organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-4-hy­dr­oxy-2-methyl-1,1-dioxo-2H-1λ6,2-benzo­thia­zine-3-carboxamide

aDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore-54590, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: waseeq786@gmail.com

(Received 8 May 2012; accepted 18 May 2012; online 31 May 2012)

In the title mol­ecule, C17H16N2O4S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.546 (4) and 0.281 (4) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The mol­ecular structure is stabilized by an intra­molecular O—H⋯O hydrogen bond. The two aromatic rings are inclined to one another by 42.32 (11)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked via a series of C—H⋯O inter­actions, leading to the formation of a three-dimensional network.

Related literature

For the biological activity of benzothia­zine derivatives, see: Lomabardino & Wiseman et al. (1972[Lomabardino, J. G. & Wiseman, E. D. (1972). J. Med. Chem. 15, 848-849.]); Lazzeri et al. (2001[Lazzeri, N., Belvisi, M. G., Patel, H. J., Yacoub, M. H., Chung, K. F. & Mitchell, J. A. (2001). Am. J. Respir. Cell Mol. Biol. 24, 44-48.]). For the synthetic procedure, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). For the structures of similar compounds, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.], 2009[Siddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279-o2280.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O4S

  • Mr = 344.38

  • Triclinic, [P \overline 1]

  • a = 8.785 (3) Å

  • b = 9.122 (3) Å

  • c = 11.425 (4) Å

  • α = 66.61 (2)°

  • β = 87.66 (2)°

  • γ = 69.38 (2)°

  • V = 781.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.16 × 0.16 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.964, Tmax = 0.977

  • 6837 measured reflections

  • 3592 independent reflections

  • 3141 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.06

  • 3592 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.84 1.79 2.531 (2) 146
N2—H2N⋯O1i 0.88 2.24 2.980 (2) 141
C10—H10A⋯O4ii 0.98 2.50 3.349 (3) 144
C11—H11B⋯O1iii 0.99 2.51 3.374 (3) 146
C15—H15⋯O2iv 0.95 2.59 3.496 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x, y-1, z; (iv) x, y-1, z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

1,2-Benzothiazine 1,1 dioxides have received much attention since the discovery of 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamides 1,1-dioxides as potent anti-inflammatory and analgesic agents (Lomabardino & Wiseman, 1972). Benzothiazine based derivatives have also shown activities for the treatment of asthmatic therapy (Lazzeri et al., 2001). In continuation of our interest in the synthesis and crystal structures of 1,2-benzothiazine derivatives (Siddiqui et al., 2008; 2009) we report herein on the crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported for closely related compounds (Siddiqui et al., 2008; 2009). The heterocyclic thiazine ring adopts a half chair conformation with atoms S1 and N1 displaced by 0.546 (4) and 0.281 (4) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The molecular structure is stabilized by an intramolecular O3—H3O···O4 hydrogen bond (Table 1). The aromatic rings [C1-C6 and C12-C17] are inclined to one another by 42.32 (11)°.

In the crystal, molecules are linked by a pair of N—H···O hydrogen bonds to form inversion dimers. The dimers are linked via a series of C—H···O interactions leading to the formation of a three-dimensional network. (Fig. 2 and Table 1).

Related literature top

For the biological activity of benzothiazine derivatives, see: Lomabardino & Wiseman et al. (1972); Lazzeri et al. (2001). For the synthetic procedure, see: Siddiqui et al. (2008). For the structures of similar compounds, see: Siddiqui et al. (2008, 2009).

Experimental top

For the synthesis of the title compound, 4-hydroxy-2-methyl-2H- 1,2-benzothiazine- 3-carboxylic acid methyl ester 1,1 dioxide and benzyllamine were used as the starting materials following a procedure reported earlier (Siddiqui et al., 2008). Crystals of the title compound, suitable for the X-ray crystallographic study, were grown from a mixture of ethyl acetate and methanol (1:1) at room temperature [M.p. = 466 – 467 K].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84 Å, N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively, with Uiso(H) = k × Ueq(O,N,C), where k = 1.5 for OH and CH3 H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O-H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing in the title compound, with the O-H···O, N—H···O and C—H···O hydrogen bonds shown as dashed lines [H atoms non-participating in hydrogen-bonding have been omitted for clarity].
N-Benzyl-4-hydroxy-2-methyl-1,1-dioxo-2H-1λ6,2- benzothiazine-3-carboxamide top
Crystal data top
C17H16N2O4SZ = 2
Mr = 344.38F(000) = 360
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.785 (3) ÅCell parameters from 3525 reflections
b = 9.122 (3) Åθ = 1.0–27.5°
c = 11.425 (4) ŵ = 0.23 mm1
α = 66.61 (2)°T = 173 K
β = 87.66 (2)°Prism, colourless
γ = 69.38 (2)°0.16 × 0.16 × 0.10 mm
V = 781.2 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
3592 independent reflections
Radiation source: fine-focus sealed tube3141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1011
Tmin = 0.964, Tmax = 0.977k = 1111
6837 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.7103P]
where P = (Fo2 + 2Fc2)/3
3592 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C17H16N2O4Sγ = 69.38 (2)°
Mr = 344.38V = 781.2 (5) Å3
Triclinic, P1Z = 2
a = 8.785 (3) ÅMo Kα radiation
b = 9.122 (3) ŵ = 0.23 mm1
c = 11.425 (4) ÅT = 173 K
α = 66.61 (2)°0.16 × 0.16 × 0.10 mm
β = 87.66 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3592 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3141 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.977Rint = 0.028
6837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3592 reflectionsΔρmin = 0.42 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62867 (5)0.60505 (6)0.34904 (4)0.02296 (13)
O10.58802 (17)0.69700 (17)0.42959 (14)0.0283 (3)
O20.50059 (16)0.61698 (18)0.26852 (14)0.0293 (3)
O30.93624 (19)0.2725 (2)0.19251 (15)0.0345 (3)
H3O0.93650.17250.23080.052*
O40.88028 (17)0.02644 (18)0.36729 (14)0.0309 (3)
N10.72650 (19)0.40160 (19)0.44128 (15)0.0219 (3)
N20.71929 (19)0.0748 (2)0.51809 (16)0.0253 (3)
H2N0.66690.14660.55260.030*
C10.7810 (2)0.6574 (2)0.25555 (18)0.0249 (4)
C20.8007 (3)0.8122 (3)0.22507 (19)0.0296 (4)
H20.73240.89390.25500.036*
C30.9231 (3)0.8447 (3)0.1495 (2)0.0357 (5)
H30.93890.94990.12750.043*
C41.0220 (3)0.7253 (3)0.1060 (2)0.0375 (5)
H41.10400.75010.05340.045*
C51.0029 (3)0.5700 (3)0.1383 (2)0.0323 (5)
H51.07140.48890.10790.039*
C60.8826 (2)0.5329 (3)0.21550 (18)0.0262 (4)
C70.8691 (2)0.3635 (3)0.26145 (19)0.0257 (4)
C80.7992 (2)0.3010 (2)0.36928 (19)0.0235 (4)
C90.8009 (2)0.1249 (2)0.41831 (19)0.0248 (4)
C100.8312 (3)0.3639 (3)0.55606 (19)0.0291 (4)
H10A0.88030.23940.60560.035*
H10B0.76450.41720.60960.035*
H10C0.91820.41000.52880.035*
C110.7160 (3)0.0979 (2)0.5706 (2)0.0287 (4)
H11A0.82820.18130.57920.034*
H11B0.64610.10680.50980.034*
C120.6520 (2)0.1446 (2)0.69982 (19)0.0272 (4)
C130.6713 (3)0.0783 (3)0.7863 (2)0.0317 (4)
H130.72320.00310.76340.038*
C140.6155 (3)0.1299 (3)0.9056 (2)0.0392 (5)
H140.63040.08450.96410.047*
C150.5382 (3)0.2469 (3)0.9401 (2)0.0437 (6)
H150.49900.28101.02160.052*
C160.5185 (3)0.3139 (3)0.8547 (2)0.0411 (5)
H160.46600.39480.87790.049*
C170.5749 (3)0.2635 (3)0.7358 (2)0.0322 (5)
H170.56100.31040.67800.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0241 (2)0.0199 (2)0.0242 (2)0.00610 (17)0.00430 (17)0.01015 (18)
O10.0335 (7)0.0217 (7)0.0312 (7)0.0075 (6)0.0082 (6)0.0148 (6)
O20.0265 (7)0.0291 (7)0.0301 (7)0.0081 (6)0.0004 (6)0.0116 (6)
O30.0401 (8)0.0339 (8)0.0351 (8)0.0121 (7)0.0151 (7)0.0218 (7)
O40.0336 (7)0.0250 (7)0.0369 (8)0.0068 (6)0.0096 (6)0.0192 (6)
N10.0251 (8)0.0179 (7)0.0232 (8)0.0065 (6)0.0040 (6)0.0101 (6)
N20.0270 (8)0.0200 (8)0.0295 (9)0.0057 (6)0.0052 (7)0.0134 (7)
C10.0275 (9)0.0249 (9)0.0208 (9)0.0096 (7)0.0025 (7)0.0081 (7)
C20.0369 (11)0.0266 (10)0.0253 (10)0.0127 (8)0.0026 (8)0.0096 (8)
C30.0484 (13)0.0329 (11)0.0288 (11)0.0236 (10)0.0048 (9)0.0079 (9)
C40.0395 (12)0.0447 (13)0.0296 (11)0.0222 (10)0.0101 (9)0.0112 (10)
C50.0322 (10)0.0371 (11)0.0269 (10)0.0121 (9)0.0079 (8)0.0132 (9)
C60.0264 (9)0.0275 (10)0.0229 (9)0.0089 (8)0.0032 (7)0.0093 (8)
C70.0228 (9)0.0275 (10)0.0284 (10)0.0058 (7)0.0040 (7)0.0160 (8)
C80.0211 (8)0.0222 (9)0.0277 (9)0.0047 (7)0.0037 (7)0.0136 (8)
C90.0228 (9)0.0228 (9)0.0291 (10)0.0054 (7)0.0005 (7)0.0132 (8)
C100.0342 (10)0.0256 (10)0.0268 (10)0.0085 (8)0.0015 (8)0.0115 (8)
C110.0334 (10)0.0208 (9)0.0329 (10)0.0088 (8)0.0039 (8)0.0131 (8)
C120.0263 (9)0.0210 (9)0.0279 (10)0.0036 (7)0.0025 (8)0.0075 (8)
C130.0317 (10)0.0290 (10)0.0344 (11)0.0085 (8)0.0005 (8)0.0150 (9)
C140.0449 (13)0.0403 (13)0.0286 (11)0.0094 (10)0.0024 (9)0.0150 (10)
C150.0461 (13)0.0460 (14)0.0266 (11)0.0137 (11)0.0029 (10)0.0053 (10)
C160.0466 (13)0.0376 (12)0.0328 (12)0.0200 (11)0.0012 (10)0.0037 (10)
C170.0370 (11)0.0266 (10)0.0282 (10)0.0102 (9)0.0035 (8)0.0072 (8)
Geometric parameters (Å, º) top
S1—O21.4293 (15)C5—H50.9500
S1—O11.4328 (14)C6—C71.468 (3)
S1—N11.6404 (17)C7—C81.359 (3)
S1—C11.757 (2)C8—C91.471 (3)
O3—C71.340 (2)C10—H10A0.9800
O3—H3O0.8400C10—H10B0.9800
O4—C91.255 (2)C10—H10C0.9800
N1—C81.439 (2)C11—C121.510 (3)
N1—C101.484 (2)C11—H11A0.9900
N2—C91.331 (3)C11—H11B0.9900
N2—C111.457 (2)C12—C131.390 (3)
N2—H2N0.8800C12—C171.394 (3)
C1—C21.387 (3)C13—C141.385 (3)
C1—C61.400 (3)C13—H130.9500
C2—C31.391 (3)C14—C151.382 (4)
C2—H20.9500C14—H140.9500
C3—C41.385 (3)C15—C161.385 (4)
C3—H30.9500C15—H150.9500
C4—C51.385 (3)C16—C171.383 (3)
C4—H40.9500C16—H160.9500
C5—C61.396 (3)C17—H170.9500
O2—S1—O1119.07 (9)C7—C8—C9120.57 (17)
O2—S1—N1108.07 (9)N1—C8—C9117.91 (16)
O1—S1—N1107.75 (9)O4—C9—N2122.22 (18)
O2—S1—C1109.30 (9)O4—C9—C8119.70 (18)
O1—S1—C1109.51 (9)N2—C9—C8118.07 (16)
N1—S1—C1101.71 (9)N1—C10—H10A109.5
C7—O3—H3O109.5N1—C10—H10B109.5
C8—N1—C10115.28 (15)H10A—C10—H10B109.5
C8—N1—S1112.70 (13)N1—C10—H10C109.5
C10—N1—S1116.38 (12)H10A—C10—H10C109.5
C9—N2—C11120.56 (16)H10B—C10—H10C109.5
C9—N2—H2N119.7N2—C11—C12112.69 (16)
C11—N2—H2N119.7N2—C11—H11A109.1
C2—C1—C6122.04 (18)C12—C11—H11A109.1
C2—C1—S1121.72 (15)N2—C11—H11B109.1
C6—C1—S1116.23 (15)C12—C11—H11B109.1
C1—C2—C3118.22 (19)H11A—C11—H11B107.8
C1—C2—H2120.9C13—C12—C17118.52 (19)
C3—C2—H2120.9C13—C12—C11122.75 (18)
C4—C3—C2120.6 (2)C17—C12—C11118.69 (18)
C4—C3—H3119.7C14—C13—C12120.5 (2)
C2—C3—H3119.7C14—C13—H13119.7
C3—C4—C5120.8 (2)C12—C13—H13119.7
C3—C4—H4119.6C15—C14—C13120.6 (2)
C5—C4—H4119.6C15—C14—H14119.7
C4—C5—C6119.8 (2)C13—C14—H14119.7
C4—C5—H5120.1C14—C15—C16119.4 (2)
C6—C5—H5120.1C14—C15—H15120.3
C5—C6—C1118.45 (19)C16—C15—H15120.3
C5—C6—C7121.20 (18)C17—C16—C15120.3 (2)
C1—C6—C7120.22 (17)C17—C16—H16119.9
O3—C7—C8122.42 (18)C15—C16—H16119.9
O3—C7—C6115.26 (17)C16—C17—C12120.7 (2)
C8—C7—C6122.27 (17)C16—C17—H17119.6
C7—C8—N1121.49 (17)C12—C17—H17119.6
O2—S1—N1—C860.59 (14)C1—C6—C7—C820.3 (3)
O1—S1—N1—C8169.54 (12)O3—C7—C8—N1179.44 (17)
C1—S1—N1—C854.42 (14)C6—C7—C8—N13.3 (3)
O2—S1—N1—C10163.02 (13)O3—C7—C8—C92.6 (3)
O1—S1—N1—C1033.15 (16)C6—C7—C8—C9174.66 (17)
C1—S1—N1—C1081.97 (15)C10—N1—C8—C798.7 (2)
O2—S1—C1—C2106.46 (17)S1—N1—C8—C738.2 (2)
O1—S1—C1—C225.63 (19)C10—N1—C8—C979.3 (2)
N1—S1—C1—C2139.44 (17)S1—N1—C8—C9143.81 (14)
O2—S1—C1—C674.54 (17)C11—N2—C9—O41.5 (3)
O1—S1—C1—C6153.38 (15)C11—N2—C9—C8179.79 (17)
N1—S1—C1—C639.56 (17)C7—C8—C9—O46.6 (3)
C6—C1—C2—C31.7 (3)N1—C8—C9—O4171.38 (17)
S1—C1—C2—C3179.35 (16)C7—C8—C9—N2174.66 (18)
C1—C2—C3—C40.1 (3)N1—C8—C9—N27.3 (3)
C2—C3—C4—C50.9 (3)C9—N2—C11—C12166.82 (17)
C3—C4—C5—C60.0 (3)N2—C11—C12—C1330.1 (3)
C4—C5—C6—C11.7 (3)N2—C11—C12—C17152.07 (18)
C4—C5—C6—C7174.19 (19)C17—C12—C13—C140.2 (3)
C2—C1—C6—C52.6 (3)C11—C12—C13—C14177.66 (19)
S1—C1—C6—C5178.41 (15)C12—C13—C14—C150.6 (3)
C2—C1—C6—C7173.33 (18)C13—C14—C15—C160.7 (4)
S1—C1—C6—C75.7 (2)C14—C15—C16—C170.3 (4)
C5—C6—C7—O321.9 (3)C15—C16—C17—C120.1 (3)
C1—C6—C7—O3162.27 (18)C13—C12—C17—C160.2 (3)
C5—C6—C7—C8155.6 (2)C11—C12—C17—C16178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.792.531 (2)146
N2—H2N···O1i0.882.242.980 (2)141
C10—H10A···O4ii0.982.503.349 (3)144
C11—H11B···O1iii0.992.513.374 (3)146
C15—H15···O2iv0.952.593.496 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC17H16N2O4S
Mr344.38
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.785 (3), 9.122 (3), 11.425 (4)
α, β, γ (°)66.61 (2), 87.66 (2), 69.38 (2)
V3)781.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.16 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.964, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6837, 3592, 3141
Rint0.028
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.06
No. of reflections3592
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.792.531 (2)146
N2—H2N···O1i0.882.242.980 (2)141
C10—H10A···O4ii0.982.503.349 (3)144
C11—H11B···O1iii0.992.513.374 (3)146
C15—H15···O2iv0.952.593.496 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y1, z; (iv) x, y1, z+1.
 

Acknowledgements

The authors thank the Higher Education Commission (HEC), Islamabad, Pakistan, for providing funds for this research.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLazzeri, N., Belvisi, M. G., Patel, H. J., Yacoub, M. H., Chung, K. F. & Mitchell, J. A. (2001). Am. J. Respir. Cell Mol. Biol. 24, 44–48.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLomabardino, J. G. & Wiseman, E. D. (1972). J. Med. Chem. 15, 848–849.  PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279–o2280.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds