organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cinnarizinium picrate

aSchool of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China, bDepartment of Chemistry, G. Madegowda Institute of Technology, Bharathi Nagar 571 422, India, cDepartment of Chemistry, B.E.T. Academy of Higher Education, Bharathi Nagar 571 422, India, dDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, and eKey Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 1 May 2012; accepted 8 May 2012; online 16 May 2012)

In the title salt {systematic name: 4-diphenyl­methyl-1-[(E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium 2,4,6-trinitro­pheno­late), C26H29N2+·C6H2N3O7, the cinnarizinium cation is protonated at the piperazine N atom connected to the styrenylmethyl group; the piperazine ring adopts a distorted chair conformaiton. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds link the components into two-ion aggregates.

Related literature

For background to the anti-histamine cinnarizine, see: Towse (1980[Towse, G. (1980). J. Laryngol. Otol. 94, 1009-1015.]); Barrett & Zolov (1960[Barrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454-457.]). For related structures, see: Mouillé et al. (1975[Mouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495-1496.]); Bertolasi et al. (1980[Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975-1977.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.]). For additional conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H29N2+·C6H2N3O7

  • Mr = 597.62

  • Monoclinic, P 21 /c

  • a = 14.5906 (19) Å

  • b = 12.7720 (17) Å

  • c = 16.441 (2) Å

  • β = 103.114 (2)°

  • V = 2984.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.16 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.993

  • 15196 measured reflections

  • 5262 independent reflections

  • 3181 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 1.03

  • 5262 reflections

  • 401 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O7i 0.94 (3) 2.59 (2) 3.119 (3) 116.6 (18)
N2—H2A⋯O1i 0.94 (3) 1.79 (3) 2.710 (3) 168 (2)
Symmetry code: (i) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cinnarizine (Stugeron, Stunarone) is an anti-histamine which is mainly used for the control of nausea and vomiting due to motion sickness. Cinnarizine could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockage) and as a labyrinthine sedative (Towse et al., 1980). A clinical evaluation of cinnarizine in various allergic disorders has been reported earlier (Barrett et al., 1960). Cinnarizine can be used in scuba divers without an increased risk of central nervous system oxygen toxicity. The crystal structures of some related compounds viz. cinnarizine (Mouillé et al., 1975) and cyclizine hydrochloride (Bertolasi et al., 1980) have been reported. In view of the above, and as a part of our studies on the salts of the piperazines, the title compound was synthesized and herein we report its crystal structure.

The molecular structure and atom numbering scheme of the title compound are shown in Fig 1. In the structure, the piperazine ring adopts a slightly distorted chair conformation with the puckering parameters Q, θ and ϕ having values of 0.584 (2)°, 174.3 (2)° and 179 (2)°, respectively (Cremer & Pople, 1975). These values slightly different from those reported earlier for cinnarizinium dipicrate (Jasinski et al., 2011). For an ideal chair conformation, θ has a value of 0 or 180°. The sum of the bond angles around the piperazine-N atoms N1 and N2 are 328.94° and 332.45°, respectively, indicating that they are sp3 hybridized. The bonds N1—C7 and N2—C18 connecting the diphenylmethyl and the phenyl-but-2-ene groups make an angle of 74.44 (14)° and 70.28 (14)°, respectively, with the Cremer and Pople (1975) plane of the piperazine ring and thus the substituents are in the equatorial plane. The dihedral angle between the piperazine ring and the phenyl ring (C21–C26) bridged by the but-2-ene group is 63.50 (12)° whereas the dihedral angles between the piperazine ring and the diphenyl methyl rings (C1–C6) and (C8–C13) are 77.63 (11)° and 89.85 (15)°, respectively. In the crystal structure, N—H···O hydrogen bonds link the ions into two ion aggregates.

Related literature top

For background to the anti-histamine cinnarizine (systematic name: 1-benzhydryl-4-cinnamyl-piperazine), see: Towse (1980); Barrett & Zolov (1960). For related structures, see: Mouillé et al. (1975); Bertolasi et al. (1980); Jasinski et al. (2011). For additional conformational analysis, see: Cremer & Pople (1975).

Experimental top

Cinnarizine (3.68 g, 0.01 mol) and picric acid (2.99 g, 0.01 mol) were dissolved separately in methanol. The solutions were mixed and stirred for a few minutes at room temperature. The precipitate was collected by filtration and purified by recrystallization from methanol. On recrystallization with DMF after 15 days, good quality single crystals were obtained; M.pt: 463–465 K.

Refinement top

All H atoms were placed at calculated positions and refined using a riding model approximation, with C—H distances in the range 0.93—0.98 Å, and with Uiso(H) = 1.2Ueq(C). The ammonium-H atom was refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Cinnarizinium picrate top
Crystal data top
C26H29N2+·C6H2N3O7F(000) = 1256
Mr = 597.62Dx = 1.330 Mg m3
Monoclinic, P21/cMelting point = 465–463 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.5906 (19) ÅCell parameters from 2307 reflections
b = 12.7720 (17) Åθ = 2.3–22.0°
c = 16.441 (2) ŵ = 0.10 mm1
β = 103.114 (2)°T = 296 K
V = 2984.0 (7) Å3Block, yellow
Z = 40.16 × 0.16 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5262 independent reflections
Radiation source: fine-focus sealed tube3181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1417
Tmin = 0.985, Tmax = 0.993k = 1515
15196 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.4273P]
where P = (Fo2 + 2Fc2)/3
5262 reflections(Δ/σ)max < 0.001
401 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C26H29N2+·C6H2N3O7V = 2984.0 (7) Å3
Mr = 597.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5906 (19) ŵ = 0.10 mm1
b = 12.7720 (17) ÅT = 296 K
c = 16.441 (2) Å0.16 × 0.16 × 0.07 mm
β = 103.114 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5262 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3181 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.993Rint = 0.033
15196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
5262 reflectionsΔρmin = 0.17 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52622 (15)1.01467 (17)0.19638 (13)0.0431 (5)
C20.59492 (16)0.93827 (18)0.21939 (14)0.0507 (6)
H20.59110.89160.26190.061*
C30.66912 (17)0.9304 (2)0.18004 (17)0.0616 (7)
H30.71520.87960.19680.074*
C40.67436 (19)0.9977 (2)0.11638 (18)0.0688 (8)
H40.72400.99240.08980.083*
C50.6071 (2)1.0725 (2)0.09190 (16)0.0714 (8)
H50.61071.11750.04830.086*
C60.53323 (18)1.0819 (2)0.13170 (15)0.0596 (7)
H60.48801.13360.11490.072*
C70.44424 (14)1.02478 (16)0.23909 (13)0.0427 (5)
H70.39761.07150.20490.051*
C80.47390 (15)1.07319 (17)0.32545 (13)0.0425 (5)
C90.54277 (16)1.02889 (19)0.38803 (14)0.0535 (6)
H90.57140.96670.37780.064*
C100.56926 (18)1.0761 (2)0.46534 (15)0.0637 (7)
H100.61641.04610.50640.076*
C110.52685 (19)1.1666 (2)0.48211 (16)0.0638 (7)
H110.54471.19790.53440.077*
C120.45798 (19)1.2107 (2)0.42127 (16)0.0666 (7)
H120.42831.27180.43240.080*
C130.43233 (17)1.16465 (18)0.34333 (15)0.0575 (7)
H130.38621.19600.30220.069*
C140.31810 (15)0.92742 (18)0.27987 (13)0.0478 (6)
H14A0.27090.97330.24700.057*
H14B0.33770.95700.33550.057*
C150.27606 (16)0.82031 (18)0.28533 (13)0.0510 (6)
H15A0.32230.77570.32080.061*
H15B0.22230.82640.31060.061*
C160.32487 (15)0.77316 (18)0.15764 (14)0.0507 (6)
H16A0.30260.74850.10080.061*
H16B0.37400.72600.18590.061*
C170.36469 (15)0.88150 (18)0.15634 (13)0.0496 (6)
H17A0.41600.88010.12780.060*
H17B0.31640.92800.12570.060*
C180.20741 (18)0.66271 (18)0.20475 (15)0.0573 (6)
H18A0.25800.61610.23090.069*
H18B0.16090.66300.23850.069*
C190.16375 (17)0.62381 (19)0.11991 (16)0.0589 (7)
H190.10980.65810.09120.071*
C200.19386 (17)0.5462 (2)0.08192 (16)0.0634 (7)
H200.24540.51000.11280.076*
C210.15677 (19)0.5088 (2)0.00331 (16)0.0634 (7)
C220.0751 (2)0.5494 (2)0.05376 (18)0.0794 (9)
H220.04090.59960.03220.095*
C230.0439 (3)0.5168 (3)0.1347 (2)0.1061 (13)
H230.01140.54400.16750.127*
C240.0947 (4)0.4441 (4)0.1668 (2)0.1206 (17)
H240.07420.42310.22210.145*
C250.1749 (3)0.4018 (3)0.1191 (3)0.1079 (13)
H250.20860.35200.14150.129*
C260.2056 (2)0.4338 (2)0.0368 (2)0.0829 (9)
H260.25970.40440.00380.099*
C271.04152 (17)0.86358 (18)1.05005 (17)0.0566 (7)
C280.95804 (17)0.84392 (19)1.08034 (16)0.0564 (6)
C290.87055 (17)0.8270 (2)1.02945 (17)0.0631 (7)
H290.81820.81901.05230.076*
C300.86144 (18)0.8220 (2)0.94491 (17)0.0639 (7)
C310.93837 (19)0.8327 (2)0.91018 (17)0.0682 (8)
H310.93170.82740.85270.082*
C321.02445 (17)0.85131 (19)0.96112 (17)0.0589 (7)
N10.39904 (11)0.92136 (13)0.24143 (10)0.0418 (4)
N20.24573 (13)0.77163 (15)0.20113 (11)0.0458 (5)
N30.96429 (18)0.83694 (19)1.16985 (15)0.0744 (7)
N40.77007 (19)0.8000 (2)0.89112 (19)0.0919 (8)
N51.10421 (19)0.8585 (2)0.92183 (18)0.0847 (8)
O11.11914 (12)0.89116 (14)1.09451 (12)0.0783 (6)
O21.17777 (18)0.8186 (2)0.95562 (19)0.1361 (11)
O31.09238 (17)0.9046 (2)0.85521 (15)0.1185 (9)
O40.76491 (17)0.7930 (2)0.81627 (17)0.1279 (10)
O50.70246 (16)0.7909 (2)0.92284 (17)0.1272 (10)
O60.89418 (16)0.8534 (2)1.19597 (13)0.1050 (8)
O71.03892 (16)0.81087 (19)1.21524 (12)0.1012 (8)
H2A0.1979 (18)0.8141 (19)0.1706 (15)0.071 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (12)0.0451 (13)0.0457 (13)0.0046 (10)0.0073 (10)0.0056 (10)
C20.0455 (14)0.0493 (14)0.0577 (15)0.0011 (11)0.0124 (11)0.0023 (12)
C30.0470 (15)0.0614 (16)0.0783 (18)0.0019 (13)0.0180 (14)0.0155 (15)
C40.0629 (18)0.0650 (18)0.089 (2)0.0131 (15)0.0395 (16)0.0199 (16)
C50.087 (2)0.0680 (18)0.0700 (18)0.0081 (17)0.0415 (16)0.0043 (15)
C60.0658 (17)0.0579 (16)0.0580 (16)0.0000 (13)0.0199 (13)0.0037 (13)
C70.0376 (12)0.0453 (13)0.0440 (13)0.0005 (10)0.0069 (10)0.0003 (10)
C80.0412 (12)0.0425 (12)0.0436 (13)0.0055 (10)0.0092 (10)0.0015 (10)
C90.0498 (14)0.0611 (15)0.0471 (14)0.0071 (12)0.0058 (11)0.0013 (12)
C100.0603 (17)0.0786 (19)0.0466 (15)0.0038 (14)0.0002 (12)0.0007 (13)
C110.0782 (19)0.0606 (17)0.0502 (15)0.0116 (15)0.0097 (14)0.0115 (13)
C120.084 (2)0.0510 (15)0.0606 (17)0.0058 (14)0.0072 (15)0.0100 (13)
C130.0625 (16)0.0507 (14)0.0543 (15)0.0088 (12)0.0026 (12)0.0052 (12)
C140.0430 (13)0.0548 (14)0.0463 (13)0.0033 (11)0.0117 (11)0.0078 (11)
C150.0471 (14)0.0617 (15)0.0447 (13)0.0070 (12)0.0113 (11)0.0056 (11)
C160.0409 (13)0.0591 (15)0.0533 (14)0.0048 (11)0.0132 (11)0.0115 (12)
C170.0404 (13)0.0605 (15)0.0490 (14)0.0080 (11)0.0124 (11)0.0116 (11)
C180.0587 (15)0.0462 (14)0.0661 (17)0.0088 (12)0.0120 (13)0.0013 (12)
C190.0508 (15)0.0489 (14)0.0696 (17)0.0067 (12)0.0019 (13)0.0012 (13)
C200.0555 (16)0.0620 (17)0.0680 (17)0.0004 (13)0.0041 (13)0.0009 (14)
C210.0639 (17)0.0642 (17)0.0604 (17)0.0202 (14)0.0104 (14)0.0037 (14)
C220.079 (2)0.089 (2)0.0653 (19)0.0205 (17)0.0050 (16)0.0063 (16)
C230.109 (3)0.136 (3)0.064 (2)0.053 (3)0.001 (2)0.021 (2)
C240.156 (4)0.143 (4)0.065 (2)0.085 (4)0.031 (3)0.023 (3)
C250.132 (4)0.106 (3)0.101 (3)0.051 (3)0.057 (3)0.033 (2)
C260.086 (2)0.074 (2)0.092 (2)0.0284 (17)0.0263 (18)0.0186 (18)
C270.0428 (15)0.0475 (14)0.0742 (18)0.0036 (11)0.0022 (13)0.0119 (13)
C280.0469 (15)0.0597 (16)0.0597 (16)0.0076 (12)0.0061 (12)0.0017 (12)
C290.0436 (15)0.0696 (18)0.0748 (19)0.0071 (13)0.0110 (13)0.0028 (14)
C300.0440 (15)0.0724 (18)0.0671 (18)0.0045 (13)0.0044 (13)0.0109 (14)
C310.0667 (19)0.0738 (18)0.0592 (17)0.0046 (15)0.0042 (15)0.0179 (14)
C320.0489 (15)0.0607 (16)0.0679 (18)0.0020 (12)0.0148 (13)0.0167 (13)
N10.0365 (10)0.0470 (11)0.0418 (10)0.0038 (8)0.0084 (8)0.0065 (8)
N20.0396 (11)0.0494 (12)0.0470 (12)0.0025 (9)0.0069 (9)0.0044 (9)
N30.0598 (16)0.0925 (18)0.0698 (17)0.0040 (14)0.0123 (14)0.0179 (13)
N40.0593 (18)0.112 (2)0.088 (2)0.0053 (16)0.0179 (16)0.0149 (17)
N50.0690 (18)0.098 (2)0.091 (2)0.0080 (15)0.0273 (16)0.0238 (16)
O10.0501 (11)0.0683 (12)0.1024 (15)0.0069 (9)0.0123 (10)0.0134 (10)
O20.0716 (16)0.177 (3)0.174 (3)0.0305 (17)0.0569 (17)0.071 (2)
O30.1133 (19)0.164 (2)0.0846 (16)0.0169 (17)0.0360 (14)0.0298 (17)
O40.0950 (18)0.180 (3)0.0842 (17)0.0107 (17)0.0297 (14)0.0095 (18)
O50.0481 (13)0.188 (3)0.131 (2)0.0046 (16)0.0087 (14)0.0326 (19)
O60.0751 (15)0.160 (2)0.0868 (15)0.0011 (15)0.0321 (13)0.0238 (14)
O70.0840 (15)0.152 (2)0.0609 (13)0.0327 (15)0.0013 (11)0.0123 (13)
Geometric parameters (Å, º) top
C1—C61.389 (3)C17—H17B0.9700
C1—C21.388 (3)C18—C191.482 (3)
C1—C71.524 (3)C18—N21.506 (3)
C2—C31.385 (3)C18—H18A0.9700
C2—H20.9300C18—H18B0.9700
C3—C41.370 (3)C19—C201.300 (3)
C3—H30.9300C19—H190.9300
C4—C51.364 (4)C20—C211.463 (3)
C4—H40.9300C20—H200.9300
C5—C61.387 (3)C21—C261.381 (4)
C5—H50.9300C21—C221.389 (4)
C6—H60.9300C22—C231.369 (4)
C7—N11.481 (3)C22—H220.9300
C7—C81.519 (3)C23—C241.366 (6)
C7—H70.9800C23—H230.9300
C8—C131.378 (3)C24—C251.364 (6)
C8—C91.385 (3)C24—H240.9300
C9—C101.380 (3)C25—C261.387 (4)
C9—H90.9300C25—H250.9300
C10—C111.369 (3)C26—H260.9300
C10—H100.9300C27—O11.251 (3)
C11—C121.368 (3)C27—C321.435 (3)
C11—H110.9300C27—C281.439 (3)
C12—C131.382 (3)C28—C291.375 (3)
C12—H120.9300C28—N31.456 (3)
C13—H130.9300C29—C301.367 (3)
C14—N11.462 (3)C29—H290.9300
C14—C151.510 (3)C30—C311.377 (4)
C14—H14A0.9700C30—N41.450 (3)
C14—H14B0.9700C31—C321.363 (3)
C15—N21.490 (3)C31—H310.9300
C15—H15A0.9700C32—N51.456 (3)
C15—H15B0.9700N2—H2A0.94 (3)
C16—N21.490 (3)N3—O61.214 (3)
C16—C171.503 (3)N3—O71.218 (3)
C16—H16A0.9700N4—O41.219 (3)
C16—H16B0.9700N4—O51.222 (3)
C17—N11.466 (2)N5—O21.204 (3)
C17—H17A0.9700N5—O31.221 (3)
C6—C1—C2118.0 (2)C19—C18—N2110.90 (19)
C6—C1—C7120.2 (2)C19—C18—H18A109.5
C2—C1—C7121.8 (2)N2—C18—H18A109.5
C3—C2—C1121.1 (2)C19—C18—H18B109.5
C3—C2—H2119.5N2—C18—H18B109.5
C1—C2—H2119.5H18A—C18—H18B108.0
C4—C3—C2119.7 (2)C20—C19—C18126.0 (2)
C4—C3—H3120.1C20—C19—H19117.0
C2—C3—H3120.1C18—C19—H19117.0
C5—C4—C3120.3 (3)C19—C20—C21128.1 (3)
C5—C4—H4119.9C19—C20—H20115.9
C3—C4—H4119.9C21—C20—H20115.9
C4—C5—C6120.4 (3)C26—C21—C22118.1 (3)
C4—C5—H5119.8C26—C21—C20119.7 (3)
C6—C5—H5119.8C22—C21—C20122.1 (3)
C5—C6—C1120.5 (2)C23—C22—C21121.2 (3)
C5—C6—H6119.7C23—C22—H22119.4
C1—C6—H6119.7C21—C22—H22119.4
N1—C7—C8111.90 (16)C24—C23—C22119.5 (4)
N1—C7—C1109.71 (17)C24—C23—H23120.2
C8—C7—C1112.23 (17)C22—C23—H23120.3
N1—C7—H7107.6C25—C24—C23121.1 (4)
C8—C7—H7107.6C25—C24—H24119.4
C1—C7—H7107.6C23—C24—H24119.4
C13—C8—C9117.9 (2)C24—C25—C26119.3 (4)
C13—C8—C7119.9 (2)C24—C25—H25120.4
C9—C8—C7122.2 (2)C26—C25—H25120.4
C10—C9—C8120.7 (2)C21—C26—C25120.8 (3)
C10—C9—H9119.7C21—C26—H26119.6
C8—C9—H9119.7C25—C26—H26119.6
C11—C10—C9120.6 (2)O1—C27—C32123.4 (3)
C11—C10—H10119.7O1—C27—C28124.9 (3)
C9—C10—H10119.7C32—C27—C28111.6 (2)
C12—C11—C10119.4 (2)C29—C28—C27124.0 (2)
C12—C11—H11120.3C29—C28—N3116.2 (2)
C10—C11—H11120.3C27—C28—N3119.8 (2)
C11—C12—C13120.2 (2)C30—C29—C28119.2 (3)
C11—C12—H12119.9C30—C29—H29120.4
C13—C12—H12119.9C28—C29—H29120.4
C8—C13—C12121.2 (2)C29—C30—C31121.1 (2)
C8—C13—H13119.4C29—C30—N4119.5 (3)
C12—C13—H13119.4C31—C30—N4119.3 (3)
N1—C14—C15110.89 (18)C32—C31—C30119.1 (3)
N1—C14—H14A109.5C32—C31—H31120.4
C15—C14—H14A109.5C30—C31—H31120.4
N1—C14—H14B109.5C31—C32—C27124.6 (3)
C15—C14—H14B109.5C31—C32—N5117.1 (3)
H14A—C14—H14B108.0C27—C32—N5118.3 (2)
N2—C15—C14111.20 (18)C14—N1—C17107.22 (16)
N2—C15—H15A109.4C14—N1—C7111.85 (16)
C14—C15—H15A109.4C17—N1—C7110.05 (16)
N2—C15—H15B109.4C16—N2—C15109.96 (17)
C14—C15—H15B109.4C16—N2—C18111.49 (18)
H15A—C15—H15B108.0C15—N2—C18112.54 (18)
N2—C16—C17111.29 (18)C16—N2—H2A107.5 (15)
N2—C16—H16A109.4C15—N2—H2A106.5 (15)
C17—C16—H16A109.4C18—N2—H2A108.5 (15)
N2—C16—H16B109.4O6—N3—O7122.6 (3)
C17—C16—H16B109.4O6—N3—C28118.8 (2)
H16A—C16—H16B108.0O7—N3—C28118.6 (2)
N1—C17—C16110.84 (18)O4—N4—O5123.6 (3)
N1—C17—H17A109.5O4—N4—C30117.9 (3)
C16—C17—H17A109.5O5—N4—C30118.5 (3)
N1—C17—H17B109.5O2—N5—O3123.2 (3)
C16—C17—H17B109.5O2—N5—C32119.1 (3)
H17A—C17—H17B108.1O3—N5—C32117.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.94 (3)2.59 (2)3.119 (3)116.6 (18)
N2—H2A···O1i0.94 (3)1.79 (3)2.710 (3)168 (2)
Symmetry code: (i) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC26H29N2+·C6H2N3O7
Mr597.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.5906 (19), 12.7720 (17), 16.441 (2)
β (°) 103.114 (2)
V3)2984.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.985, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
15196, 5262, 3181
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.03
No. of reflections5262
No. of parameters401
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.94 (3)2.59 (2)3.119 (3)116.6 (18)
N2—H2A···O1i0.94 (3)1.79 (3)2.710 (3)168 (2)
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO). YS and HL acknowledge financial support by the Fundamental Research Funds for the Central Universities.

References

First citationBarrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454–457.  PubMed Google Scholar
First citationBertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975–1977.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495–1496.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTowse, G. (1980). J. Laryngol. Otol. 94, 1009–1015.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds