organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Chloro-3,3,3-tri­fluoro­prop-1-en-1-yl)-2,2-di­methyl-N-[3-(tri­fluoro­meth­yl)phen­yl]cyclo­propane­carboxamide

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China, and bCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 8 May 2012; accepted 8 May 2012; online 16 May 2012)

In the title mol­ecule, C16H14ClF6NO, the cyclo­propane ring forms a dihedral angle of 70.82 (18)° with the benzene ring. The torsion angles about the ethyl­ene and amide bonds are −2.2 (5) (Cl—C—C—C) and 0.8 (5)° (O—C—N—C). A supra­molecular chain propagated by glide symmetry along [001] and mediated by N—H⋯O hydrogen bonds is observed in the crystal packing.

Related literature

For the biological activity of pyrethroids, see: Chen et al. (1991[Chen, F. H. & Yu, Z. S. (1991). Chem. J. Chin. Univ. 12, 485-487.]); Sun et al. (2007[Sun, N. B., Shen, D. L., Weng, J. Q., Tan, C. X. & Chen, Q. W. (2007). Chin. Patent CN 101003493.], 2008[Sun, N. B., Shen, D. L., Tan, C. X., Weng, J. Q., Cong, S. & Fu, H. (2008). Chin. J. Org. Chem. 28, 713-717.]). For the synthesis of the title compound, see: Sun et al. (2007[Sun, N. B., Shen, D. L., Weng, J. Q., Tan, C. X. & Chen, Q. W. (2007). Chin. Patent CN 101003493.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClF6NO

  • Mr = 385.73

  • Monoclinic, P 21 /c

  • a = 11.006 (3) Å

  • b = 16.699 (4) Å

  • c = 9.659 (2) Å

  • β = 93.009 (3)°

  • V = 1772.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.60 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.846, Tmax = 0.967

  • 7354 measured reflections

  • 3120 independent reflections

  • 2247 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.175

  • S = 1.04

  • 3120 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.15 2.974 (3) 161
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrethroids have a high potential for biological activity with low toxicity and good environmental compatibility. These have been widely used in pesticides (Chen et al., 1991; Sun et al., 2007, 2008). In continuation of our studies of biological activities in pyrethroids, we have obtained a colourless crystalline compound, (I). The structure was confirmed by single-crystal X-ray diffraction.

The molecular structure of (I) is illustrated in Fig. 1. In (I), the cyclopropane ring (C4—C6) forms dihedral angles of 89.70 (23) and 70.82 (18)° with the least-squares planes of the (C5,C7,C8) plane and the phenyl ring, respectively. The Cl1—C2—C3—C4 and O1—C9—N1—C10 torsion angles are -2.2 (5) and 0.8 (5)°, respectively. A supramolecular chain propagated by glide symmetry along [001] and mediated by N—H···O hydrogen bonds, Table 1, is observed in the crystal packing.

Related literature top

For the biological activity of pyrethroids, see: Chen et al. (1991); Sun et al. (2007, 2008). For the synthesis of the title compound, see: Sun et al. (2007).

Experimental top

The title compound was synthesized according to the literature procedure (Sun et al., 2007). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless blocks.

Refinement top

The H-atoms were placed in calculated positions [N—H = 0.86 Å; C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2Ueq(C,N)] and were included in the refinement in the riding model approximation. The CF3 group was disordered and modelled over two positions of equal weight.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids. The F atoms of the CF3 group have 50% occupancy factors.
3-(2-Chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl- N-[3-(trifluoromethyl)phenyl]cyclopropanecarboxamide top
Crystal data top
C16H14ClF6NOZ = 4
Mr = 385.73F(000) = 784
Monoclinic, P21/cDx = 1.445 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.006 (3) ŵ = 0.28 mm1
b = 16.699 (4) ÅT = 298 K
c = 9.659 (2) ÅBlock, colourless
β = 93.009 (3)°0.60 × 0.13 × 0.12 mm
V = 1772.8 (7) Å3
Data collection top
Bruker SMART CCD
diffractometer
3120 independent reflections
Radiation source: fine-focus sealed tube2247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1312
Tmin = 0.846, Tmax = 0.967k = 1919
7354 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0682P)2 + 1.1818P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3120 reflectionsΔρmax = 0.52 e Å3
256 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0120 (19)
Crystal data top
C16H14ClF6NOV = 1772.8 (7) Å3
Mr = 385.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.006 (3) ŵ = 0.28 mm1
b = 16.699 (4) ÅT = 298 K
c = 9.659 (2) Å0.60 × 0.13 × 0.12 mm
β = 93.009 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3120 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2247 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.967Rint = 0.026
7354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3120 reflectionsΔρmin = 0.48 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.3041 (4)0.0980 (3)0.1232 (4)0.0913 (12)
C21.3072 (3)0.1266 (2)0.0223 (3)0.0685 (9)
C31.2130 (3)0.12532 (19)0.0995 (3)0.0630 (8)
H31.13930.10880.05730.076*
C41.2130 (3)0.14749 (19)0.2459 (3)0.0619 (8)
H41.29440.15520.28990.074*
C51.1223 (3)0.1129 (2)0.3411 (3)0.0721 (9)
C81.1705 (4)0.0951 (3)0.4888 (4)0.1193 (18)
H8B1.20490.04230.49280.179*
H8A1.10490.09830.55030.179*
H8C1.23190.13360.51620.179*
C71.0243 (4)0.0577 (2)0.2842 (5)0.0998 (13)
H7A0.95670.05900.34320.150*
H7B1.05560.00410.28050.150*
H7C0.99780.07470.19260.150*
C61.1158 (3)0.20070 (18)0.3045 (3)0.0560 (7)
H61.14630.23630.37920.067*
C91.0126 (2)0.23407 (16)0.2185 (2)0.0476 (6)
C100.8386 (3)0.32746 (16)0.2473 (3)0.0527 (7)
C110.7832 (3)0.37131 (19)0.3483 (3)0.0663 (8)
H110.81630.37160.43890.080*
C120.6798 (3)0.4141 (2)0.3148 (4)0.0818 (10)
H120.64290.44330.38310.098*
C130.6299 (3)0.4144 (2)0.1813 (4)0.0798 (10)
H130.55980.44370.15880.096*
C140.6848 (3)0.37073 (18)0.0813 (4)0.0665 (8)
C150.7895 (3)0.32759 (18)0.1131 (3)0.0608 (8)
H150.82670.29880.04450.073*
C160.6311 (4)0.3696 (3)0.0649 (5)0.0911 (12)
Cl11.44791 (11)0.15833 (11)0.08073 (14)0.1439 (7)
F11.3420 (3)0.15215 (19)0.2109 (3)0.1418 (12)
F21.1945 (3)0.0778 (2)0.1683 (3)0.1437 (13)
F31.3764 (3)0.03595 (16)0.1382 (3)0.1264 (10)
N10.9449 (2)0.28521 (14)0.2908 (2)0.0565 (6)
H10.97030.29320.37540.068*
O10.98962 (18)0.21704 (13)0.09703 (18)0.0643 (6)
F40.5087 (8)0.3754 (17)0.0623 (13)0.165 (5)0.50
F50.661 (3)0.4283 (13)0.1320 (16)0.214 (9)0.50
F60.643 (2)0.3051 (10)0.1269 (15)0.152 (9)0.50
F4'0.568 (2)0.4289 (10)0.1007 (11)0.153 (6)0.50
F5'0.7204 (9)0.3700 (15)0.1603 (8)0.132 (4)0.50
F6'0.575 (3)0.3062 (10)0.0982 (18)0.177 (9)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.094 (3)0.121 (3)0.060 (2)0.026 (3)0.017 (2)0.008 (2)
C20.072 (2)0.083 (2)0.0508 (18)0.0154 (17)0.0072 (15)0.0018 (15)
C30.0602 (18)0.081 (2)0.0475 (16)0.0132 (15)0.0012 (14)0.0018 (14)
C40.0577 (17)0.086 (2)0.0414 (15)0.0140 (15)0.0021 (12)0.0013 (14)
C50.084 (2)0.081 (2)0.0524 (18)0.0249 (19)0.0141 (16)0.0172 (16)
C80.149 (4)0.148 (4)0.062 (2)0.073 (3)0.023 (2)0.045 (2)
C70.111 (3)0.072 (2)0.120 (4)0.003 (2)0.037 (3)0.014 (2)
C60.0630 (17)0.0717 (19)0.0329 (13)0.0080 (14)0.0013 (12)0.0027 (12)
C90.0560 (15)0.0559 (15)0.0308 (13)0.0004 (12)0.0011 (11)0.0031 (11)
C100.0588 (16)0.0527 (16)0.0466 (15)0.0036 (13)0.0027 (12)0.0037 (12)
C110.071 (2)0.073 (2)0.0561 (18)0.0065 (16)0.0095 (15)0.0040 (15)
C120.079 (2)0.085 (2)0.082 (3)0.0180 (19)0.020 (2)0.0061 (19)
C130.067 (2)0.076 (2)0.097 (3)0.0186 (17)0.0053 (19)0.010 (2)
C140.0655 (19)0.0607 (18)0.073 (2)0.0051 (15)0.0035 (16)0.0097 (16)
C150.0709 (19)0.0603 (17)0.0510 (17)0.0113 (15)0.0013 (14)0.0012 (14)
C160.089 (3)0.093 (3)0.088 (3)0.022 (3)0.026 (2)0.014 (3)
Cl10.0863 (8)0.2456 (18)0.1022 (9)0.0409 (9)0.0265 (6)0.0419 (10)
F10.192 (3)0.173 (3)0.0640 (15)0.027 (2)0.0439 (17)0.0278 (16)
F20.109 (2)0.251 (4)0.0706 (15)0.001 (2)0.0003 (14)0.0609 (19)
F30.152 (2)0.133 (2)0.0976 (19)0.0426 (18)0.0355 (16)0.0290 (15)
N10.0674 (15)0.0694 (15)0.0320 (11)0.0117 (12)0.0038 (10)0.0053 (10)
O10.0720 (13)0.0879 (15)0.0323 (10)0.0193 (11)0.0052 (9)0.0060 (9)
F40.088 (5)0.259 (15)0.142 (8)0.039 (7)0.058 (5)0.037 (9)
F50.34 (2)0.183 (14)0.107 (10)0.117 (14)0.092 (13)0.088 (10)
F60.200 (14)0.154 (14)0.093 (6)0.098 (13)0.076 (9)0.054 (9)
F4'0.188 (13)0.145 (10)0.122 (6)0.105 (11)0.031 (9)0.024 (7)
F5'0.116 (5)0.212 (11)0.068 (3)0.017 (7)0.009 (3)0.024 (6)
F6'0.239 (17)0.142 (13)0.139 (10)0.088 (13)0.094 (11)0.044 (9)
Geometric parameters (Å, º) top
C1—F21.305 (5)C9—O11.221 (3)
C1—F31.319 (4)C9—N11.351 (3)
C1—F11.321 (5)C10—C151.378 (4)
C1—C21.483 (5)C10—C111.387 (4)
C2—C31.309 (4)C10—N11.411 (3)
C2—Cl11.704 (4)C11—C121.367 (5)
C3—C41.462 (4)C11—H110.9300
C3—H30.9300C12—C131.376 (5)
C4—C51.507 (4)C12—H120.9300
C4—C61.522 (4)C13—C141.375 (5)
C4—H40.9800C13—H130.9300
C5—C71.500 (5)C14—C151.380 (4)
C5—C61.509 (4)C14—C161.502 (5)
C5—C81.525 (5)C15—H150.9300
C8—H8B0.9600C16—F51.230 (10)
C8—H8A0.9600C16—F61.242 (11)
C8—H8C0.9600C16—F4'1.246 (9)
C7—H7A0.9600C16—F6'1.258 (12)
C7—H7B0.9600C16—F41.352 (10)
C7—H7C0.9600C16—F5'1.381 (10)
C6—C91.481 (4)N1—H10.8600
C6—H60.9800
F2—C1—F3108.2 (4)N1—C9—C6112.0 (2)
F2—C1—F1106.3 (4)C15—C10—C11119.7 (3)
F3—C1—F1104.8 (3)C15—C10—N1123.9 (3)
F2—C1—C2112.0 (3)C11—C10—N1116.3 (3)
F3—C1—C2111.9 (3)C12—C11—C10120.0 (3)
F1—C1—C2113.3 (4)C12—C11—H11120.0
C3—C2—C1123.7 (3)C10—C11—H11120.0
C3—C2—Cl1123.3 (3)C11—C12—C13120.7 (3)
C1—C2—Cl1112.9 (3)C11—C12—H12119.7
C2—C3—C4126.0 (3)C13—C12—H12119.7
C2—C3—H3117.0C14—C13—C12119.2 (3)
C4—C3—H3117.0C14—C13—H13120.4
C3—C4—C5121.8 (3)C12—C13—H13120.4
C3—C4—C6122.9 (2)C13—C14—C15120.9 (3)
C5—C4—C659.8 (2)C13—C14—C16120.1 (3)
C3—C4—H4114.0C15—C14—C16119.0 (3)
C5—C4—H4114.0C10—C15—C14119.4 (3)
C6—C4—H4114.0C10—C15—H15120.3
C7—C5—C4119.9 (3)C14—C15—H15120.3
C7—C5—C6119.1 (3)F5—C16—F6113.5 (12)
C4—C5—C660.6 (2)F5—C16—F4'51.8 (11)
C7—C5—C8115.5 (4)F6—C16—F4'128.8 (9)
C4—C5—C8115.9 (3)F5—C16—F6'132.7 (8)
C6—C5—C8114.7 (3)F6—C16—F6'37.9 (10)
C5—C8—H8B109.5F4'—C16—F6'110.0 (9)
C5—C8—H8A109.5F5—C16—F4104.5 (11)
H8B—C8—H8A109.5F6—C16—F4101.7 (9)
C5—C8—H8C109.5F4'—C16—F453.9 (6)
H8B—C8—H8C109.5F6'—C16—F465.7 (9)
H8A—C8—H8C109.5F5—C16—F5'54.8 (12)
C5—C7—H7A109.5F6—C16—F5'65.5 (8)
C5—C7—H7B109.5F4'—C16—F5'102.4 (8)
H7A—C7—H7B109.5F6'—C16—F5'101.0 (10)
C5—C7—H7C109.5F4—C16—F5'139.2 (7)
H7A—C7—H7C109.5F5—C16—C14112.4 (6)
H7B—C7—H7C109.5F6—C16—C14114.7 (6)
C9—C6—C5121.5 (3)F4'—C16—C14115.8 (7)
C9—C6—C4123.0 (2)F6'—C16—C14114.4 (7)
C5—C6—C459.6 (2)F4—C16—C14108.9 (6)
C9—C6—H6114.1F5'—C16—C14111.6 (5)
C5—C6—H6114.1C9—N1—C10129.3 (2)
C4—C6—H6114.1C9—N1—H1115.4
O1—C9—N1123.5 (2)C10—N1—H1115.4
O1—C9—C6124.4 (2)
F2—C1—C2—C35.3 (6)C15—C10—C11—C120.4 (5)
F3—C1—C2—C3116.4 (4)N1—C10—C11—C12179.9 (3)
F1—C1—C2—C3125.5 (4)C10—C11—C12—C130.2 (5)
F2—C1—C2—Cl1176.8 (3)C11—C12—C13—C140.3 (6)
F3—C1—C2—Cl161.6 (4)C12—C13—C14—C150.7 (5)
F1—C1—C2—Cl156.6 (4)C12—C13—C14—C16179.4 (4)
C1—C2—C3—C4175.5 (3)C11—C10—C15—C140.7 (4)
Cl1—C2—C3—C42.2 (5)N1—C10—C15—C14179.8 (3)
C2—C3—C4—C5153.3 (3)C13—C14—C15—C100.9 (5)
C2—C3—C4—C6134.5 (4)C16—C14—C15—C10179.2 (3)
C3—C4—C5—C73.5 (5)C13—C14—C16—F583 (2)
C6—C4—C5—C7108.7 (3)C15—C14—C16—F597 (2)
C3—C4—C5—C6112.3 (3)C13—C14—C16—F6145.8 (15)
C3—C4—C5—C8142.7 (3)C15—C14—C16—F634.3 (16)
C6—C4—C5—C8105.0 (4)C13—C14—C16—F4'25.6 (15)
C7—C5—C6—C92.4 (4)C15—C14—C16—F4'154.3 (14)
C4—C5—C6—C9112.4 (3)C13—C14—C16—F6'103.9 (18)
C8—C5—C6—C9140.6 (3)C15—C14—C16—F6'76.2 (18)
C7—C5—C6—C4110.0 (3)C13—C14—C16—F432.7 (14)
C8—C5—C6—C4107.0 (3)C15—C14—C16—F4147.4 (14)
C3—C4—C6—C90.5 (5)C13—C14—C16—F5'142.2 (12)
C5—C4—C6—C9109.9 (3)C15—C14—C16—F5'37.7 (13)
C3—C4—C6—C5110.4 (4)O1—C9—N1—C100.8 (5)
C5—C6—C9—O165.5 (4)C6—C9—N1—C10178.4 (3)
C4—C6—C9—O16.5 (5)C15—C10—N1—C95.4 (5)
C5—C6—C9—N1113.7 (3)C11—C10—N1—C9175.1 (3)
C4—C6—C9—N1174.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.152.974 (3)161
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14ClF6NO
Mr385.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.006 (3), 16.699 (4), 9.659 (2)
β (°) 93.009 (3)
V3)1772.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.60 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.846, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
7354, 3120, 2247
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.175, 1.04
No. of reflections3120
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.48

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.152.974 (3)161
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are very grateful to the Program of the Education Department of Zhejiang Province of China (Y200803060) for financial support.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, F. H. & Yu, Z. S. (1991). Chem. J. Chin. Univ. 12, 485–487.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, N. B., Shen, D. L., Tan, C. X., Weng, J. Q., Cong, S. & Fu, H. (2008). Chin. J. Org. Chem. 28, 713–717.  CAS Google Scholar
First citationSun, N. B., Shen, D. L., Weng, J. Q., Tan, C. X. & Chen, Q. W. (2007). Chin. Patent CN 101003493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds