organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1776-o1777

2-[(Cyclo­hex-3-en-1-ylmeth­­oxy)meth­yl]-6-phenyl-1,2,4-triazine-3,5(2H,4H)-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 May 2012; accepted 10 May 2012; online 19 May 2012)

In the title 1,2,4-triazine derivative, C17H19N3O3, the heterocyclic ring is planar (r.m.s. deviation = 0.040 Å) and effectively coplanar with the adjacent phenyl ring [dihedral angle = 4.5 (2)°] but almost perpendicular to the (cyclo­hex-3-en-1-ylmeth­oxy)methyl residue [N—N—C—O torsion angle = 71.6 (5)°], so that the mol­ecule has an `L' shape. Supra­molecular chains along [001] are formed in the crystal via N—H⋯O hydrogen bonds where the acceptor O atom is the ether O atom. The adjacent carbonyl O atom forms a complementary C—H⋯O contact resulting in the formation of a seven-membered {⋯HNCO⋯HCO} heterosynthon; the second carbonyl O atom forms an intra­molecular C—H⋯O contact. Chains are connected into a supra­molecular layer in the ac plane by ππ inter­actions [ring centroid–centroid distance = 3.488 (3) Å]. The central atom in the –CH2CH2C(H)= residue of the cyclo­hexene ring is disordered over two sites, with the major component having a site-occupancy factor of 0.51 (2).

Related literature

For the potential medicinal applications of 1,2,4-triazines, see: Ban et al. (2010[Ban, K., Duffy, S., Khakham, Y., Avery, V. M., Hughes, A., Montagnat, O., Katneni, K., Ryan, E. & Baell, J. B. (2010). Bioorg. Med. Chem. Lett. 20, 6024-6029.]); Irannejad et al. (2010[Irannejad, H., Amini, M., Khodagholi, F., Ansari, N., Tusi, S., Sharifzadeh, M. & Shafiee, A. (2010). Bioorg. Med. Chem. 18, 4224-4230.]); Sangshetti & Shinde (2010[Sangshetti, J. N. & Shinde, D. B. (2010). Bioorg. Med. Chem. Lett. 20, 742-745.]). For the synthesis, see: El-Brollosy (2008[El-Brollosy, N. R. (2008). Monatsh. Chem. 139, 1483-1490.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N3O3

  • Mr = 313.35

  • Monoclinic, P c

  • a = 4.7924 (6) Å

  • b = 13.7083 (19) Å

  • c = 11.8293 (15) Å

  • β = 101.538 (12)°

  • V = 761.43 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.806, Tmax = 1.000

  • 4230 measured reflections

  • 1757 independent reflections

  • 1158 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.133

  • S = 1.04

  • 1757 reflections

  • 212 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 2.00 2.877 (5) 174
C2—H2⋯O1 0.95 2.21 2.880 (7) 127
C10—H10B⋯O2ii 0.99 2.46 3.352 (6) 150
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Several 1,2,4-triazines have been shown to exhibit herbicidal, anti-viral, anti-microbial, anti-inflammatory, anti-malarial, anti-cancer, anti-proliferative and neuroprotective activities (Ban et al., 2010; Irannejad et al., 2010; Sangshetti & Shinde, 2010). The title compound (I), was originally synthesized as a potential anti-microbial agent (El-Brollosy, 2008). Herein, we describe the results of its crystal structure determination.

The six ring atoms comprising the 2,4-dihydro-1,2,4-triazine-3,5-dione residue in (I), Fig. 1, are co-planar with a r.m.s. = 0.040 Å; the maximum deviations from their least-squares plane being 0.035 (5) Å for the C7 atom and -0.039 (5) Å for the C8 atom. The dihedral angle between this ring and the attached phenyl ring of 4.5 (2)° is consistent with an almost co-planar relationship. The (cyclohex-3-en-1-ylmethoxy)methyl residue lies perpendicular to the rest of the molecule as seen in the value of the N3—N2—C10—O3 torsion angle of 71.6 (5)°, so that to a first approximation the molecule has an L-shape.

The crystal structure features supramolecular chains along [001]. These are mediated by, perhaps surprisingly, N—H···O hydrogen bonds where the O atom is the ether O atom, rather than carbonyl O atoms. The adjacent carbonyl-O2 atom forms a complementary C—H···O contact resulting in the formation of a seven-membered {···HNCO···HCO} heterosynthon, Fig. 2 and Table 1. The carbonyl-O1 atom forms an intramolecular C—H..O interaction. The chains are connected into supramolecular layers in the ac plane by ππ interactions [ring centroid(N1–N3,C7–C9)···centroid(C1–C6)i = 3.488 (3) Å and tilt angle = 4.5 (2)°; symmetry code: (i) x+1, y, z], Fig. 3. Supramolecular layers stack along the b axis with no specific interactions between them, Fig. 4.

Related literature top

For the potential medicinal applications of 1,2,4-triazines, see: Ban et al. (2010); Irannejad et al. (2010); Sangshetti & Shinde (2010). For the synthesis, see: El-Brollosy (2008).

Experimental top

5-Phenyl-6-azauracil (0.189 g, 1 mmol) was stirred in dry acetonitrile (15 ml) under nitrogen and N,O-bis-trimethylsilylacetamide (0.87 ml, 3.5 mmol) was added. After a clear solution was obtained (10 min), the mixture was cooled to 223 K and trimethylsilyl trifluoromethanesulphonate (0.18 ml, 1 mmol) was added followed by the drop wise addition of bis(3-cyclohexen-1-ylmethoxy)methane (0.472 g, 2 mmol). The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched by addition of sat. aq. NaHCO3 solution (5 ml). The mixture was evaporated under reduced pressure and the residue was extracted with ether (3 x 50 ml). The combined ether fractions were collected, dried (MgSO4) and evaporated under reduced pressure. The residue was purified on a silica gel column using 1:5 petroleum ether / chloroform to give the title compound in 64% (0.199 g) yield. Colourless crystals were obtained upon crystallization from its ethanol solution (El-Brollosy, 2008).

Refinement top

H-atoms were placed in calculated positions [N—H = 0.88 and C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(N,C)] and were included in the refinement in the riding model approximation. The amino H-atom was refined freely. In the absence of significant anomalous scattering effects, 799 Friedel pairs were averaged in the final refinement. The C16 atom of the cyclohexene ring was disordered over two positions. From anisotropic refinement, the major component of the disorder had a site occupancy factor = 0.51 (2). The pairs of the respective C15—C16/C16'—C17 bond lengths were restrained to be within 0.01 Å of each other; the anisotropic displacement parameters for the disordered atoms were constrained to be equal.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered C16 atom is shown.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N—H···O hydrogen bonding and reinforced by C—H···O interactions, shown as blue and orange dashed lines, respectively.
[Figure 3] Fig. 3. A view of the supramolecular layer parallel to the ac plane in (I). The N—H···O and ππ interactions are shown as blue and purple dashed lines, respectively. Hydrogen atoms not participating in intermolecular interactions have been omitted.
[Figure 4] Fig. 4. A view in projection down the a axis of the unit-cell contents for (I). The N—H···O and ππ interactions are shown as blue and purple dashed lines, respectively.
2-[(Cyclohex-3-en-1-ylmethoxy)methyl]-6-phenyl-1,2,4-triazine- 3,5(2H,4H)-dione top
Crystal data top
C17H19N3O3F(000) = 332
Mr = 313.35Dx = 1.367 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 801 reflections
a = 4.7924 (6) Åθ = 2.3–27.5°
b = 13.7083 (19) ŵ = 0.10 mm1
c = 11.8293 (15) ÅT = 100 K
β = 101.538 (12)°Plate, colourless
V = 761.43 (17) Å30.35 × 0.15 × 0.03 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1757 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1158 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.078
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scanh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1717
Tmin = 0.806, Tmax = 1.000l = 1515
4230 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
1757 reflections(Δ/σ)max = 0.002
212 parametersΔρmax = 0.24 e Å3
4 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H19N3O3V = 761.43 (17) Å3
Mr = 313.35Z = 2
Monoclinic, PcMo Kα radiation
a = 4.7924 (6) ŵ = 0.10 mm1
b = 13.7083 (19) ÅT = 100 K
c = 11.8293 (15) Å0.35 × 0.15 × 0.03 mm
β = 101.538 (12)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1757 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1158 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 1.000Rint = 0.078
4230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0614 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
1757 reflectionsΔρmin = 0.30 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4970 (7)0.7062 (3)0.4998 (3)0.0321 (9)
O21.2011 (7)0.4812 (3)0.5519 (3)0.0245 (8)
O30.9583 (7)0.3645 (2)0.8023 (3)0.0228 (8)
N10.8476 (9)0.5948 (3)0.5278 (4)0.0205 (9)
H10.86960.60520.45670.025*
N20.9682 (7)0.5123 (3)0.7000 (3)0.0190 (10)
N30.7856 (7)0.5669 (3)0.7480 (3)0.0194 (9)
C10.4436 (9)0.6924 (4)0.7489 (4)0.0201 (11)
C20.2789 (10)0.7697 (4)0.6974 (5)0.0253 (12)
H20.28440.78720.62020.030*
C30.1041 (10)0.8224 (4)0.7579 (5)0.0275 (13)
H30.00720.87540.72210.033*
C40.0957 (11)0.7960 (4)0.8709 (5)0.0244 (12)
H40.02110.83150.91250.029*
C50.2553 (10)0.7192 (4)0.9223 (5)0.0260 (12)
H50.24580.70110.99890.031*
C60.4310 (11)0.6673 (4)0.8634 (5)0.0251 (12)
H60.54280.61480.90040.030*
C70.6321 (9)0.6348 (4)0.6886 (4)0.0205 (11)
C80.6423 (10)0.6503 (4)0.5652 (4)0.0209 (11)
C91.0207 (10)0.5252 (4)0.5896 (4)0.0185 (11)
C101.1326 (10)0.4421 (4)0.7787 (4)0.0217 (11)
H10A1.28880.41590.74410.026*
H10B1.21880.47520.85170.026*
C110.8986 (11)0.2912 (4)0.7141 (5)0.0252 (12)
H11A1.07780.27010.69200.030*
H11B0.77150.31820.64490.030*
C120.7570 (10)0.2050 (4)0.7590 (4)0.0221 (11)
H120.57640.22830.78010.027*
C130.6801 (13)0.1266 (4)0.6644 (5)0.0376 (14)
H13A0.54510.15450.59800.045*
H13B0.85440.10700.63730.045*
C140.5488 (12)0.0383 (4)0.7073 (6)0.0365 (14)
H140.41580.00030.65570.044*
C150.6234 (12)0.0133 (4)0.8234 (6)0.0360 (14)
H150.56940.04900.84680.043*
C160.779 (5)0.0777 (12)0.9093 (9)0.032 (5)0.51 (2)
H16A0.91650.03820.96440.039*0.51 (2)
H16B0.64290.10660.95290.039*0.51 (2)
C16'0.837 (5)0.0637 (12)0.9049 (10)0.032 (5)0.49
H16C1.00330.01990.92660.039*0.49 (2)
H16D0.76020.07580.97530.039*0.49 (2)
C170.9405 (10)0.1602 (4)0.8654 (5)0.0253 (12)
H17A1.11880.13470.84630.030*
H17B0.99120.21050.92610.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.032 (2)0.039 (2)0.026 (2)0.0098 (18)0.0082 (17)0.0077 (19)
O20.0274 (18)0.027 (2)0.0197 (19)0.0025 (16)0.0073 (16)0.0009 (16)
O30.032 (2)0.0200 (19)0.0175 (18)0.0002 (16)0.0074 (16)0.0005 (15)
N10.028 (2)0.021 (2)0.014 (2)0.0002 (18)0.0081 (18)0.0006 (17)
N20.024 (2)0.018 (2)0.015 (2)0.0027 (18)0.0042 (19)0.0017 (19)
N30.016 (2)0.022 (2)0.021 (2)0.0021 (18)0.0038 (18)0.0020 (19)
C10.017 (2)0.020 (3)0.023 (3)0.006 (2)0.004 (2)0.002 (2)
C20.029 (3)0.024 (3)0.023 (3)0.007 (2)0.005 (2)0.002 (2)
C30.022 (3)0.023 (3)0.037 (3)0.002 (2)0.005 (3)0.002 (3)
C40.027 (3)0.022 (3)0.026 (3)0.003 (2)0.011 (2)0.008 (2)
C50.025 (3)0.029 (3)0.025 (3)0.006 (2)0.008 (2)0.002 (2)
C60.024 (3)0.026 (3)0.026 (3)0.005 (2)0.006 (2)0.001 (3)
C70.017 (3)0.021 (3)0.023 (3)0.004 (2)0.004 (2)0.001 (2)
C80.025 (3)0.021 (3)0.017 (3)0.002 (2)0.005 (2)0.001 (2)
C90.022 (3)0.020 (3)0.014 (3)0.005 (2)0.004 (2)0.000 (2)
C100.024 (3)0.021 (3)0.021 (3)0.005 (2)0.005 (2)0.002 (2)
C110.035 (3)0.022 (3)0.019 (2)0.001 (2)0.005 (2)0.003 (2)
C120.021 (2)0.021 (3)0.024 (3)0.003 (2)0.004 (2)0.001 (2)
C130.047 (3)0.027 (3)0.033 (3)0.004 (3)0.006 (3)0.004 (3)
C140.034 (3)0.030 (3)0.048 (4)0.011 (3)0.012 (3)0.011 (3)
C150.033 (3)0.021 (3)0.053 (4)0.003 (3)0.007 (3)0.004 (3)
C160.014 (8)0.029 (6)0.055 (5)0.013 (6)0.008 (4)0.012 (4)
C16'0.014 (8)0.029 (6)0.055 (5)0.013 (6)0.008 (4)0.012 (4)
C170.028 (3)0.022 (3)0.025 (3)0.002 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
O1—C81.207 (6)C10—H10A0.9900
O2—C91.210 (5)C10—H10B0.9900
O3—C101.415 (6)C11—C121.510 (7)
O3—C111.435 (6)C11—H11A0.9900
N1—C91.375 (6)C11—H11B0.9900
N1—C81.385 (6)C12—C171.514 (7)
N1—H10.8800C12—C131.543 (8)
N2—N31.359 (5)C12—H121.0000
N2—C91.390 (5)C13—C141.499 (8)
N2—C101.456 (6)C13—H13A0.9900
N3—C71.301 (6)C13—H13B0.9900
C1—C21.387 (7)C14—C151.390 (9)
C1—C61.410 (7)C14—H140.9500
C1—C71.486 (6)C15—C16'1.435 (11)
C2—C31.406 (7)C15—C161.437 (11)
C2—H20.9500C15—H150.9500
C3—C41.392 (7)C16—C171.521 (9)
C3—H30.9500C16—H16A0.9900
C4—C51.371 (7)C16—H16B0.9900
C4—H40.9500C16'—C171.519 (10)
C5—C61.391 (7)C16'—H16C0.9900
C5—H50.9500C16'—H16D0.9900
C6—H60.9500C17—H17A0.9900
C7—C81.486 (6)C17—H17B0.9900
C10—O3—C11115.1 (3)O3—C11—H11B109.8
C9—N1—C8127.1 (4)C12—C11—H11B109.8
C9—N1—H1116.4H11A—C11—H11B108.3
C8—N1—H1116.4C11—C12—C17112.5 (4)
N3—N2—C9125.1 (4)C11—C12—C13110.4 (4)
N3—N2—C10114.1 (4)C17—C12—C13109.5 (4)
C9—N2—C10120.6 (4)C11—C12—H12108.1
C7—N3—N2120.7 (4)C17—C12—H12108.1
C2—C1—C6118.6 (5)C13—C12—H12108.1
C2—C1—C7122.8 (4)C14—C13—C12111.9 (5)
C6—C1—C7118.6 (4)C14—C13—H13A109.2
C1—C2—C3120.9 (5)C12—C13—H13A109.2
C1—C2—H2119.6C14—C13—H13B109.2
C3—C2—H2119.6C12—C13—H13B109.2
C4—C3—C2119.3 (5)H13A—C13—H13B107.9
C4—C3—H3120.3C15—C14—C13119.4 (5)
C2—C3—H3120.3C15—C14—H14120.3
C5—C4—C3120.3 (5)C13—C14—H14120.3
C5—C4—H4119.9C14—C15—C16'123.6 (6)
C3—C4—H4119.9C14—C15—C16122.8 (6)
C4—C5—C6120.7 (5)C14—C15—H15118.6
C4—C5—H5119.6C16'—C15—H15115.8
C6—C5—H5119.6C16—C15—H15118.6
C5—C6—C1120.2 (5)C15—C16—C17116.2 (8)
C5—C6—H6119.9C15—C16—H16A108.2
C1—C6—H6119.9C17—C16—H16A108.2
N3—C7—C1117.0 (4)C15—C16—H16B108.2
N3—C7—C8120.4 (4)C17—C16—H16B108.2
C1—C7—C8122.6 (4)H16A—C16—H16B107.4
O1—C8—N1120.0 (4)C15—C16'—C17116.5 (8)
O1—C8—C7126.4 (5)C15—C16'—H16C108.2
N1—C8—C7113.6 (4)C17—C16'—H16C108.2
O2—C9—N1123.3 (4)C15—C16'—H16D108.2
O2—C9—N2124.0 (4)C17—C16'—H16D108.2
N1—C9—N2112.6 (4)H16C—C16'—H16D107.3
O3—C10—N2111.0 (4)C16'—C17—C12116.0 (7)
O3—C10—H10A109.4C16—C17—C12109.6 (8)
N2—C10—H10A109.4C16'—C17—H17A96.5
O3—C10—H10B109.4C16—C17—H17A109.8
N2—C10—H10B109.4C12—C17—H17A109.7
H10A—C10—H10B108.0C16'—C17—H17B115.5
O3—C11—C12109.3 (4)C16—C17—H17B109.7
O3—C11—H11A109.8C12—C17—H17B109.7
C12—C11—H11A109.8H17A—C17—H17B108.2
C9—N2—N3—C73.3 (6)N3—N2—C9—N15.5 (6)
C10—N2—N3—C7177.7 (4)C10—N2—C9—N1179.5 (4)
C6—C1—C2—C30.4 (7)C11—O3—C10—N279.3 (5)
C7—C1—C2—C3179.8 (5)N3—N2—C10—O371.6 (5)
C1—C2—C3—C40.4 (7)C9—N2—C10—O3113.8 (4)
C2—C3—C4—C50.3 (8)C10—O3—C11—C12170.0 (4)
C3—C4—C5—C61.0 (8)O3—C11—C12—C1759.4 (5)
C4—C5—C6—C11.0 (7)O3—C11—C12—C13177.9 (4)
C2—C1—C6—C50.3 (7)C11—C12—C13—C14177.9 (5)
C7—C1—C6—C5179.5 (4)C17—C12—C13—C1453.4 (6)
N2—N3—C7—C1178.5 (4)C12—C13—C14—C1529.4 (7)
N2—N3—C7—C83.3 (7)C13—C14—C15—C16'4.5 (16)
C2—C1—C7—N3177.0 (5)C13—C14—C15—C1612.3 (16)
C6—C1—C7—N33.2 (6)C14—C15—C16—C1719 (3)
C2—C1—C7—C84.9 (7)C16'—C15—C16—C1779 (3)
C6—C1—C7—C8174.9 (4)C14—C15—C16'—C1712 (3)
C9—N1—C8—O1177.0 (5)C16—C15—C16'—C1779 (3)
C9—N1—C8—C74.6 (7)C15—C16'—C17—C1679 (3)
N3—C7—C8—O1174.8 (5)C15—C16'—C17—C1215 (2)
C1—C7—C8—O13.2 (8)C15—C16—C17—C16'78 (3)
N3—C7—C8—N16.9 (6)C15—C16—C17—C1243 (2)
C1—C7—C8—N1175.1 (4)C11—C12—C17—C16'170.4 (12)
C8—N1—C9—O2178.0 (5)C13—C12—C17—C16'47.1 (12)
C8—N1—C9—N21.1 (7)C11—C12—C17—C16177.0 (10)
N3—N2—C9—O2173.6 (4)C13—C12—C17—C1659.8 (11)
C10—N2—C9—O20.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.002.877 (5)174
C2—H2···O10.952.212.880 (7)127
C10—H10B···O2ii0.992.463.352 (6)150
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19N3O3
Mr313.35
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)4.7924 (6), 13.7083 (19), 11.8293 (15)
β (°) 101.538 (12)
V3)761.43 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.15 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.806, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4230, 1757, 1158
Rint0.078
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.133, 1.04
No. of reflections1757
No. of parameters212
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.002.877 (5)174
C2—H2···O10.952.212.880 (7)127
C10—H10B···O2ii0.992.463.352 (6)150
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: brollosy@yahoo.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBan, K., Duffy, S., Khakham, Y., Avery, V. M., Hughes, A., Montagnat, O., Katneni, K., Ryan, E. & Baell, J. B. (2010). Bioorg. Med. Chem. Lett. 20, 6024–6029.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Brollosy, N. R. (2008). Monatsh. Chem. 139, 1483–1490.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIrannejad, H., Amini, M., Khodagholi, F., Ansari, N., Tusi, S., Sharifzadeh, M. & Shafiee, A. (2010). Bioorg. Med. Chem. 18, 4224–4230.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSangshetti, J. N. & Shinde, D. B. (2010). Bioorg. Med. Chem. Lett. 20, 742–745.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1776-o1777
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds