organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1881-o1882

2-Anilino-3-(2-hy­dr­oxy­prop­yl)-4-methyl-1,3-thia­zol-3-ium chloride

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 15 May 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, C13H17N2OS+·Cl, the thia­zolium ring mean plane makes a dihedral angle of 55.46 (9)° with the benzene ring. In the propanol group, the N—C—C—C and N—C—C—O torsion angles are 172.58 (15) and 52.9 (2)°, respectively, and the S—C—C—C torsion angle is 178.99 (18)°. In the crystal, mol­ecules are linked by O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming zigzag chains along [001]. There is also a C—H⋯Cl inter­action present.

Related literature

The title compound was prepared as part of an ongoing investigation into the synthesis and biological properties of thia­zole compounds: see; Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmad, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.]); Baia et al. (2008[Baia, M., Astilean, S. & Iliescu, T. (2008). Raman and SERS Investigations of Pharmaceuticals, pp. 125-142. Berlin, Heidelberg: Springer.]); Lesyk et al. (2007[Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641-648.]); Mohamed et al. (2012a[Mohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955-965.],b[Mohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Nagiyev, F. N. & Allahverdiyev, M. A. (2012b). J. Chem. Pharm. Res. 4, 966-971.]); Potikha et al. (2008[Potikha, L. M., Turov, A. V. & Kovtunenko, V. A. (2008). Chem. Heterocycl. Compd, 44, 86-91.]); Shiradkar et al. (2007[Shiradkar, M., Kumar, G. V. S., Dasari, V., Tatikonda, S., Akula, K. C. & Shah, R. (2007). Eur. J. Med. Chem. 42, 807-816.]); Soliman et al. (2012[Soliman, A. M., Mohamed, S. K., El Remail, M. A. & Abdel Ghany, H. (2012). Eur. J. Med. Chem. 47, 138-142.]); Wu & Yang (2007[Wu, Y. J. & Yang, B. V. (2007). Prog. Heterocycl. Chem. 18, 247-275.]). For related structures, see: Lynch & McClenaghan (2004[Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o815-o817.]); Liu et al. (2011[Liu, Z.-J., Fu, X.-K., Hu, Z.-K., Wu, X.-J. & Wu, L. (2011). Acta Cryst. E67, o1562.]); Wang (2011[Wang, M.-F. (2011). Acta Cryst. E67, o1581.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17N2OS+·Cl

  • Mr = 284.81

  • Monoclinic, P 21 /c

  • a = 11.7570 (4) Å

  • b = 12.2477 (4) Å

  • c = 10.2954 (3) Å

  • β = 106.532 (1)°

  • V = 1421.21 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.922

  • 10535 measured reflections

  • 2641 independent reflections

  • 2172 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.03

  • 2641 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.82 2.36 3.1681 (16) 169
N1—H1⋯Cl1i 0.86 2.34 3.1675 (14) 163
C11—H11A⋯Cl1i 0.97 2.81 3.6440 (19) 144
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Natural compounds such as, bistratamide H, archazolid A & B, siomycin A, didmolamide A, scleritodermin A, etc. (Wu & Yang, 2007) and thiamine (vitamin B1) (Baia et al., 2008), were found to have a thiazol ring system. In addition, thiazole compounds have been reported to exhibit different pharmaceutical properties, for example antibacterial, antifungal (Abdel-Wahab et al., 2009), antitubercular (Shiradkar et al., 2007), anticancer (Lesyk et al., 2007). These compounds have been synthesized using different methods (Potikha et al., 2008). Further to our interest of bioactive compounds (Mohamed et al., 2012a,b; Soliman et al., 2012) we were interested in synthesizing new amino-thiazole derivatives via a one pot reaction protocol. We report herein on the synthesis and crystal structure of the title compound.

In the title compound, (Fig. 1), the dihedral angle between the thiazole ring (S1/N2/C7–C9) and the benzene ring (C1–C6) is 55.46 (9)°. The thiazolium ring is essentialy co-planar with the methyl group which is attached to it, with torsion angle S1—C9—C8—C10 being 178.99 (18)°. In the propanol group, torsion angles N2–C11–C12–C13 and N2–C11–C12–O1 are 172.58 (15) and 52.9 (2)°, respectively. Bond lengths and angles have normal values and are comparable to those reported for similar structures (Lynch & McClenaghan, 2004; Liu et al., 2011; Wang, 2011).

In the crystal, molecules are linked by O-H···Cl, N—H···Cl and C—H···Cl hydrogen bonds, into infinite zigzag chains propagating along the [001] direction (Table 1, Fig. 2).

Related literature top

The title compound was prepared as part of an ongoing investigation into the synthesis and biological properties of thiazole compounds: see; Abdel-Wahab et al. (2009); Baia et al. (2008); Lesyk et al. (2007); Mohamed et al. (2012a,b); Potikha et al. (2008); Shiradkar et al. (2007); Soliman et al. (2012); Wu & Yang (2007). For related structures, see: Lynch & McClenaghan (2004); Liu et al. (2011); Wang (2011).

Experimental top

A mixture of 75 mg (1 mmol) 1-aminopropan-2-ol, 135 mg (1 mmol) phenyl isothiocyanate and 93 mg (1 mmol) 1-chloropropan-2-one in 50 ml ethanol was refluxed at 351 K. The reaction was monitored by TLC until completion after four hours then cooled to room temperature. The resulting solid was filtered off, dried under vacuum and recrystallized from ethanol to afford colourless crystals suitable for X-ray analysis [Yield 79%; M.p. 419 K].

Refinement top

The H atoms were located in a difference Fourier map. In the final cycles of refinement they were included in calculated poitions and refined using a riding model: N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(C) for methyl groups and = 1.2Ueq(C,N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme for the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewing along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-Anilino-3-(2-hydroxypropyl)-4-methyl-1,3-thiazol-3-ium chloride top
Crystal data top
C13H17N2OS+·ClF(000) = 600
Mr = 284.81Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 447 reflections
a = 11.7570 (4) Åθ = 3.5–21.2°
b = 12.2477 (4) ŵ = 0.41 mm1
c = 10.2954 (3) ÅT = 296 K
β = 106.532 (1)°Rod, colourless
V = 1421.21 (8) Å30.35 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2641 independent reflections
Radiation source: fine-focus sealed tube2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 0.81 pixels mm-1θmax = 25.5°, θmin = 2.5°
ω scansh = 1411
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.898, Tmax = 0.922l = 1212
10535 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3249P]
where P = (Fo2 + 2Fc2)/3
2641 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H17N2OS+·ClV = 1421.21 (8) Å3
Mr = 284.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7570 (4) ŵ = 0.41 mm1
b = 12.2477 (4) ÅT = 296 K
c = 10.2954 (3) Å0.35 × 0.22 × 0.20 mm
β = 106.532 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2641 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2172 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.922Rint = 0.024
10535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2641 reflectionsΔρmin = 0.18 e Å3
166 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53335 (4)0.36209 (4)0.02819 (4)0.0436 (2)
O10.92376 (12)0.25939 (14)0.20894 (15)0.0722 (6)
N10.58597 (12)0.35477 (12)0.24335 (13)0.0424 (4)
N20.73113 (12)0.41117 (12)0.13880 (14)0.0447 (5)
C10.47013 (14)0.31414 (14)0.23234 (15)0.0382 (5)
C20.40120 (15)0.36823 (15)0.30052 (17)0.0455 (6)
C30.29021 (17)0.3281 (2)0.29410 (19)0.0586 (7)
C40.24821 (17)0.2359 (2)0.22085 (19)0.0673 (8)
C50.31707 (18)0.18174 (19)0.15336 (18)0.0612 (7)
C60.42873 (16)0.22021 (15)0.15893 (16)0.0471 (6)
C70.62227 (15)0.37561 (13)0.13445 (16)0.0384 (5)
C80.74511 (17)0.42898 (16)0.00903 (19)0.0522 (7)
C90.64774 (18)0.40625 (15)0.08878 (19)0.0527 (7)
C100.8594 (2)0.4705 (2)0.0071 (2)0.0812 (9)
C110.82819 (15)0.41979 (16)0.26481 (18)0.0509 (6)
C120.88729 (16)0.31168 (18)0.31206 (19)0.0544 (7)
C130.99588 (18)0.3309 (2)0.4314 (2)0.0775 (9)
Cl10.71127 (4)0.10568 (4)0.05541 (4)0.0553 (2)
H10.633900.366200.322500.0510*
H1A0.867900.225100.160100.1080*
H20.429400.431000.350100.0550*
H30.243400.363900.339900.0700*
H40.173000.209700.216700.0810*
H50.288200.119100.103900.0730*
H60.475600.183600.114000.0560*
H90.641600.413300.180500.0630*
H10A0.854600.473900.101700.1220*
H10B0.922600.422300.038200.1220*
H10C0.874600.542200.031700.1220*
H11A0.797200.449600.335200.0610*
H11B0.887200.470400.251000.0610*
H120.831600.264400.340500.0650*
H13A1.051300.376100.403500.1160*
H13B1.032400.262200.463500.1160*
H13C0.972600.366600.502900.1160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0486 (3)0.0486 (3)0.0332 (2)0.0003 (2)0.0112 (2)0.0015 (2)
O10.0544 (8)0.0909 (12)0.0737 (10)0.0018 (8)0.0221 (8)0.0187 (8)
N10.0389 (7)0.0577 (9)0.0305 (7)0.0068 (7)0.0095 (6)0.0046 (6)
N20.0429 (8)0.0501 (9)0.0424 (8)0.0073 (7)0.0145 (6)0.0013 (6)
C10.0368 (9)0.0496 (10)0.0277 (8)0.0008 (8)0.0083 (7)0.0037 (7)
C20.0466 (10)0.0562 (11)0.0339 (9)0.0062 (8)0.0120 (8)0.0041 (8)
C30.0417 (10)0.0936 (16)0.0433 (11)0.0091 (11)0.0167 (9)0.0074 (10)
C40.0415 (11)0.1137 (19)0.0455 (11)0.0179 (12)0.0106 (9)0.0083 (12)
C50.0641 (13)0.0781 (15)0.0387 (10)0.0288 (11)0.0103 (9)0.0025 (9)
C60.0539 (11)0.0570 (11)0.0318 (9)0.0069 (9)0.0146 (8)0.0020 (8)
C70.0415 (9)0.0381 (9)0.0364 (9)0.0001 (7)0.0123 (7)0.0007 (7)
C80.0578 (11)0.0555 (12)0.0491 (11)0.0065 (9)0.0245 (10)0.0092 (9)
C90.0665 (12)0.0551 (12)0.0417 (10)0.0017 (9)0.0239 (10)0.0093 (8)
C100.0748 (15)0.1027 (19)0.0776 (15)0.0227 (14)0.0402 (13)0.0156 (14)
C110.0423 (10)0.0619 (12)0.0494 (11)0.0140 (9)0.0144 (8)0.0084 (9)
C120.0401 (10)0.0747 (14)0.0485 (11)0.0024 (9)0.0127 (8)0.0044 (9)
C130.0479 (12)0.117 (2)0.0612 (13)0.0011 (13)0.0050 (10)0.0043 (13)
Cl10.0614 (3)0.0629 (3)0.0409 (3)0.0018 (2)0.0135 (2)0.0051 (2)
Geometric parameters (Å, º) top
S1—C71.7111 (17)C11—C121.510 (3)
S1—C91.723 (2)C12—C131.517 (3)
O1—C121.407 (2)C2—H20.9300
O1—H1A0.8200C3—H30.9300
N1—C71.333 (2)C4—H40.9300
N1—C11.424 (2)C5—H50.9300
N2—C81.409 (2)C6—H60.9300
N2—C111.468 (2)C9—H90.9300
N2—C71.341 (2)C10—H10A0.9600
N1—H10.8600C10—H10B0.9600
C1—C21.383 (2)C10—H10C0.9600
C1—C61.387 (2)C11—H11A0.9700
C2—C31.378 (3)C11—H11B0.9700
C3—C41.370 (3)C12—H120.9800
C4—C51.378 (3)C13—H13A0.9600
C5—C61.381 (3)C13—H13B0.9600
C8—C91.321 (3)C13—H13C0.9600
C8—C101.490 (3)
C7—S1—C990.08 (9)C4—C3—H3120.00
C12—O1—H1A109.00C3—C4—H4120.00
C1—N1—C7121.86 (14)C5—C4—H4120.00
C7—N2—C11123.21 (14)C4—C5—H5120.00
C8—N2—C11123.78 (15)C6—C5—H5120.00
C7—N2—C8112.74 (14)C1—C6—H6120.00
C7—N1—H1119.00C5—C6—H6120.00
C1—N1—H1119.00S1—C9—H9124.00
N1—C1—C2118.53 (15)C8—C9—H9124.00
N1—C1—C6120.85 (15)C8—C10—H10A109.00
C2—C1—C6120.58 (16)C8—C10—H10B110.00
C1—C2—C3119.24 (17)C8—C10—H10C109.00
C2—C3—C4120.57 (19)H10A—C10—H10B109.00
C3—C4—C5120.2 (2)H10A—C10—H10C109.00
C4—C5—C6120.2 (2)H10B—C10—H10C109.00
C1—C6—C5119.21 (17)N2—C11—H11A109.00
S1—C7—N1123.50 (14)N2—C11—H11B109.00
S1—C7—N2112.07 (12)C12—C11—H11A109.00
N1—C7—N2124.42 (15)C12—C11—H11B109.00
N2—C8—C9112.37 (18)H11A—C11—H11B108.00
N2—C8—C10120.73 (16)O1—C12—H12109.00
C9—C8—C10126.90 (18)C11—C12—H12109.00
S1—C9—C8112.74 (15)C13—C12—H12109.00
N2—C11—C12113.11 (15)C12—C13—H13A109.00
O1—C12—C11111.54 (16)C12—C13—H13B109.00
O1—C12—C13108.34 (16)C12—C13—H13C109.00
C11—C12—C13109.20 (18)H13A—C13—H13B109.00
C1—C2—H2120.00H13A—C13—H13C109.00
C3—C2—H2120.00H13B—C13—H13C109.00
C2—C3—H3120.00
C9—S1—C7—N1178.77 (15)C8—N2—C7—N1178.65 (16)
C9—S1—C7—N20.17 (14)C8—N2—C11—C1294.2 (2)
C7—S1—C9—C80.00 (17)N1—C1—C2—C3178.13 (16)
C7—N1—C1—C2127.80 (17)C2—C1—C6—C50.7 (3)
C7—N1—C1—C654.5 (2)N1—C1—C6—C5178.37 (16)
C1—N1—C7—S13.0 (2)C6—C1—C2—C30.4 (3)
C1—N1—C7—N2178.18 (16)C1—C2—C3—C40.2 (3)
C8—N2—C7—S10.27 (19)C2—C3—C4—C50.4 (3)
C11—N2—C7—S1173.96 (13)C3—C4—C5—C60.1 (3)
C11—N2—C7—N17.1 (3)C4—C5—C6—C10.4 (3)
C7—N2—C8—C90.3 (2)N2—C8—C9—S10.1 (2)
C11—N2—C8—C9173.93 (17)C10—C8—C9—S1178.99 (18)
C7—N2—C8—C10178.92 (18)N2—C11—C12—O152.9 (2)
C11—N2—C8—C106.9 (3)N2—C11—C12—C13172.58 (15)
C7—N2—C11—C1279.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.822.363.1681 (16)169
N1—H1···Cl1i0.862.343.1675 (14)163
C11—H11A···Cl1i0.972.813.6440 (19)144
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H17N2OS+·Cl
Mr284.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.7570 (4), 12.2477 (4), 10.2954 (3)
β (°) 106.532 (1)
V3)1421.21 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.898, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
10535, 2641, 2172
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.03
No. of reflections2641
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.822.363.1681 (16)169
N1—H1···Cl1i0.862.343.1675 (14)163
C11—H11A···Cl1i0.972.813.6440 (19)144
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

SKM and AAA thank the Ministry of Higher Education, Egypt, for financial support of this project. Manchester Metropolitan University and the University of Sargodha are also gratefully acknowledged for supporting this study.

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmad, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaia, M., Astilean, S. & Iliescu, T. (2008). Raman and SERS Investigations of Pharmaceuticals, pp. 125–142. Berlin, Heidelberg: Springer.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641–648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Z.-J., Fu, X.-K., Hu, Z.-K., Wu, X.-J. & Wu, L. (2011). Acta Cryst. E67, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o815–o817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955–965.  CAS Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Nagiyev, F. N. & Allahverdiyev, M. A. (2012b). J. Chem. Pharm. Res. 4, 966–971.  CAS Google Scholar
First citationPotikha, L. M., Turov, A. V. & Kovtunenko, V. A. (2008). Chem. Heterocycl. Compd, 44, 86–91.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiradkar, M., Kumar, G. V. S., Dasari, V., Tatikonda, S., Akula, K. C. & Shah, R. (2007). Eur. J. Med. Chem. 42, 807–816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSoliman, A. M., Mohamed, S. K., El Remail, M. A. & Abdel Ghany, H. (2012). Eur. J. Med. Chem. 47, 138–142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M.-F. (2011). Acta Cryst. E67, o1581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, Y. J. & Yang, B. V. (2007). Prog. Heterocycl. Chem. 18, 247–275.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1881-o1882
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds