organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1956-o1957

4-{1-[4-(4-Bromo­phen­yl)-1,3-thia­zol-2-yl]-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-3-yl}-5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazole

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 26 May 2012; accepted 27 May 2012; online 31 May 2012)

In the title compound, C28H22BrFN6S, the central pyrazole ring has an envelope conformation, with the methine C atom being the flap atom. The dihedral angles between the least-squares plane through this ring and the adjacent thia­zole [18.81 (15)°] and triazole [1.83 (16)°] rings indicate a twist in the mol­ecule. A further twist is evident by the dihedral angle of 64.48 (16)° between the triazole ring and the attached benzene ring. In the crystal, C—H⋯N, C—H⋯F, C—H⋯π and ππ inter­actions [occurring between the thia­zole and triazole rings, centroid–centroid distance = 3.571 (2) Å] link mol­ecules into a three-dimensional architecture. The sample studied was a non-merohedral twin; the minor twin component refined to 47.16 (7)%.

Related literature

For the biological activity of related compounds, see: Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.], 2012a[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263-268.]). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b[Abdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1954-o1955.]). For the deconvolution of twinned data, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22BrFN6S

  • Mr = 573.49

  • Orthorhombic, P 21 21 21

  • a = 11.3476 (7) Å

  • b = 14.0549 (8) Å

  • c = 15.954 (7) Å

  • V = 2544.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.695, Tmax = 1.000

  • 7265 measured reflections

  • 5293 independent reflections

  • 4819 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.077

  • S = 1.02

  • 5293 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2028 Friedel pairs

  • Flack parameter: 0.001 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C23–C28 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N2i 1.00 2.58 3.488 (4) 151
C27—H27⋯F1ii 0.95 2.53 3.358 (4) 146
C8—H8ACg1iii 0.98 2.84 3.401 (3) 117
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure determination of the title compound, 4-(4-bromophenyl)-2-(5-(4-fluorophenyl)-3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (I), was investigated in relation to the established biological activities exhibited by 3-(benzofuran-2-yl)-4,5-dihydro-5-phenyl-1-(4-phenylthiazol-2-yl)-1H-pyrazole and 1,2,3-triazol-4-yl-pyrazolylthiazoles (Abdel-Wahab et al. 2012a; Abdel-Wahab et al. 2009) and related structural studies (Abdel-Wahab et al., 2012b).

The molecule of (I), Fig. 1, comprises a sequence of three linked five-membered rings with a benzene ring linked to each of these. The central pyrazole ring (r.m.s. deviation = 0.087 Å) adopts an envelope conformation with the methine-C13 atom being the flap atom. The molecule is twisted as seen in the dihedral angles between the least-squares plane through the pyrazole ring and the thiazole (r.m.s. deviation = 0.008 Å) and triazole (r.m.s. deviation = 0.004 Å) rings are 18.81 (15) and 1.83 (16)°, respectively. While the attached benzene ring to the thiazole ring is almost co-planar [dihedral angle = 7.00 (13)°], the benzene ring linked to the triazole ring is twisted out of its plane [dihedral angle = 64.48 (16)°].

In the crystal, C—H···N and C—H···π (Table 1), as well as ππ interactions occurring between the thiazole and triazole [inter-centroid distance = 3.571 (2) Å, angle of inclination = 5.08 (15)° for symmetry operation: -1/2 + x, 3/2 - y, -z] link molecules into layers in the ac plane. These layers are linked by C—H···F interactions (Fig. 2 and Table 1).

Related literature top

For the biological activity of related compounds, see: Abdel-Wahab et al. (2009, 2012a). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b). For the deconvolution of twinned data, see: Spek (2009).

Experimental top

The title compound was prepared according to the reported method (Abdel-Wahab et al., 2012a). Crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions [N—H = 0.88 Å and C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(N,C) or = 1.5Ueq(C-methyl)] and were included in the refinement in the riding model approximation. The sample studied is a non-merohedral twin and a full sphere of reflections was measured. As it was not possible to separate the diffraction spots in two domains, the twin domains were separated using the TwinRotMat routine of PLATON (Spek, 2009). The minor twin component refined to 47.16 (7)%. Two reflections, i.e. (-11 -8 2) and (0 -2 4), were omitted owing to poor agreement. The maximum and minimum residual electron density peaks of 1.44 and 0.53 e Å-3, respectively, were located 0.51 Å and 0.81 Å from the H13C and F9 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents for (I). The C—H···N, C—H···F, C—H···π and ππ interactions are shown as blue, orange, purple and brown dashed lines, respectively.
4-{1-[4-(4-Bromophenyl)-1,3-thiazol-2-yl]-5-(4-fluorophenyl)-4,5-dihydro- 1H-pyrazol-3-yl}-5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazole top
Crystal data top
C28H22BrFN6SF(000) = 1168
Mr = 573.49Dx = 1.497 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3622 reflections
a = 11.3476 (7) Åθ = 2.6–27.5°
b = 14.0549 (8) ŵ = 1.74 mm1
c = 15.954 (7) ÅT = 100 K
V = 2544.5 (12) Å3Prism, light-brown
Z = 40.40 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5293 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4819 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = 1410
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1712
Tmin = 0.695, Tmax = 1.000l = 2011
7265 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.2812P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5293 reflectionsΔρmax = 0.36 e Å3
336 parametersΔρmin = 0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), 2028 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (7)
Crystal data top
C28H22BrFN6SV = 2544.5 (12) Å3
Mr = 573.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.3476 (7) ŵ = 1.74 mm1
b = 14.0549 (8) ÅT = 100 K
c = 15.954 (7) Å0.40 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5293 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4819 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 1.000Rint = 0.029
7265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.36 e Å3
S = 1.02Δρmin = 0.50 e Å3
5293 reflectionsAbsolute structure: Flack (1983), 2028 Friedel pairs
336 parametersAbsolute structure parameter: 0.001 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23440 (3)0.94410 (2)0.361341 (19)0.02124 (8)
S10.66530 (6)0.86176 (5)0.08004 (5)0.01822 (17)
F10.94395 (17)1.26252 (12)0.25372 (13)0.0294 (5)
N11.2170 (2)0.77775 (16)0.21438 (15)0.0152 (5)
N21.2929 (2)0.78394 (16)0.14807 (16)0.0174 (5)
N31.2310 (2)0.81441 (16)0.08489 (15)0.0154 (5)
N40.9210 (2)0.87452 (17)0.06940 (16)0.0171 (5)
N50.8648 (2)0.91513 (18)0.00017 (16)0.0170 (5)
N60.6859 (2)0.91897 (16)0.07364 (16)0.0155 (5)
C11.2602 (3)0.7492 (2)0.29537 (18)0.0167 (6)
C21.2594 (3)0.8146 (2)0.36070 (19)0.0208 (6)
H21.22650.87610.35320.025*
C31.3073 (3)0.7883 (2)0.4366 (2)0.0255 (7)
H31.30620.83220.48180.031*
C41.3573 (3)0.6990 (2)0.4485 (2)0.0247 (7)
C51.3549 (3)0.6346 (2)0.3825 (2)0.0247 (8)
H51.38690.57280.39020.030*
C61.3067 (3)0.6589 (2)0.3059 (2)0.0204 (7)
H61.30550.61440.26110.024*
C71.4158 (3)0.6738 (3)0.5301 (2)0.0366 (9)
H7A1.39460.60860.54580.055*
H7B1.38950.71790.57390.055*
H7C1.50160.67850.52380.055*
C81.0046 (3)0.8013 (2)0.2515 (2)0.0178 (6)
H8A1.00480.74100.28230.027*
H8B0.93100.80720.21990.027*
H8C1.01120.85430.29120.027*
C91.1057 (3)0.8035 (2)0.1929 (2)0.0151 (6)
C101.1170 (3)0.8273 (2)0.10935 (19)0.0142 (6)
C111.0306 (3)0.8628 (2)0.05071 (18)0.0138 (6)
C121.0619 (3)0.8935 (2)0.03664 (19)0.0170 (6)
H12A1.10130.84160.06780.020*
H12B1.11380.95010.03610.020*
C130.9411 (2)0.9169 (2)0.07472 (19)0.0148 (6)
H130.91710.86470.11380.018*
C140.9378 (2)1.0115 (2)0.12096 (18)0.0159 (6)
C150.8894 (3)1.0932 (2)0.0868 (2)0.0196 (7)
H150.85471.09100.03260.024*
C160.8913 (3)1.1791 (2)0.1314 (2)0.0241 (7)
H160.85761.23530.10850.029*
C170.9427 (3)1.1797 (2)0.2088 (2)0.0208 (7)
C180.9940 (3)1.1004 (2)0.2437 (2)0.0188 (7)
H181.03101.10360.29710.023*
C190.9906 (3)1.0161 (2)0.1994 (2)0.0177 (6)
H191.02470.96040.22290.021*
C200.7446 (3)0.90135 (18)0.00607 (17)0.0152 (6)
C210.5397 (3)0.8702 (2)0.0193 (2)0.0190 (7)
H210.46230.85600.03820.023*
C220.5671 (3)0.8999 (2)0.0593 (2)0.0171 (7)
C230.4858 (2)0.91170 (19)0.1308 (2)0.0155 (6)
C240.5272 (2)0.9486 (2)0.20621 (19)0.0180 (6)
H240.60730.96760.21050.022*
C250.4538 (3)0.9581 (2)0.27493 (19)0.0197 (7)
H250.48310.98310.32620.024*
C260.3367 (3)0.9305 (2)0.26774 (19)0.0168 (6)
C270.2930 (3)0.8929 (2)0.1943 (2)0.0204 (7)
H270.21290.87360.19060.025*
C280.3677 (3)0.8836 (2)0.1253 (2)0.0197 (7)
H280.33830.85810.07430.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02349 (14)0.02282 (14)0.01741 (15)0.00056 (13)0.00417 (13)0.00095 (13)
S10.0157 (3)0.0244 (4)0.0145 (4)0.0021 (3)0.0021 (3)0.0024 (3)
F10.0288 (10)0.0224 (9)0.0372 (12)0.0012 (9)0.0056 (10)0.0159 (9)
N10.0152 (12)0.0186 (11)0.0117 (13)0.0003 (10)0.0012 (10)0.0026 (10)
N20.0187 (12)0.0181 (11)0.0153 (14)0.0005 (10)0.0004 (11)0.0009 (11)
N30.0176 (12)0.0168 (11)0.0119 (12)0.0000 (11)0.0006 (11)0.0005 (10)
N40.0181 (12)0.0197 (12)0.0137 (14)0.0004 (11)0.0021 (11)0.0045 (11)
N50.0126 (11)0.0257 (13)0.0128 (13)0.0008 (10)0.0031 (10)0.0055 (11)
N60.0126 (11)0.0174 (12)0.0166 (13)0.0018 (10)0.0022 (10)0.0014 (10)
C10.0150 (13)0.0222 (13)0.0130 (14)0.0009 (13)0.0013 (13)0.0050 (11)
C20.0214 (14)0.0231 (13)0.0178 (15)0.0020 (12)0.0002 (16)0.0005 (13)
C30.0273 (17)0.0338 (18)0.0153 (17)0.0043 (15)0.0011 (14)0.0030 (14)
C40.0226 (16)0.0355 (18)0.0161 (17)0.0044 (15)0.0018 (13)0.0095 (15)
C50.0236 (15)0.0221 (15)0.028 (2)0.0002 (14)0.0025 (14)0.0073 (14)
C60.0188 (14)0.0219 (15)0.0204 (17)0.0012 (13)0.0020 (13)0.0002 (13)
C70.033 (2)0.057 (2)0.020 (2)0.0065 (19)0.0102 (17)0.0115 (18)
C80.0159 (13)0.0236 (15)0.0139 (15)0.0004 (12)0.0026 (12)0.0021 (13)
C90.0143 (14)0.0143 (14)0.0166 (16)0.0011 (12)0.0012 (12)0.0013 (12)
C100.0175 (13)0.0129 (13)0.0123 (15)0.0016 (12)0.0007 (12)0.0018 (11)
C110.0160 (13)0.0145 (13)0.0109 (15)0.0034 (12)0.0020 (12)0.0032 (12)
C120.0147 (14)0.0203 (15)0.0161 (16)0.0012 (12)0.0024 (13)0.0046 (13)
C130.0146 (13)0.0171 (14)0.0128 (15)0.0004 (12)0.0007 (12)0.0010 (12)
C140.0116 (13)0.0197 (14)0.0165 (17)0.0018 (12)0.0034 (12)0.0045 (12)
C150.0190 (14)0.0231 (15)0.0167 (17)0.0005 (13)0.0012 (13)0.0015 (13)
C160.0200 (14)0.0212 (15)0.031 (2)0.0050 (12)0.0010 (16)0.0028 (16)
C170.0183 (15)0.0195 (15)0.0244 (18)0.0034 (13)0.0075 (14)0.0130 (14)
C180.0135 (14)0.0278 (16)0.0152 (16)0.0032 (13)0.0026 (13)0.0070 (14)
C190.0140 (14)0.0199 (14)0.0191 (17)0.0012 (12)0.0035 (13)0.0010 (13)
C200.0152 (14)0.0159 (12)0.0146 (14)0.0030 (12)0.0020 (12)0.0017 (11)
C210.0154 (14)0.0218 (15)0.0198 (17)0.0011 (13)0.0004 (13)0.0017 (14)
C220.0163 (14)0.0161 (14)0.0190 (17)0.0017 (12)0.0014 (13)0.0002 (13)
C230.0152 (13)0.0138 (12)0.0175 (16)0.0025 (11)0.0003 (13)0.0018 (13)
C240.0150 (13)0.0164 (14)0.0226 (16)0.0011 (13)0.0009 (12)0.0011 (14)
C250.0217 (14)0.0193 (15)0.0180 (16)0.0031 (13)0.0014 (13)0.0037 (13)
C260.0184 (14)0.0163 (14)0.0158 (15)0.0043 (13)0.0044 (12)0.0001 (12)
C270.0145 (15)0.0253 (16)0.0215 (17)0.0012 (12)0.0009 (13)0.0001 (13)
C280.0185 (14)0.0243 (15)0.0161 (18)0.0005 (12)0.0029 (13)0.0016 (13)
Geometric parameters (Å, º) top
Br1—C261.901 (3)C8—H8C0.9800
S1—C211.728 (3)C9—C101.381 (4)
S1—C201.734 (3)C10—C111.445 (4)
F1—C171.367 (3)C11—C121.501 (4)
N1—C91.358 (4)C12—C131.535 (4)
N1—N21.367 (3)C12—H12A0.9900
N1—C11.439 (4)C12—H12B0.9900
N2—N31.300 (3)C13—C141.521 (4)
N3—C101.363 (4)C13—H131.0000
N4—C111.290 (4)C14—C191.389 (4)
N4—N51.397 (3)C14—C151.385 (4)
N5—C201.381 (4)C15—C161.402 (4)
N5—C131.475 (4)C15—H150.9500
N6—C201.291 (4)C16—C171.365 (5)
N6—C221.394 (4)C16—H160.9500
C1—C61.384 (4)C17—C181.376 (4)
C1—C21.390 (4)C18—C191.380 (4)
C2—C31.377 (4)C18—H180.9500
C2—H20.9500C19—H190.9500
C3—C41.390 (5)C21—C221.357 (4)
C3—H30.9500C21—H210.9500
C4—C51.388 (5)C22—C231.476 (4)
C4—C71.504 (4)C23—C241.392 (4)
C5—C61.383 (4)C23—C281.400 (4)
C5—H50.9500C24—C251.383 (4)
C6—H60.9500C24—H240.9500
C7—H7A0.9800C25—C261.390 (4)
C7—H7B0.9800C25—H250.9500
C7—H7C0.9800C26—C271.378 (4)
C8—C91.480 (4)C27—C281.396 (4)
C8—H8A0.9800C27—H270.9500
C8—H8B0.9800C28—H280.9500
C21—S1—C2087.81 (15)C13—C12—H12B111.3
C9—N1—N2112.0 (2)H12A—C12—H12B109.2
C9—N1—C1128.1 (3)N5—C13—C14113.2 (2)
N2—N1—C1119.9 (2)N5—C13—C12101.5 (2)
N3—N2—N1106.3 (2)C14—C13—C12113.6 (2)
N2—N3—C10109.5 (2)N5—C13—H13109.4
C11—N4—N5108.0 (2)C14—C13—H13109.4
C20—N5—N4116.8 (2)C12—C13—H13109.4
C20—N5—C13121.5 (3)C19—C14—C15119.2 (3)
N4—N5—C13112.3 (2)C19—C14—C13117.9 (3)
C20—N6—C22109.0 (2)C15—C14—C13122.9 (3)
C6—C1—C2121.2 (3)C14—C15—C16120.5 (3)
C6—C1—N1119.6 (3)C14—C15—H15119.7
C2—C1—N1119.1 (3)C16—C15—H15119.7
C3—C2—C1118.6 (3)C17—C16—C15118.1 (3)
C3—C2—H2120.7C17—C16—H16120.9
C1—C2—H2120.7C15—C16—H16120.9
C2—C3—C4121.6 (3)C16—C17—F1119.0 (3)
C2—C3—H3119.2C16—C17—C18122.8 (3)
C4—C3—H3119.2F1—C17—C18118.2 (3)
C3—C4—C5118.5 (3)C17—C18—C19118.4 (3)
C3—C4—C7120.8 (3)C17—C18—H18120.8
C5—C4—C7120.8 (3)C19—C18—H18120.8
C6—C5—C4121.2 (3)C14—C19—C18120.9 (3)
C6—C5—H5119.4C14—C19—H19119.6
C4—C5—H5119.4C18—C19—H19119.6
C5—C6—C1119.0 (3)N6—C20—N5122.9 (3)
C5—C6—H6120.5N6—C20—S1117.1 (2)
C1—C6—H6120.5N5—C20—S1120.0 (2)
C4—C7—H7A109.5C22—C21—S1110.5 (2)
C4—C7—H7B109.5C22—C21—H21124.7
H7A—C7—H7B109.5S1—C21—H21124.7
C4—C7—H7C109.5C21—C22—N6115.6 (3)
H7A—C7—H7C109.5C21—C22—C23127.2 (3)
H7B—C7—H7C109.5N6—C22—C23117.1 (3)
C9—C8—H8A109.5C24—C23—C28118.9 (3)
C9—C8—H8B109.5C24—C23—C22119.9 (3)
H8A—C8—H8B109.5C28—C23—C22121.2 (3)
C9—C8—H8C109.5C25—C24—C23121.2 (3)
H8A—C8—H8C109.5C25—C24—H24119.4
H8B—C8—H8C109.5C23—C24—H24119.4
N1—C9—C10102.8 (3)C24—C25—C26118.9 (3)
N1—C9—C8123.8 (3)C24—C25—H25120.6
C10—C9—C8133.4 (3)C26—C25—H25120.6
N3—C10—C9109.4 (3)C27—C26—C25121.4 (3)
N3—C10—C11120.3 (3)C27—C26—Br1119.2 (2)
C9—C10—C11130.2 (3)C25—C26—Br1119.4 (2)
N4—C11—C10123.3 (3)C26—C27—C28119.2 (3)
N4—C11—C12114.0 (3)C26—C27—H27120.4
C10—C11—C12122.7 (3)C28—C27—H27120.4
C11—C12—C13102.6 (2)C27—C28—C23120.4 (3)
C11—C12—H12A111.3C27—C28—H28119.8
C13—C12—H12A111.3C23—C28—H28119.8
C11—C12—H12B111.3
C9—N1—N2—N30.7 (3)C11—C12—C13—C14132.8 (3)
C1—N1—N2—N3177.6 (2)N5—C13—C14—C19169.6 (3)
N1—N2—N3—C100.4 (3)C12—C13—C14—C1975.3 (3)
C11—N4—N5—C20156.5 (3)N5—C13—C14—C1513.2 (4)
C11—N4—N5—C139.4 (3)C12—C13—C14—C15101.9 (3)
C9—N1—C1—C6118.3 (3)C19—C14—C15—C161.3 (4)
N2—N1—C1—C663.7 (4)C13—C14—C15—C16178.5 (3)
C9—N1—C1—C264.7 (4)C14—C15—C16—C170.5 (5)
N2—N1—C1—C2113.3 (3)C15—C16—C17—F1179.1 (3)
C6—C1—C2—C30.7 (5)C15—C16—C17—C181.0 (5)
N1—C1—C2—C3176.2 (3)C16—C17—C18—C191.7 (5)
C1—C2—C3—C40.9 (5)F1—C17—C18—C19178.5 (3)
C2—C3—C4—C52.0 (5)C15—C14—C19—C180.7 (4)
C2—C3—C4—C7176.2 (3)C13—C14—C19—C18178.0 (3)
C3—C4—C5—C61.6 (5)C17—C18—C19—C140.8 (4)
C7—C4—C5—C6176.6 (3)C22—N6—C20—N5178.7 (3)
C4—C5—C6—C10.0 (5)C22—N6—C20—S10.4 (3)
C2—C1—C6—C51.2 (5)N4—N5—C20—N6166.6 (3)
N1—C1—C6—C5175.8 (3)C13—N5—C20—N622.6 (4)
N2—N1—C9—C100.7 (3)N4—N5—C20—S115.2 (4)
C1—N1—C9—C10177.5 (3)C13—N5—C20—S1159.2 (2)
N2—N1—C9—C8178.3 (3)C21—S1—C20—N60.3 (2)
C1—N1—C9—C83.5 (5)C21—S1—C20—N5178.0 (2)
N2—N3—C10—C90.1 (3)C20—S1—C21—C221.0 (2)
N2—N3—C10—C11178.7 (2)S1—C21—C22—N61.5 (3)
N1—C9—C10—N30.5 (3)S1—C21—C22—C23176.9 (2)
C8—C9—C10—N3178.4 (3)C20—N6—C22—C211.2 (4)
N1—C9—C10—C11178.2 (3)C20—N6—C22—C23177.4 (2)
C8—C9—C10—C112.9 (6)C21—C22—C23—C24176.1 (3)
N5—N4—C11—C10176.4 (3)N6—C22—C23—C245.6 (4)
N5—N4—C11—C121.1 (3)C21—C22—C23—C286.0 (5)
N3—C10—C11—N4178.4 (3)N6—C22—C23—C28172.4 (3)
C9—C10—C11—N43.1 (5)C28—C23—C24—C250.3 (4)
N3—C10—C11—C124.3 (4)C22—C23—C24—C25178.3 (3)
C9—C10—C11—C12174.2 (3)C23—C24—C25—C260.3 (5)
N4—C11—C12—C136.8 (3)C24—C25—C26—C270.8 (5)
C10—C11—C12—C13175.6 (2)C24—C25—C26—Br1179.5 (2)
C20—N5—C13—C1479.6 (3)C25—C26—C27—C280.8 (4)
N4—N5—C13—C14135.1 (2)Br1—C26—C27—C28179.5 (2)
C20—N5—C13—C12158.3 (3)C26—C27—C28—C230.3 (4)
N4—N5—C13—C1212.9 (3)C24—C23—C28—C270.3 (4)
C11—C12—C13—N511.0 (3)C22—C23—C28—C27178.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C23–C28 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i1.002.583.488 (4)151
C27—H27···F1ii0.952.533.358 (4)146
C8—H8A···Cg1iii0.982.843.401 (3)117
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1, y1/2, z1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H22BrFN6S
Mr573.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)11.3476 (7), 14.0549 (8), 15.954 (7)
V3)2544.5 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.695, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7265, 5293, 4819
Rint0.029
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 1.02
No. of reflections5293
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.50
Absolute structureFlack (1983), 2028 Friedel pairs
Absolute structure parameter0.001 (7)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C23–C28 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i1.002.583.488 (4)151
C27—H27···F1ii0.952.533.358 (4)146
C8—H8A···Cg1iii0.982.843.401 (3)117
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1, y1/2, z1/2; (iii) x, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author: bakrfatehy@yahoo.com

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1954–o1955.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1956-o1957
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds