organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1954-o1955

5-(4-Fluoro­phen­yl)-3-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 May 2012; accepted 27 May 2012; online 31 May 2012)

In the title compound, C20H19FN6S, the pyrazole ring has an envelope conformation, with the methine C atom being the flap atom. The dihedral angle between the least-squares plane through the pyrazole and triazole rings is 7.59 (9)°, and the triazole and attached benzene ring form a dihedral angle of 74.79 (9)°. The thio­urea group is coplanar with the pyrazole ring [N—N—C—S torsion angle = −179.93 (11)°], which enables the formation of an intra­molecular N—H⋯N hydrogen bond. In the crystal, inversion-related mol­ecules associate via N—H⋯S hydrogen bonds and eight-membered {⋯HNCS}2 synthons feature in the crystal packing. These synthons are connected into supra­molecular chains along the a axis via N—H⋯F hydrogen bonds, and the chains are consolidated into layers in the ab plane via C—H⋯S and C—H⋯F contacts.

Related literature

For the biological activity of pyrazolyl-1,2,3-triazoles, see: Abdel-Wahab et al. (2012a[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263-268.]); Booth & Ross (1982[Booth, J. H. & Ross, A. S. (1982). US Patent 4336375.]); Curran (1982[Curran, W. V. (1982). US Patent 4334062.]). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1956-o1957.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19FN6S

  • Mr = 394.47

  • Monoclinic, P 21 /c

  • a = 9.4388 (4) Å

  • b = 6.5476 (3) Å

  • c = 32.1483 (18) Å

  • β = 91.288 (4)°

  • V = 1986.31 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.855, Tmax = 1.000

  • 7765 measured reflections

  • 4551 independent reflections

  • 3809 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.02

  • 4551 reflections

  • 263 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.89 (2) 2.432 (19) 3.3159 (14) 172.7 (16)
N1—H2N⋯F1ii 0.86 (2) 2.29 (2) 2.9940 (18) 138.9 (17)
N1—H2N⋯N3 0.86 (2) 2.30 (2) 2.6554 (19) 104.9 (15)
C3—H3A⋯S1iii 0.99 2.87 3.8390 (19) 166
C9—H9⋯S1iv 0.95 2.83 3.5595 (18) 135
C15—H15⋯F1v 0.95 2.41 3.2502 (19) 148
Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) x+1, y, z; (iii) x, y-1, z; (iv) -x, -y+2, -z+1; (v) x+1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural studies of related drug candidates (Abdel-Wahab et al., 2012b), the title compound, (I), was investigated crystallographically. This compound is of interest owing to the established biological activities exhibited by pyrazolyl-1,2,3-triazoles (Abdel-Wahab et al., 2012a; Booth & Ross, 1982; Curran, 1982).

The pyrazole ring in (I), Fig. 1, adopts an envelope conformation (r.m.s. deviation = 0.138 Å) with the methine-C2 atom being the flap atom. The dihedral angle between the least-squares plane through this ring and the adjacent triazole ring is 7.59 (9)°. The benzene ring connected to the triazole ring is twisted out of its plane, forming a dihedral angle of 74.79 (9)°. The N3—N2—C1—S1 torsion angle of -179.93 (11)° indicates that the thiourea moiety is coplanar with the pyrazole ring. This arrangement coupled with the orientation of the amino group towards the ring enables the formation of an intramolecular N—H···N hydrogen bond (Table 1).

In the crystal, centrosymmetrically related molecules associate via N—H···S hydrogen bonds and eight-membered {···HNCS}2 synthons feature in the crystal packing (Table 1). These are connected into supramolecular chains along the a axis via N—H···F hydrogen bonds (Fig. 2 and Table 1). Chains are connected into layers in the ab plane via C—H···S and C—H···F contacts (Table 1). Layers inter-digitate along the c axis with no specific interactions between them (Fig. 3).

Related literature top

For the biological activity of pyrazolyl-1,2,3-triazoles, see: Abdel-Wahab et al. (2012a); Booth & Ross (1982); Curran (1982). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b).

Experimental top

The title compound was prepared according to the reported method (Abdel-Wahab et al., 2012a). Crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms] and were included in the refinement in the riding model approximation. The N-bound H atoms were freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of a supramolecular chain along the a axis in (I). The N—H···S and N—H···F hydrogen bonds are shown as blue and orange dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I) highlighting the inter-digitation of layers along the c axis. The N—H···S, N—H···F, C—H···S and C—H···F interactions are shown as blue, orange, purple and brown dashed lines, respectively.
5-(4-Fluorophenyl)-3-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol- 4-yl]-4,5-dihydro-1H-pyrazole-1-carbothioamide top
Crystal data top
C20H19FN6SF(000) = 824
Mr = 394.47Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3598 reflections
a = 9.4388 (4) Åθ = 2.2–27.5°
b = 6.5476 (3) ŵ = 0.19 mm1
c = 32.1483 (18) ÅT = 100 K
β = 91.288 (4)°Prism, light-brown
V = 1986.31 (17) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4551 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3809 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 88
Tmin = 0.855, Tmax = 1.000l = 2341
7765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.045P)2 + 1.138P]
where P = (Fo2 + 2Fc2)/3
4551 reflections(Δ/σ)max = 0.002
263 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C20H19FN6SV = 1986.31 (17) Å3
Mr = 394.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4388 (4) ŵ = 0.19 mm1
b = 6.5476 (3) ÅT = 100 K
c = 32.1483 (18) Å0.40 × 0.30 × 0.20 mm
β = 91.288 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4551 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3809 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 1.000Rint = 0.027
7765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.64 e Å3
4551 reflectionsΔρmin = 0.36 e Å3
263 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32997 (4)1.28074 (6)0.507140 (13)0.01661 (12)
F10.23235 (10)1.32770 (17)0.39047 (3)0.0253 (3)
N10.53882 (15)1.2902 (2)0.45302 (5)0.0181 (3)
N20.38250 (13)1.0266 (2)0.44567 (4)0.0137 (3)
N30.45951 (13)0.9562 (2)0.41184 (4)0.0145 (3)
N40.40790 (15)0.4715 (2)0.35943 (5)0.0212 (3)
N50.47668 (16)0.3904 (2)0.32855 (5)0.0224 (3)
N60.57249 (14)0.5319 (2)0.31626 (4)0.0161 (3)
C10.42324 (16)1.1970 (2)0.46636 (5)0.0139 (3)
C20.25153 (16)0.9101 (2)0.45166 (5)0.0139 (3)
H20.23930.87890.48180.017*
C30.28474 (17)0.7137 (3)0.42742 (5)0.0162 (3)
H3A0.31460.60170.44630.019*
H3B0.20230.66840.41020.019*
C40.40479 (16)0.7836 (3)0.40082 (5)0.0145 (3)
C50.12296 (16)1.0241 (2)0.43419 (5)0.0136 (3)
C60.13589 (17)1.1894 (3)0.40729 (5)0.0170 (3)
H60.22721.23300.39920.020*
C70.01603 (17)1.2911 (3)0.39217 (5)0.0183 (4)
H70.02411.40390.37380.022*
C80.11438 (17)1.2240 (3)0.40457 (5)0.0177 (4)
C90.13193 (17)1.0592 (3)0.43024 (5)0.0200 (4)
H90.22381.01480.43760.024*
C100.01149 (17)0.9592 (3)0.44518 (5)0.0176 (3)
H100.02100.84500.46310.021*
C110.45981 (17)0.6634 (3)0.36697 (5)0.0157 (3)
C120.56581 (17)0.7042 (3)0.33933 (5)0.0158 (3)
C130.65699 (19)0.8859 (3)0.33351 (6)0.0245 (4)
H13A0.69110.88800.30490.037*
H13B0.73800.87990.35310.037*
H13C0.60211.01000.33870.037*
C140.66475 (17)0.4832 (3)0.28258 (5)0.0167 (3)
C150.77454 (18)0.3469 (3)0.28951 (5)0.0204 (4)
H150.79170.29130.31650.025*
C160.85941 (19)0.2924 (3)0.25663 (6)0.0229 (4)
H160.93540.19950.26130.027*
C170.83530 (18)0.3714 (3)0.21690 (5)0.0207 (4)
C180.72555 (19)0.5103 (3)0.21112 (6)0.0260 (4)
H180.70920.56850.18440.031*
C190.63922 (19)0.5658 (3)0.24361 (5)0.0234 (4)
H190.56350.65940.23910.028*
C200.9250 (2)0.3050 (3)0.18119 (6)0.0324 (5)
H20A1.01080.23750.19200.049*
H20B0.95140.42470.16480.049*
H20C0.87100.20960.16350.049*
H1N0.5662 (19)1.407 (3)0.4648 (6)0.020 (5)*
H2N0.574 (2)1.255 (3)0.4297 (7)0.027 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (2)0.0157 (2)0.0149 (2)0.00300 (17)0.00448 (15)0.00283 (16)
F10.0177 (5)0.0359 (6)0.0223 (5)0.0063 (5)0.0003 (4)0.0081 (5)
N10.0174 (7)0.0180 (8)0.0191 (8)0.0041 (6)0.0050 (6)0.0068 (6)
N20.0125 (6)0.0151 (7)0.0137 (7)0.0008 (5)0.0024 (5)0.0030 (6)
N30.0149 (6)0.0154 (7)0.0132 (7)0.0016 (6)0.0022 (5)0.0015 (6)
N40.0287 (8)0.0162 (7)0.0190 (7)0.0038 (6)0.0068 (6)0.0044 (6)
N50.0291 (8)0.0177 (7)0.0208 (8)0.0071 (6)0.0080 (6)0.0044 (6)
N60.0203 (7)0.0133 (7)0.0147 (7)0.0028 (6)0.0027 (5)0.0007 (6)
C10.0145 (7)0.0131 (8)0.0141 (8)0.0020 (6)0.0026 (6)0.0011 (6)
C20.0159 (8)0.0118 (7)0.0142 (8)0.0031 (6)0.0014 (6)0.0004 (6)
C30.0180 (8)0.0137 (8)0.0170 (8)0.0008 (7)0.0025 (6)0.0006 (7)
C40.0155 (7)0.0143 (8)0.0138 (8)0.0019 (6)0.0001 (6)0.0013 (6)
C50.0153 (7)0.0136 (8)0.0121 (7)0.0015 (6)0.0011 (6)0.0023 (6)
C60.0150 (8)0.0186 (8)0.0174 (8)0.0042 (7)0.0019 (6)0.0003 (7)
C70.0204 (8)0.0179 (8)0.0166 (8)0.0010 (7)0.0004 (6)0.0041 (7)
C80.0148 (8)0.0230 (9)0.0152 (8)0.0036 (7)0.0012 (6)0.0003 (7)
C90.0142 (8)0.0270 (10)0.0189 (8)0.0034 (7)0.0033 (6)0.0027 (7)
C100.0182 (8)0.0187 (8)0.0161 (8)0.0029 (7)0.0017 (6)0.0021 (7)
C110.0180 (8)0.0132 (8)0.0157 (8)0.0006 (6)0.0001 (6)0.0010 (6)
C120.0188 (8)0.0137 (8)0.0150 (8)0.0003 (7)0.0000 (6)0.0032 (7)
C130.0273 (9)0.0177 (9)0.0290 (10)0.0070 (8)0.0093 (8)0.0067 (8)
C140.0204 (8)0.0151 (8)0.0148 (8)0.0022 (7)0.0033 (6)0.0033 (7)
C150.0252 (9)0.0213 (9)0.0148 (8)0.0012 (7)0.0008 (7)0.0016 (7)
C160.0236 (9)0.0239 (9)0.0214 (9)0.0059 (8)0.0021 (7)0.0015 (8)
C170.0239 (9)0.0207 (9)0.0177 (8)0.0020 (7)0.0039 (7)0.0039 (7)
C180.0330 (10)0.0292 (10)0.0158 (9)0.0075 (8)0.0030 (7)0.0024 (8)
C190.0272 (9)0.0240 (9)0.0192 (9)0.0104 (8)0.0020 (7)0.0019 (8)
C200.0372 (11)0.0379 (12)0.0223 (10)0.0130 (9)0.0089 (8)0.0000 (9)
Geometric parameters (Å, º) top
S1—C11.6873 (17)C7—C81.374 (2)
F1—C81.3724 (19)C7—H70.9500
N1—C11.329 (2)C8—C91.371 (2)
N1—H1N0.89 (2)C9—C101.389 (2)
N1—H2N0.86 (2)C9—H90.9500
N2—C11.350 (2)C10—H100.9500
N2—N31.3996 (18)C11—C121.379 (2)
N2—C21.469 (2)C12—C131.483 (2)
N3—C41.289 (2)C13—H13A0.9800
N4—N51.311 (2)C13—H13B0.9800
N4—C111.368 (2)C13—H13C0.9800
N5—N61.360 (2)C14—C191.381 (2)
N6—C121.352 (2)C14—C151.382 (2)
N6—C141.441 (2)C15—C161.387 (2)
C2—C51.521 (2)C15—H150.9500
C2—C31.539 (2)C16—C171.392 (2)
C2—H21.0000C16—H160.9500
C3—C41.506 (2)C17—C181.388 (3)
C3—H3A0.9900C17—C201.505 (2)
C3—H3B0.9900C18—C191.387 (2)
C4—C111.449 (2)C18—H180.9500
C5—C101.391 (2)C19—H190.9500
C5—C61.392 (2)C20—H20A0.9800
C6—C71.391 (2)C20—H20B0.9800
C6—H60.9500C20—H20C0.9800
C1—N1—H1N119.3 (12)C8—C9—C10118.08 (15)
C1—N1—H2N119.6 (14)C8—C9—H9121.0
H1N—N1—H2N119.4 (19)C10—C9—H9121.0
C1—N2—N3120.50 (13)C9—C10—C5120.82 (16)
C1—N2—C2126.55 (13)C9—C10—H10119.6
N3—N2—C2112.60 (12)C5—C10—H10119.6
C4—N3—N2106.88 (13)N4—C11—C12109.01 (14)
N5—N4—C11108.96 (14)N4—C11—C4119.94 (15)
N4—N5—N6106.73 (13)C12—C11—C4131.01 (16)
C12—N6—N5111.69 (13)N6—C12—C11103.62 (14)
C12—N6—C14129.31 (14)N6—C12—C13124.45 (15)
N5—N6—C14119.00 (13)C11—C12—C13131.93 (16)
N1—C1—N2116.57 (15)C12—C13—H13A109.5
N1—C1—S1123.20 (13)C12—C13—H13B109.5
N2—C1—S1120.23 (12)H13A—C13—H13B109.5
N2—C2—C5111.32 (13)C12—C13—H13C109.5
N2—C2—C3100.70 (12)H13A—C13—H13C109.5
C5—C2—C3113.13 (13)H13B—C13—H13C109.5
N2—C2—H2110.4C19—C14—C15120.95 (16)
C5—C2—H2110.4C19—C14—N6119.95 (15)
C3—C2—H2110.4C15—C14—N6119.05 (15)
C4—C3—C2101.42 (13)C14—C15—C16119.14 (16)
C4—C3—H3A111.5C14—C15—H15120.4
C2—C3—H3A111.5C16—C15—H15120.4
C4—C3—H3B111.5C15—C16—C17121.23 (17)
C2—C3—H3B111.5C15—C16—H16119.4
H3A—C3—H3B109.3C17—C16—H16119.4
N3—C4—C11122.33 (15)C18—C17—C16118.19 (16)
N3—C4—C3114.34 (14)C18—C17—C20121.20 (17)
C11—C4—C3123.26 (15)C16—C17—C20120.61 (16)
C10—C5—C6119.23 (15)C19—C18—C17121.34 (17)
C10—C5—C2118.75 (15)C19—C18—H18119.3
C6—C5—C2122.02 (14)C17—C18—H18119.3
C7—C6—C5120.48 (15)C14—C19—C18119.14 (17)
C7—C6—H6119.8C14—C19—H19120.4
C5—C6—H6119.8C18—C19—H19120.4
C8—C7—C6118.18 (16)C17—C20—H20A109.5
C8—C7—H7120.9C17—C20—H20B109.5
C6—C7—H7120.9H20A—C20—H20B109.5
C9—C8—F1118.69 (14)C17—C20—H20C109.5
C9—C8—C7123.19 (16)H20A—C20—H20C109.5
F1—C8—C7118.12 (15)H20B—C20—H20C109.5
C1—N2—N3—C4174.29 (14)C6—C5—C10—C91.1 (3)
C2—N2—N3—C412.04 (17)C2—C5—C10—C9179.58 (15)
C11—N4—N5—N60.27 (19)N5—N4—C11—C120.2 (2)
N4—N5—N6—C120.23 (19)N5—N4—C11—C4177.76 (15)
N4—N5—N6—C14179.55 (14)N3—C4—C11—N4172.91 (15)
N3—N2—C1—N10.5 (2)C3—C4—C11—N43.8 (2)
C2—N2—C1—N1173.19 (15)N3—C4—C11—C124.6 (3)
N3—N2—C1—S1179.93 (11)C3—C4—C11—C12178.72 (17)
C2—N2—C1—S17.3 (2)N5—N6—C12—C110.08 (18)
C1—N2—C2—C572.6 (2)C14—N6—C12—C11179.32 (16)
N3—N2—C2—C5100.65 (15)N5—N6—C12—C13179.88 (16)
C1—N2—C2—C3167.24 (15)C14—N6—C12—C130.6 (3)
N3—N2—C2—C319.54 (16)N4—C11—C12—N60.08 (18)
N2—C2—C3—C418.17 (15)C4—C11—C12—N6177.61 (17)
C5—C2—C3—C4100.72 (15)N4—C11—C12—C13179.96 (18)
N2—N3—C4—C11178.76 (14)C4—C11—C12—C132.4 (3)
N2—N3—C4—C31.78 (18)C12—N6—C14—C1976.7 (2)
C2—C3—C4—N313.53 (18)N5—N6—C14—C19104.1 (2)
C2—C3—C4—C11169.51 (15)C12—N6—C14—C15106.0 (2)
N2—C2—C5—C10165.88 (14)N5—N6—C14—C1573.2 (2)
C3—C2—C5—C1081.57 (18)C19—C14—C15—C160.3 (3)
N2—C2—C5—C614.8 (2)N6—C14—C15—C16176.99 (16)
C3—C2—C5—C697.72 (18)C14—C15—C16—C170.4 (3)
C10—C5—C6—C71.2 (2)C15—C16—C17—C181.4 (3)
C2—C5—C6—C7179.49 (15)C15—C16—C17—C20177.77 (18)
C5—C6—C7—C80.1 (3)C16—C17—C18—C191.7 (3)
C6—C7—C8—C91.6 (3)C20—C17—C18—C19177.47 (19)
C6—C7—C8—F1178.40 (15)C15—C14—C19—C180.0 (3)
F1—C8—C9—C10178.27 (15)N6—C14—C19—C18177.25 (16)
C7—C8—C9—C101.7 (3)C17—C18—C19—C141.0 (3)
C8—C9—C10—C50.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.89 (2)2.432 (19)3.3159 (14)172.7 (16)
N1—H2N···F1ii0.86 (2)2.29 (2)2.9940 (18)138.9 (17)
N1—H2N···N30.86 (2)2.30 (2)2.6554 (19)104.9 (15)
C3—H3A···S1iii0.992.873.8390 (19)166
C9—H9···S1iv0.952.833.5595 (18)135
C15—H15···F1v0.952.413.2502 (19)148
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+2, z+1; (v) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC20H19FN6S
Mr394.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4388 (4), 6.5476 (3), 32.1483 (18)
β (°) 91.288 (4)
V3)1986.31 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.855, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7765, 4551, 3809
Rint0.027
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.02
No. of reflections4551
No. of parameters263
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.36

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.89 (2)2.432 (19)3.3159 (14)172.7 (16)
N1—H2N···F1ii0.86 (2)2.29 (2)2.9940 (18)138.9 (17)
N1—H2N···N30.86 (2)2.30 (2)2.6554 (19)104.9 (15)
C3—H3A···S1iii0.992.873.8390 (19)166
C9—H9···S1iv0.952.833.5595 (18)135
C15—H15···F1v0.952.413.2502 (19)148
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+2, z+1; (v) x+1, y1, z.
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

The authors thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1956–o1957.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBooth, J. H. & Ross, A. S. (1982). US Patent 4336375.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCurran, W. V. (1982). US Patent 4334062.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1954-o1955
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds