500
C6—H60.9500C45—C461.420 (2)
C7—C81.4202 (19)C46—C471.3855 (19)
C8—C91.3884 (19)C46—H460.9500
C8—H80.9500C47—C481.459 (2)
C9—C101.4591 (19)C49—C501.350 (2)
C11—C121.352 (2)C49—H490.9500
C11—H110.9500C50—C511.4432 (19)
C12—C131.4424 (19)C50—H500.9500
C12—H120.9500C51—C561.398 (2)
C13—C181.396 (2)C51—C521.402 (2)
C13—C141.4016 (18)C52—C531.3965 (19)
C14—C151.3961 (19)C53—C541.382 (2)
C15—C161.384 (2)C53—H530.9500
C15—H150.9500C54—C551.409 (2)
C16—C171.408 (2)C54—H540.9500
C16—H160.9500C55—C561.391 (2)
C17—C181.385 (2)C56—H560.9500
C18—H180.9500C57—H57A0.9800
C19—H19A0.9800C57—H57B0.9800
C19—H19B0.9800C57—H57C0.9800
C19—H19C0.9800
C5—O1—C1116.08 (12)C26—C25—H25121.2
C17—O3—C19116.73 (12)C25—C26—C21120.11 (13)
C24—O4—C20116.84 (12)C25—C26—C27133.31 (13)
C36—O6—C38117.51 (12)C21—C26—C27106.58 (12)
C43—O7—C39116.59 (12)C28—C27—C26106.95 (12)
C55—O9—C57117.19 (12)C28—C27—H27126.5
C2—N1—C9108.82 (12)C26—C27—H27126.5
C2—N1—H1n126.2 (14)N3—C28—C27109.16 (12)
C9—N1—H1n124.9 (14)N3—C28—C29117.84 (12)
C10—N2—C14125.10 (11)C27—C28—C29132.63 (13)
C10—N2—C11126.08 (12)O5—C29—N4120.34 (13)
C14—N2—C11107.48 (11)O5—C29—C28121.45 (12)
C21—N3—C28109.04 (12)N4—C29—C28118.21 (11)
C21—N3—H3n125.8 (13)C31—C30—N4109.85 (12)
C28—N3—H3n125.2 (13)C31—C30—H30125.1
C29—N4—C30125.87 (12)N4—C30—H30125.1
C29—N4—C33124.54 (11)C30—C31—C32107.94 (12)
C30—N4—C33107.51 (11)C30—C31—H31126.0
C40—N5—C47109.01 (12)C32—C31—H31126.0
C40—N5—H5n126.4 (13)C37—C32—C33120.10 (13)
C47—N5—H5n124.6 (13)C37—C32—C31132.79 (13)
C48—N6—C52125.13 (12)C33—C32—C31107.11 (12)
C48—N6—C49125.52 (13)C34—C33—C32121.58 (13)
C52—N6—C49107.23 (12)C34—C33—N4130.78 (12)
O1—C1—H1A109.5C32—C33—N4107.59 (11)
O1—C1—H1B109.5C33—C34—C35117.79 (12)
H1A—C1—H1B109.5C33—C34—H34121.1
O1—C1—H1C109.5C35—C34—H34121.1
H1A—C1—H1C109.5C34—C35—C36120.85 (13)
H1B—C1—H1C109.5C34—C35—H35119.6
N1—C2—C3129.53 (13)C36—C35—H35119.6
N1—C2—C7108.48 (12)O6—C36—C37115.04 (12)
C3—C2—C7121.99 (13)O6—C36—C35124.02 (13)
C4—C3—C2116.96 (13)C37—C36—C35120.94 (13)
C4—C3—H3A121.5C32—C37—C36118.72 (13)
C2—C3—H3A121.5C32—C37—H37120.6
C3—C4—C5121.87 (14)C36—C37—H37120.6
C3—C4—H4119.1O6—C38—H38A109.5
C5—C4—H4119.1O6—C38—H38B109.5
O1—C5—C6125.16 (14)H38A—C38—H38B109.5
O1—C5—C4113.18 (13)O6—C38—H38C109.5
C6—C5—C4121.65 (14)H38A—C38—H38C109.5
C5—C6—C7117.55 (13)H38B—C38—H38C109.5
C5—C6—H6121.2O7—C39—H39A109.5
C7—C6—H6121.2O7—C39—H39B109.5
C2—C7—C6119.98 (13)H39A—C39—H39B109.5
C2—C7—C8106.72 (12)O7—C39—H39C109.5
C6—C7—C8133.31 (13)H39A—C39—H39C109.5
C9—C8—C7106.92 (12)H39B—C39—H39C109.5
C9—C8—H8126.5N5—C40—C41129.92 (13)
C7—C8—H8126.5N5—C40—C45108.22 (13)
N1—C9—C8109.05 (12)C41—C40—C45121.86 (14)
N1—C9—C10118.01 (12)C42—C41—C40117.44 (13)
C8—C9—C10132.49 (13)C42—C41—H41121.3
O2—C10—N2120.42 (13)C40—C41—H41121.3
O2—C10—C9121.34 (13)C41—C42—C43121.54 (14)
N2—C10—C9118.24 (12)C41—C42—H42119.2
C12—C11—N2109.64 (12)C43—C42—H42119.2
C12—C11—H11125.2C44—C43—O7125.32 (13)
N2—C11—H11125.2C44—C43—C42121.79 (14)
C11—C12—C13107.93 (12)O7—C43—C42112.89 (14)
C11—C12—H12126.0C43—C44—C45117.73 (13)
C13—C12—H12126.0C43—C44—H44121.1
C18—C13—C14120.62 (13)C45—C44—H44121.1
C18—C13—C12132.28 (13)C40—C45—C46106.58 (13)
C14—C13—C12107.10 (12)C40—C45—C44119.64 (14)
C15—C14—C13121.68 (13)C46—C45—C44133.78 (13)
C15—C14—N2130.44 (13)C47—C46—C45107.27 (12)
C13—C14—N2107.85 (11)C47—C46—H46126.4
C16—C15—C14117.16 (13)C45—C46—H46126.4
C16—C15—H15121.4N5—C47—C46108.92 (13)
C14—C15—H15121.4N5—C47—C48117.63 (12)
C15—C16—C17121.60 (13)C46—C47—C48132.99 (13)
C15—C16—H16119.2O8—C48—N6120.42 (14)
C17—C16—H16119.2O8—C48—C47121.27 (14)
O3—C17—C18124.65 (13)N6—C48—C47118.31 (12)
O3—C17—C16114.37 (13)C50—C49—N6109.76 (13)
C18—C17—C16120.98 (14)C50—C49—H49125.1
C17—C18—C13117.94 (13)N6—C49—H49125.1
C17—C18—H18121.0C49—C50—C51107.98 (13)
C13—C18—H18121.0C49—C50—H50126.0
O3—C19—H19A109.5C51—C50—H50126.0
O3—C19—H19B109.5C56—C51—C52120.89 (13)
H19A—C19—H19B109.5C56—C51—C50131.99 (14)
O3—C19—H19C109.5C52—C51—C50107.11 (13)
H19A—C19—H19C109.5C53—C52—C51121.46 (14)
H19B—C19—H19C109.5C53—C52—N6130.59 (14)
O4—C20—H20A109.5C51—C52—N6107.92 (12)
O4—C20—H20B109.5C54—C53—C52117.24 (14)
H20A—C20—H20B109.5C54—C53—H53121.4
O4—C20—H20C109.5C52—C53—H53121.4
H20A—C20—H20C109.5C53—C54—C55121.91 (14)
H20B—C20—H20C109.5C53—C54—H54119.0
N3—C21—C22129.94 (13)C55—C54—H54119.0
N3—C21—C26108.27 (12)O9—C55—C56124.50 (14)
C22—C21—C26121.79 (13)O9—C55—C54114.82 (13)
C23—C22—C21117.27 (13)C56—C55—C54120.67 (14)
C23—C22—H22121.4C55—C56—C51117.77 (14)
C21—C22—H22121.4C55—C56—H56121.1
C22—C23—C24121.57 (13)C51—C56—H56121.1
C22—C23—H23119.2O9—C57—H57A109.5
C24—C23—H23119.2O9—C57—H57B109.5
O4—C24—C25124.97 (13)H57A—C57—H57B109.5
O4—C24—C23113.43 (12)O9—C57—H57C109.5
C25—C24—C23121.59 (13)H57A—C57—H57C109.5
C24—C25—C26117.66 (13)H57B—C57—H57C109.5
C24—C25—H25121.2
C9—N1—C2—C3179.26 (13)C27—C28—C29—O5151.80 (15)
C9—N1—C2—C71.13 (15)N3—C28—C29—N4160.58 (12)
N1—C2—C3—C4179.08 (13)C27—C28—C29—N427.3 (2)
C7—C2—C3—C40.5 (2)C29—N4—C30—C31164.97 (13)
C2—C3—C4—C50.2 (2)C33—N4—C30—C310.85 (16)
C1—O1—C5—C62.1 (2)N4—C30—C31—C320.62 (16)
C1—O1—C5—C4177.08 (12)C30—C31—C32—C37179.82 (15)
C3—C4—C5—O1179.96 (12)C30—C31—C32—C330.15 (16)
C3—C4—C5—C60.8 (2)C37—C32—C33—C341.8 (2)
O1—C5—C6—C7179.79 (12)C31—C32—C33—C34178.19 (13)
C4—C5—C6—C70.7 (2)C37—C32—C33—N4179.66 (12)
N1—C2—C7—C6179.02 (12)C31—C32—C33—N40.36 (15)
C3—C2—C7—C60.6 (2)C29—N4—C33—C3417.3 (2)
N1—C2—C7—C80.76 (14)C30—N4—C33—C34178.28 (14)
C3—C2—C7—C8179.59 (12)C29—N4—C33—C32165.11 (12)
C5—C6—C7—C20.04 (19)C30—N4—C33—C320.73 (15)
C5—C6—C7—C8179.74 (14)C32—C33—C34—C351.3 (2)
C2—C7—C8—C90.11 (14)N4—C33—C34—C35178.60 (13)
C6—C7—C8—C9179.63 (14)C33—C34—C35—C360.1 (2)
C2—N1—C9—C81.07 (15)C38—O6—C36—C37179.90 (13)
C2—N1—C9—C10174.29 (11)C38—O6—C36—C350.6 (2)
C7—C8—C9—N10.58 (15)C34—C35—C36—O6179.95 (13)
C7—C8—C9—C10172.45 (13)C34—C35—C36—C370.7 (2)
C14—N2—C10—O212.4 (2)C33—C32—C37—C361.0 (2)
C11—N2—C10—O2152.69 (14)C31—C32—C37—C36179.04 (15)
C14—N2—C10—C9166.47 (12)O6—C36—C37—C32179.63 (12)
C11—N2—C10—C928.5 (2)C35—C36—C37—C320.3 (2)
N1—C9—C10—O219.73 (19)C47—N5—C40—C41179.54 (15)
C8—C9—C10—O2151.56 (15)C47—N5—C40—C450.65 (16)
N1—C9—C10—N2161.42 (12)N5—C40—C41—C42179.94 (15)
C8—C9—C10—N227.3 (2)C45—C40—C41—C420.1 (2)
C10—N2—C11—C12167.69 (13)C40—C41—C42—C430.4 (2)
C14—N2—C11—C120.46 (16)C39—O7—C43—C440.0 (2)
N2—C11—C12—C130.26 (16)C39—O7—C43—C42179.45 (13)
C11—C12—C13—C18179.61 (15)C41—C42—C43—C440.4 (2)
C11—C12—C13—C140.03 (16)C41—C42—C43—O7179.88 (14)
C18—C13—C14—C151.9 (2)O7—C43—C44—C45179.57 (13)
C12—C13—C14—C15178.45 (13)C42—C43—C44—C450.1 (2)
C18—C13—C14—N2179.95 (12)N5—C40—C45—C460.47 (16)
C12—C13—C14—N20.31 (15)C41—C40—C45—C46179.70 (13)
C10—N2—C14—C1514.2 (2)N5—C40—C45—C44179.74 (13)
C11—N2—C14—C15178.39 (14)C41—C40—C45—C440.1 (2)
C10—N2—C14—C13167.86 (13)C43—C44—C45—C400.1 (2)
C11—N2—C14—C130.47 (15)C43—C44—C45—C46179.62 (15)
C13—C14—C15—C161.5 (2)C40—C45—C46—C470.12 (16)
N2—C14—C15—C16179.18 (14)C44—C45—C46—C47179.86 (15)
C14—C15—C16—C170.0 (2)C40—N5—C47—C460.58 (16)
C19—O3—C17—C181.6 (2)C40—N5—C47—C48173.82 (12)
C19—O3—C17—C16179.52 (15)C45—C46—C47—N50.27 (16)
C15—C16—C17—O3179.88 (13)C45—C46—C47—C48172.09 (15)
C15—C16—C17—C181.2 (2)C52—N6—C48—O89.4 (2)
O3—C17—C18—C13179.62 (13)C49—N6—C48—O8151.94 (14)
C16—C17—C18—C130.8 (2)C52—N6—C48—C47170.13 (13)
C14—C13—C18—C170.7 (2)C49—N6—C48—C4728.6 (2)
C12—C13—C18—C17179.75 (15)N5—C47—C48—O821.2 (2)
C28—N3—C21—C22179.21 (13)C46—C47—C48—O8150.07 (16)
C28—N3—C21—C261.06 (15)N5—C47—C48—N6159.32 (13)
N3—C21—C22—C23179.75 (13)C46—C47—C48—N629.4 (2)
C26—C21—C22—C230.1 (2)C48—N6—C49—C50164.41 (13)
C21—C22—C23—C240.4 (2)C52—N6—C49—C500.33 (16)
C20—O4—C24—C256.1 (2)N6—C49—C50—C510.33 (16)
C20—O4—C24—C23174.51 (12)C49—C50—C51—C56178.62 (15)
C22—C23—C24—O4179.66 (13)C49—C50—C51—C520.20 (16)
C22—C23—C24—C250.2 (2)C56—C51—C52—C532.8 (2)
O4—C24—C25—C26179.09 (12)C50—C51—C52—C53178.19 (12)
C23—C24—C25—C260.3 (2)C56—C51—C52—N6178.98 (12)
C24—C25—C26—C210.59 (19)C50—C51—C52—N60.01 (15)
C24—C25—C26—C27179.43 (14)C48—N6—C52—C5317.7 (2)
N3—C21—C26—C25179.31 (12)C49—N6—C52—C53178.16 (14)
C22—C21—C26—C250.4 (2)C48—N6—C52—C51164.35 (12)
N3—C21—C26—C270.67 (14)C49—N6—C52—C510.20 (15)
C22—C21—C26—C27179.57 (12)C51—C52—C53—C541.9 (2)
C25—C26—C27—C28179.94 (14)N6—C52—C53—C54179.63 (13)
C21—C26—C27—C280.04 (14)C52—C53—C54—C550.4 (2)
C21—N3—C28—C271.05 (15)C57—O9—C55—C5612.7 (2)
C21—N3—C28—C29174.94 (11)C57—O9—C55—C54168.68 (13)
C26—C27—C28—N30.61 (15)C53—C54—C55—O9179.51 (13)
C26—C27—C28—C29173.26 (13)C53—C54—C55—C561.8 (2)
C30—N4—C29—O5152.36 (14)O9—C55—C56—C51179.45 (13)
C33—N4—C29—O59.2 (2)C54—C55—C56—C510.9 (2)
C30—N4—C29—C2828.5 (2)C52—C51—C56—C551.4 (2)
C33—N4—C29—C28169.92 (12)C50—C51—C56—C55179.95 (14)
N3—C28—C29—O520.34 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O50.91 (2)1.98 (2)2.8536 (16)159 (2)
N3—H3n···O20.91 (2)1.97 (2)2.8384 (16)159.0 (19)
N5—H5n···O8i0.90 (2)2.00 (2)2.8796 (15)163.9 (19)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H16N2O3
Mr320.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.3153 (4), 12.1183 (5), 17.1300 (6)
α, β, γ (°)76.251 (3), 79.747 (3), 88.913 (3)
V3)2244.50 (15)
Z6
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.30 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.367, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17372, 9182, 7534
Rint0.029
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.02
No. of reflections9182
No. of parameters661
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), Qmol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O50.91 (2)1.98 (2)2.8536 (16)159 (2)
N3—H3n···O20.91 (2)1.97 (2)2.8384 (16)159.0 (19)
N5—H5n···O8i0.90 (2)2.00 (2)2.8796 (15)163.9 (19)
Symmetry code: (i) x+2, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: mattia@ksu.edu.sa.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAttia, M. I., El-Brollosy, N. R., Ghabbour, H. A., Arshad, S. & Fun, H.-K. (2012). Acta Cryst. E68, o971.  CSD CrossRef IUCr Journals Google Scholar
First citationAttia, M. I., Witt-Enderby, P. A. & Julius, J. (2008). Bioorg. Med. Chem. 16, 7654–7661.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarrenetxe, J., Delagrange, P. & Martinez, J. A. (2004). J. Physiol. Biochem. 60, 61–72.  CrossRef PubMed CAS Google Scholar
First citationBedini, A., Spadoni, G., Gatti, G., Lucarini, S., Tarzia, G., Rivara, S., Lorenzi, S., Lodola, A., Mor, M., Lucini, V., Pannacci, M. & Scaglione, F. (2006). J. Med. Chem. 49, 7393–7403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliamson, B. L., Tomlinson, A. J., Mishra, P. K., Gleich, G. J. & Naylor, S. (1998). Chem. Res. Toxicol. 11, 234–240.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds