organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-aminium bromide monohydrate

aLiaoning University of Traditional Chinese Medicine, Dalian 116600, People's Republic of China
*Correspondence e-mail: lnzyxuliang@eyou.com

(Received 15 May 2012; accepted 23 May 2012; online 31 May 2012)

In the title hydrated mol­ecular salt, C11H14N3O+·Br·H2O, the Br anion is split and appears as two independent half-occupied Br anions on twofold rotation axes. The dihedral angle between the phenyl ring and the mean plane of the 2,3-dihydro-1H-pyrazole ring (r.m.s. devation = 0.014 Å) is 62.43 (7)°. In the crystal, the components are connected via O—H⋯Br and N—H⋯O hydrogen bonds to form a one-dimensional polymeric structure propagating along [001].

Related literature

For general background on pyrazolone derivatives, see: Casas et al. (2007[Casas, J. S., García-Tasende, M. S., Sánchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561-1589.]); Jain et al. (2003[Jain, S. C., Sinha, S., Bhagat, S., Errington, W. & Olsen, C. E. (2003). Synth. Commun. 33, 563-577.]); Zhang et al. (2008[Zhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.]). For related structures, see: Chitradevi et al. (2009[Chitradevi, A., Athimoolam, S., Sridhar, B. & Bahadur, S. A. (2009). Acta Cryst. E65, o3041-o3042.]); Murtaza et al.(2011[Murtaza, S., Hamza, M. & Tahir, M. N. (2011). Acta Cryst. E67, o2193.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N3O+·Br·H2O

  • Mr = 302.17

  • Monoclinic, C 2/c

  • a = 14.9080 (19) Å

  • b = 15.3961 (19) Å

  • c = 11.1501 (14) Å

  • β = 93.657 (2)°

  • V = 2554.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.489, Tmax = 0.556

  • 11995 measured reflections

  • 3222 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.04

  • 3222 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Br1 0.85 2.51 3.360 (2) 173
O1W—H1WB⋯Br2 0.85 2.52 3.371 (3) 173
N3—H3B⋯O1i 0.89 1.89 2.692 (3) 150
N3—H3C⋯O1W 0.89 2.55 3.321 (3) 146
N3—H3C⋯O1ii 0.89 2.37 3.004 (3) 129
N3—H3D⋯O1Wii 0.89 1.99 2.817 (4) 153
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-Aminoantipyrene, which contains a pyrazolone ring, is an important compound in the class of analgesic agents used in otic solutions in combination with other analgesics such as benzocaine and phenylephrine (Jain et al., 2003). Pyrazolone is a five-membered lactam ring compound containing two N atoms and a ketone in the same molecule. Such pyrazolone derivatives form a very important class of heterocycles due to their properties and applications (Casas et al., 2007; Zhang et al., 2008). We report herein on the synthesis and crystal structure of the title compound.

The asymmetric unit of title compound, Fig. 1, consists of three components: a 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium cation, a bromide ion and a water molecule. The Br anion is split and appears as two independent half-occupied Br anions, Br1 and Br2, on two-fold rotation axes. In cation, the phenyl ring A (C1–C6) and the 2,3-dihydro-1H-pyrazole ring B (N1/N2/C7/C8/C11) are planar with r.m.s. deviations of 0.019 and 0.014 Å. The dihedral angle between A/B is 62.43 (7)°. The attached atoms O1, N3, C9 and C10 are at a distance of 0.030 (3), 0.053 (3), 0.130 (3) and 0.140 (3) Å respectively, from the mean plane of B. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal structure of some similar compounds have been reported (Chitradevi et al., 2009; Murtaza et al., 2011).

In the crystal, the various components are connected by N—H···O and O—H···Br hydrogen bonds (Table 1 and Fig. 2) to form an infinite one-dimensional arrangement parallel to [001].

Related literature top

For general background on pyrazolone derivatives, see: Casas et al. (2007); Jain et al. (2003); Zhang et al. (2008). For related structures, see: Chitradevi et al. (2009); Murtaza et al.(2011). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Aminoantipyrine (0.203 g, 1.0 mmol) and dibromomethane (0.173 g, 1.0 mmol) were dissolved in water (15 ml). The mixture was refluxed for 3 h and then the solvent was evaporated on rotary evaporator to almost dryness. The crude product was recrystallized from water yielding block-like yellow crystals of the title compound.

Refinement top

The H atoms were included calculated positions and treated as riding atoms: O—H = 0.85 Å, N—H = 0.89 Å, C—H = 0.93–0.96 Å, with Uiso(H) = x × Ueq(C,N,O), where x = 1.5 for CH3 and NH3 H atoms and = 1.2 for other H-atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. H-bonds are shown as dashed lines; see Table 1 for details.
1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium bromide monohydrate top
Crystal data top
C11H14N3O+·Br·H2OF(000) = 1232
Mr = 302.17Dx = 1.572 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2078 reflections
a = 14.9080 (19) Åθ = 2.7–23.6°
b = 15.3961 (19) ŵ = 3.21 mm1
c = 11.1501 (14) ÅT = 296 K
β = 93.657 (2)°Block, yellow
V = 2554.0 (6) Å30.22 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3222 independent reflections
Radiation source: fine-focus sealed tube2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.489, Tmax = 0.556k = 2020
11995 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 2.161P]
where P = (Fo2 + 2Fc2)/3
3222 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C11H14N3O+·Br·H2OV = 2554.0 (6) Å3
Mr = 302.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.9080 (19) ŵ = 3.21 mm1
b = 15.3961 (19) ÅT = 296 K
c = 11.1501 (14) Å0.22 × 0.20 × 0.18 mm
β = 93.657 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2081 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 0.556Rint = 0.044
11995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
3222 reflectionsΔρmin = 0.40 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11377 (13)0.01137 (15)0.64912 (16)0.0377 (6)
N10.24203 (15)0.09233 (18)0.61672 (19)0.0346 (8)
N20.28247 (16)0.12321 (17)0.5164 (2)0.0353 (8)
N30.08569 (14)0.01740 (16)0.38186 (18)0.0286 (7)
C10.2831 (2)0.0971 (2)0.7361 (2)0.0330 (9)
C20.2374 (2)0.1400 (2)0.8221 (3)0.0437 (10)
C30.2752 (3)0.1419 (3)0.9393 (3)0.0630 (16)
C40.3572 (4)0.1054 (3)0.9670 (3)0.080 (2)
C50.4009 (3)0.0627 (4)0.8813 (4)0.0781 (18)
C60.3637 (2)0.0573 (3)0.7639 (3)0.0551 (13)
C70.15821 (17)0.05670 (17)0.4544 (2)0.0256 (8)
C80.22945 (18)0.10325 (18)0.4178 (2)0.0275 (8)
C90.2493 (2)0.1347 (2)0.2962 (3)0.0391 (10)
C100.3605 (2)0.1798 (2)0.5249 (3)0.0466 (10)
C110.16456 (18)0.04939 (18)0.5808 (2)0.0281 (8)
Br10.000000.19903 (3)0.250000.0427 (2)
Br20.000000.29956 (4)0.750000.0536 (2)
O1W0.04198 (19)0.14894 (18)0.5343 (2)0.0651 (10)
H2A0.182600.167000.802200.0530*
H3A0.244300.168400.999400.0760*
H3B0.092600.028500.304700.0430*
H3C0.033600.039200.402500.0430*
H3D0.086200.039800.393700.0430*
H4A0.383400.109701.044800.0950*
H5A0.456200.036700.901400.0940*
H6A0.393100.027300.705600.0660*
H9A0.305400.165600.301000.0590*
H9B0.202100.172800.266100.0590*
H9C0.253300.086100.242900.0590*
H10A0.377800.193400.445600.0700*
H10B0.409200.151100.569100.0700*
H10C0.345900.232500.565500.0700*
H1WA0.029900.165900.464600.0780*
H1WB0.029900.189900.583900.0780*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0326 (10)0.0618 (14)0.0186 (9)0.0133 (10)0.0006 (8)0.0052 (10)
N10.0309 (13)0.0554 (16)0.0174 (10)0.0125 (12)0.0004 (9)0.0000 (11)
N20.0365 (14)0.0473 (15)0.0222 (11)0.0144 (11)0.0023 (10)0.0009 (11)
N30.0255 (11)0.0427 (14)0.0174 (10)0.0025 (10)0.0004 (8)0.0018 (10)
C10.0337 (14)0.0450 (18)0.0199 (13)0.0118 (14)0.0022 (11)0.0009 (13)
C20.062 (2)0.0393 (18)0.0301 (16)0.0069 (16)0.0059 (15)0.0011 (14)
C30.106 (4)0.056 (2)0.0272 (17)0.026 (2)0.006 (2)0.0081 (17)
C40.105 (4)0.098 (4)0.032 (2)0.057 (3)0.026 (2)0.014 (2)
C50.047 (2)0.126 (4)0.058 (3)0.022 (2)0.023 (2)0.028 (3)
C60.0382 (18)0.082 (3)0.044 (2)0.0042 (18)0.0058 (15)0.0046 (18)
C70.0251 (13)0.0337 (14)0.0180 (12)0.0002 (11)0.0006 (9)0.0022 (11)
C80.0283 (14)0.0347 (15)0.0197 (12)0.0011 (12)0.0032 (10)0.0006 (11)
C90.0439 (18)0.0505 (19)0.0232 (13)0.0086 (14)0.0043 (12)0.0062 (14)
C100.0380 (17)0.065 (2)0.0369 (17)0.0226 (16)0.0040 (13)0.0049 (16)
C110.0264 (13)0.0388 (16)0.0191 (12)0.0037 (12)0.0011 (10)0.0002 (12)
Br10.0493 (3)0.0400 (3)0.0371 (2)0.00000.0094 (2)0.0000
Br20.0436 (3)0.0828 (4)0.0347 (3)0.00000.0055 (2)0.0000
O1W0.097 (2)0.0533 (16)0.0461 (14)0.0197 (15)0.0132 (14)0.0000 (13)
Geometric parameters (Å, º) top
O1—C111.253 (3)C4—C51.360 (7)
O1W—H1WB0.8500C5—C61.391 (6)
O1W—H1WA0.8500C7—C81.365 (4)
N1—C111.368 (4)C7—C111.411 (3)
N1—C11.431 (3)C8—C91.487 (4)
N1—N21.388 (3)C2—H2A0.9300
N2—C81.348 (3)C3—H3A0.9300
N2—C101.452 (4)C4—H4A0.9300
N3—C71.441 (3)C5—H5A0.9300
N3—H3C0.8900C6—H6A0.9300
N3—H3D0.8900C9—H9B0.9600
N3—H3B0.8900C9—H9C0.9600
C1—C21.380 (4)C9—H9A0.9600
C1—C61.367 (5)C10—H10C0.9600
C2—C31.390 (5)C10—H10A0.9600
C3—C41.363 (7)C10—H10B0.9600
H1WA—O1W—H1WB109.00N2—C8—C7107.6 (2)
N2—N1—C1123.4 (2)N1—C11—C7104.8 (2)
N2—N1—C11109.4 (2)O1—C11—C7129.8 (2)
C1—N1—C11126.9 (2)O1—C11—N1125.4 (2)
N1—N2—C8108.5 (2)C3—C2—H2A121.00
N1—N2—C10122.7 (2)C1—C2—H2A121.00
C8—N2—C10128.0 (2)C2—C3—H3A120.00
C7—N3—H3D109.00C4—C3—H3A120.00
C7—N3—H3B109.00C5—C4—H4A120.00
C7—N3—H3C109.00C3—C4—H4A120.00
H3C—N3—H3D110.00C4—C5—H5A120.00
H3B—N3—H3C110.00C6—C5—H5A120.00
H3B—N3—H3D109.00C5—C6—H6A121.00
N1—C1—C6120.4 (3)C1—C6—H6A121.00
N1—C1—C2118.0 (3)C8—C9—H9A109.00
C2—C1—C6121.5 (3)C8—C9—H9B109.00
C1—C2—C3118.4 (3)H9A—C9—H9B109.00
C2—C3—C4120.6 (3)H9A—C9—H9C109.00
C3—C4—C5120.2 (4)C8—C9—H9C110.00
C4—C5—C6120.7 (4)H9B—C9—H9C109.00
C1—C6—C5118.6 (3)N2—C10—H10B110.00
N3—C7—C11121.8 (2)N2—C10—H10C109.00
C8—C7—C11109.7 (2)N2—C10—H10A109.00
N3—C7—C8128.5 (2)H10A—C10—H10C109.00
N2—C8—C9121.9 (2)H10B—C10—H10C109.00
C7—C8—C9130.3 (2)H10A—C10—H10B110.00
C1—N1—N2—C8175.6 (3)N1—C1—C2—C3177.5 (3)
C1—N1—N2—C1013.9 (4)C6—C1—C2—C30.2 (5)
C11—N1—N2—C82.5 (3)N1—C1—C6—C5179.3 (4)
C11—N1—N2—C10173.0 (3)C2—C1—C6—C51.8 (6)
N2—N1—C1—C2122.6 (3)C1—C2—C3—C42.8 (6)
C11—N1—C1—C265.5 (4)C2—C3—C4—C53.4 (7)
N2—N1—C1—C659.8 (4)C3—C4—C5—C61.5 (8)
C11—N1—C1—C6112.1 (4)C4—C5—C6—C11.1 (7)
N2—N1—C11—C71.1 (3)N3—C7—C8—C96.8 (5)
C1—N1—C11—C7174.0 (3)C11—C7—C8—N22.1 (3)
N2—N1—C11—O1177.5 (3)C11—C7—C8—C9174.3 (3)
C1—N1—C11—O14.7 (5)N3—C7—C11—O10.1 (5)
C10—N2—C8—C94.1 (5)N3—C7—C11—N1178.5 (2)
C10—N2—C8—C7172.6 (3)C8—C7—C11—O1179.2 (3)
N1—N2—C8—C9174.0 (3)C8—C7—C11—N10.6 (3)
N1—N2—C8—C72.7 (3)N3—C7—C8—N2176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Br10.852.513.360 (2)173
O1W—H1WB···Br20.852.523.371 (3)173
N3—H3B···O1i0.891.892.692 (3)150
N3—H3C···O1W0.892.553.321 (3)146
N3—H3C···O1ii0.892.373.004 (3)129
N3—H3D···O1Wii0.891.992.817 (4)153
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H14N3O+·Br·H2O
Mr302.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)14.9080 (19), 15.3961 (19), 11.1501 (14)
β (°) 93.657 (2)
V3)2554.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.489, 0.556
No. of measured, independent and
observed [I > 2σ(I)] reflections
11995, 3222, 2081
Rint0.044
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.04
No. of reflections3222
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Br10.852.513.360 (2)173
O1W—H1WB···Br20.852.523.371 (3)173
N3—H3B···O1i0.891.892.692 (3)150
N3—H3C···O1W0.892.553.321 (3)146
N3—H3C···O1ii0.892.373.004 (3)129
N3—H3D···O1Wii0.891.992.817 (4)153
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors thank Liaoning University of Traditional Chinese Medicine for supporting this study (grant No. YXRC0920).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., García-Tasende, M. S., Sánchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561–1589.  CrossRef CAS Google Scholar
First citationChitradevi, A., Athimoolam, S., Sridhar, B. & Bahadur, S. A. (2009). Acta Cryst. E65, o3041–o3042.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJain, S. C., Sinha, S., Bhagat, S., Errington, W. & Olsen, C. E. (2003). Synth. Commun. 33, 563–577.  Web of Science CrossRef CAS Google Scholar
First citationMurtaza, S., Hamza, M. & Tahir, M. N. (2011). Acta Cryst. E67, o2193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds