organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(9-methyl-9-aza­bi­cyclo­[3.3.1]non-3-yl)benzamide

aDepartment of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
*Correspondence e-mail: yfchai2003c@163.com

(Received 15 March 2012; accepted 21 April 2012; online 19 May 2012)

The asymmetric unit of the title compound, C17H24N2O, contains three independent mol­ecules. In the crystal, mol­ecules are linked by weak N—H⋯O hydrogen bonds into chains parallel to the c axis.

Related literature

For background to our work to design and synthesize a series of potent 5-HT3 receptor antagonists, see: Bermudez et al. (1990[Bermudez, J., Dabbs, S. & King, F. D. (1990). J. Med. Chem. 33, 1932-1935.]); Vernekar et al. (2010[Vernekar, S. K. V., Hallaq, H. Y., Clarkson, G., Thompson, A. J., Silvestri, L., Lummis, S. C. R. & Lochner, M. (2010). J. Med. Chem. 33, 2324-2328.]); Yang et al. (2010[Yang, Z., et al. (2010). Bioorg. Med. Chem. Lett. 20, 6538-6541.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24N2O

  • Mr = 272.38

  • Monoclinic, C c

  • a = 38.68 (2) Å

  • b = 12.300 (7) Å

  • c = 9.975 (5) Å

  • β = 101.263 (7)°

  • V = 4654 (4) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.993

  • 10320 measured reflections

  • 6399 independent reflections

  • 4035 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 0.96

  • 6399 reflections

  • 556 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2′⋯O1i 0.85 (2) 2.10 (2) 2.935 (5) 171 (4)
N4—H4′⋯O2ii 0.86 (2) 2.05 (2) 2.894 (5) 166 (4)
N6—H6′⋯O3iii 0.86 (2) 2.30 (2) 3.164 (5) 174 (4)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Motion sickness is common in the population, especially with children. In our laboratory, we have designed and synthesized a novel series of potent 5-HT3 receptor antagonists (Bermudez et al., 1990; Vernekar et al., 2010; Yang et al., 2010). Furthermore, we find that the candidate has the anti-motion sickness effect. Here, we report the crystal structure of the title compound.

As shown in Fig.1, the asymmetric unit of the title compound contains three molecules. H-bonding interactions do play a decisive role in the crystal packing arrangement (Fig. 2). The molecules are linked by weak intermolecular N2—H2···O1, N4—H4···O2 and N6—H6···O3 hydrogen bonds (Table 1) linking the molecules into chains parallel to the c axis.

Related literature top

For background to our work to design and synthesize a series of potent 5-HT3 receptor antagonists, see: Bermudez et al. (1990); Vernekar et al. (2010); Yang et al. (2010).

Experimental top

A solution of 9-methyl-9-azabicyclo[3.3.1]nonan-3-one (0.03 mol) in ethanol (150 ml) was added dropwise to a solution of sodium acetate (0.06 mol) and hydroxylamine hydrochloride (0.06 mol) in ethanol (200 ml) under stirring, and refluxed for 4 hr to get crude products, which was recrystallized from ethyl acetate to give pure 9-methyl-9-azabicyclo[3.3.1]nonan-3-one (3.8 g, yield 75.2%). To a solution of LiAlH4 (0.066 mol) in anhydrous tetrahydrofuran (THF, 50 ml) a solution of concentrated sulfuric acid (3.0 ml) and THF (12 ml) was added dropwise at -10°C and stirred for 1 hr. To thisabove reaction mixture, a solution of 9-methyl-9-azbicyclo[3.3.1]non-3-ylamine (0.022 mol) in anhydrous THF (70 ml) was added dropwise at 30-35°C and stirred. After reaction, the reaction mixture was evaporated at vacuum to remove solvent to give 3-amine-9-methyl-9-azabicyclo[3.3.1]nonane (2.9 g, yield 78.3%). To a solution of 3-amine-9-methyl-9-azabicyclo[3.3.1]nonane (0.013 mol) and triethylamine (0.013 mol) in dichloromethane (20 ml), a mixture of 4-methylbenzoyl chloride (0.016 mol) and dichloromethane (5 ml) was added dropwise and stirred to obtain crude product, which was recrystallized from ethyl acetate to give pure 4-methyl-N-(9-methyl-9-azabicyclo[3.3.1]non-3-yl)-benzenecarboxamide (2.9 g, yield 81%).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 groups and d(N—H) = 0.86 Å for NH, and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms. The asymmetric unit contains three molecules.
[Figure 2] Fig. 2. Intermolecular N2—H2···O1, N4—H4···O2 and N6—H6···O3 contacts forming a supramolecular chains along the c axis.
4-Methyl-N-(9-methyl-9-azabicyclo[3.3.1]non-3-yl)benzamide top
Crystal data top
C17H24N2OF(000) = 1776
Mr = 272.38Dx = 1.166 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2865 reflections
a = 38.68 (2) Åθ = 2.3–24.1°
b = 12.300 (7) ŵ = 0.07 mm1
c = 9.975 (5) ÅT = 293 K
β = 101.263 (7)°Prism, colorless
V = 4654 (4) Å30.25 × 0.15 × 0.10 mm
Z = 12
Data collection top
Bruker SMART CCD area-detector
diffractometer
6399 independent reflections
Radiation source: fine-focus sealed tube4035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
phi and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3647
Tmin = 0.982, Tmax = 0.993k = 1515
10320 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
6399 reflectionsΔρmax = 0.20 e Å3
556 parametersΔρmin = 0.23 e Å3
5 restraintsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 3.4 (17)
Crystal data top
C17H24N2OV = 4654 (4) Å3
Mr = 272.38Z = 12
Monoclinic, CcMo Kα radiation
a = 38.68 (2) ŵ = 0.07 mm1
b = 12.300 (7) ÅT = 293 K
c = 9.975 (5) Å0.25 × 0.15 × 0.10 mm
β = 101.263 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4035 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.993Rint = 0.049
10320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151Δρmax = 0.20 e Å3
S = 0.96Δρmin = 0.23 e Å3
6399 reflectionsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881.
556 parametersAbsolute structure parameter: 3.4 (17)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58077 (8)0.1326 (3)0.3192 (3)0.0543 (8)
N20.48226 (9)0.0124 (3)0.2549 (3)0.0609 (9)
H2'0.4764 (11)0.005 (3)0.330 (3)0.073*
O10.46853 (7)0.0334 (3)0.0285 (3)0.0705 (8)
C10.46056 (10)0.0018 (3)0.1364 (4)0.0528 (10)
C20.42609 (10)0.0505 (3)0.1370 (4)0.0488 (9)
C30.39749 (11)0.0253 (3)0.0334 (4)0.0589 (11)
H30.40030.02420.03430.071*
C40.36548 (11)0.0725 (4)0.0305 (5)0.0670 (12)
H40.34670.05280.03830.080*
C50.35993 (10)0.1489 (3)0.1261 (5)0.0627 (12)
C60.38855 (11)0.1749 (3)0.2235 (4)0.0619 (11)
H60.38620.22790.28760.074*
C70.42059 (10)0.1264 (3)0.2308 (4)0.0558 (10)
H70.43910.14540.30120.067*
C80.32499 (12)0.2024 (4)0.1200 (6)0.0900 (16)
H8A0.30850.15030.14210.135*
H8B0.32750.26120.18430.135*
H8C0.31660.23000.02950.135*
C90.51759 (10)0.0560 (3)0.2706 (4)0.0531 (10)
H90.52550.04710.18370.064*
C100.51907 (11)0.1753 (3)0.3063 (4)0.0626 (11)
H10A0.50760.18680.38320.075*
H10B0.50620.21610.22930.075*
C110.55702 (11)0.2186 (3)0.3427 (4)0.0613 (11)
H110.55920.27820.27970.074*
C120.56556 (13)0.2638 (3)0.4878 (5)0.0736 (13)
H12A0.58850.29860.50310.088*
H12B0.54820.31850.49860.088*
C130.56561 (13)0.1746 (4)0.5929 (4)0.0740 (13)
H13A0.57460.20320.68370.089*
H13B0.54170.14960.58980.089*
C140.58816 (11)0.0809 (4)0.5652 (5)0.0715 (13)
H14A0.58490.02040.62380.086*
H14B0.61280.10230.58740.086*
C150.57904 (10)0.0439 (3)0.4144 (4)0.0566 (10)
H150.59630.01120.40070.068*
C160.54243 (10)0.0080 (3)0.3798 (4)0.0531 (10)
H16A0.54460.08170.34780.064*
H16B0.53250.01160.46190.064*
C170.61658 (12)0.1692 (4)0.3199 (5)0.0852 (15)
H17A0.62750.19130.41060.128*
H17B0.61600.22970.25860.128*
H17C0.62990.11090.29090.128*
N30.40602 (8)0.3625 (3)0.0728 (3)0.0606 (9)
N40.30958 (8)0.4950 (3)0.0227 (3)0.0552 (8)
H4'0.3019 (10)0.506 (3)0.097 (3)0.066*
O20.29556 (7)0.4833 (3)0.2040 (3)0.0750 (9)
C180.28783 (9)0.5105 (3)0.0962 (4)0.0521 (10)
C190.25307 (9)0.5615 (3)0.0922 (4)0.0477 (9)
C200.24716 (10)0.6300 (3)0.0099 (4)0.0552 (10)
H200.26550.64580.08230.066*
C210.21491 (11)0.6750 (3)0.0068 (4)0.0605 (11)
H210.21200.72270.07610.073*
C220.18671 (10)0.6526 (3)0.0946 (4)0.0565 (10)
C230.19269 (11)0.5849 (3)0.1974 (5)0.0664 (12)
H230.17410.56930.26930.080*
C240.22492 (10)0.5399 (3)0.1972 (4)0.0579 (11)
H240.22800.49430.26840.069*
C250.15105 (12)0.7020 (4)0.0963 (6)0.0857 (15)
H25A0.15090.73600.00980.129*
H25B0.13340.64620.11250.129*
H25C0.14610.75540.16770.129*
C260.34431 (9)0.4478 (3)0.0351 (4)0.0491 (9)
H260.35170.45500.05310.059*
C270.37066 (10)0.5075 (3)0.1421 (4)0.0515 (9)
H27A0.36170.51140.22620.062*
H27B0.37330.58130.11120.062*
C280.40679 (10)0.4522 (3)0.1711 (4)0.0564 (10)
H280.42430.50530.15410.068*
C290.41717 (12)0.4145 (4)0.3186 (4)0.0793 (15)
H29A0.44150.39040.33580.095*
H29B0.41550.47530.37890.095*
C300.39411 (15)0.3229 (4)0.3508 (5)0.0883 (16)
H30A0.37080.35070.35350.106*
H30B0.40400.29310.44020.106*
C310.39119 (16)0.2330 (4)0.2435 (5)0.0894 (16)
H31A0.41350.19520.25330.107*
H31B0.37340.18080.25770.107*
C320.38135 (12)0.2796 (3)0.1010 (4)0.0660 (12)
H320.38180.21990.03630.079*
C330.34430 (11)0.3284 (3)0.0711 (4)0.0641 (11)
H33A0.33000.28910.00420.077*
H33B0.33360.31920.15070.077*
C340.44072 (13)0.3213 (5)0.0673 (5)0.1015 (19)
H34A0.45300.30380.15790.152*
H34B0.45370.37560.02870.152*
H34C0.43850.25720.01140.152*
N50.24691 (9)0.9123 (3)0.6198 (3)0.0589 (9)
N60.14766 (9)1.0004 (3)0.4521 (3)0.0581 (9)
H6'0.1420 (11)0.983 (3)0.367 (2)0.070*
O30.13264 (8)1.0699 (2)0.6410 (3)0.0708 (8)
C350.12497 (11)1.0463 (3)0.5175 (4)0.0548 (10)
C360.08923 (10)1.0718 (3)0.4366 (4)0.0527 (9)
C370.07519 (11)1.0213 (3)0.3145 (4)0.0597 (11)
H370.08820.96850.27920.072*
C380.04217 (11)1.0486 (3)0.2451 (5)0.0671 (12)
H380.03301.01240.16410.081*
C390.02218 (11)1.1268 (3)0.2901 (5)0.0662 (12)
C400.03636 (12)1.1764 (4)0.4127 (5)0.0719 (13)
H400.02331.22900.44750.086*
C410.06940 (11)1.1500 (3)0.4847 (5)0.0660 (12)
H410.07841.18540.56660.079*
C420.01294 (13)1.1604 (5)0.2088 (6)0.1033 (18)
H42A0.01331.23780.19610.155*
H42B0.03121.13990.25680.155*
H42C0.01691.12510.12130.155*
C430.18360 (10)0.9727 (3)0.5173 (4)0.0550 (10)
H430.19041.01920.59790.066*
C440.18626 (11)0.8552 (3)0.5649 (5)0.0689 (12)
H44A0.17550.80880.48960.083*
H44B0.17310.84650.63770.083*
C450.22420 (11)0.8184 (3)0.6162 (4)0.0586 (11)
H450.22620.79170.71000.070*
C460.23481 (14)0.7258 (3)0.5295 (5)0.0803 (14)
H46A0.25750.69720.57390.096*
H46B0.21770.66750.52320.096*
C470.23692 (15)0.7642 (4)0.3866 (5)0.0825 (15)
H47A0.24770.70790.34060.099*
H47B0.21330.77630.33480.099*
C480.25764 (13)0.8662 (4)0.3886 (5)0.0762 (13)
H48A0.25490.89450.29640.091*
H48B0.28240.85050.42130.091*
C490.24582 (11)0.9519 (3)0.4801 (4)0.0606 (11)
H490.26211.01340.48570.073*
C500.20874 (11)0.9945 (3)0.4227 (4)0.0607 (11)
H50A0.20991.07220.40750.073*
H50B0.19990.96010.33520.073*
C510.28263 (12)0.8941 (4)0.6964 (5)0.0897 (16)
H51A0.29380.83850.65230.134*
H51B0.28170.87160.78780.134*
H51C0.29590.96030.69950.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0452 (19)0.0620 (19)0.055 (2)0.0041 (16)0.0069 (15)0.0034 (16)
N20.050 (2)0.103 (3)0.0281 (18)0.0168 (18)0.0040 (15)0.0049 (18)
O10.0581 (18)0.121 (2)0.0312 (16)0.0092 (16)0.0058 (13)0.0028 (15)
C10.044 (2)0.074 (3)0.038 (3)0.0028 (19)0.0038 (18)0.0093 (19)
C20.045 (2)0.063 (2)0.037 (2)0.0000 (18)0.0044 (17)0.0100 (17)
C30.054 (3)0.068 (2)0.049 (2)0.003 (2)0.003 (2)0.0019 (19)
C40.051 (3)0.073 (3)0.068 (3)0.004 (2)0.011 (2)0.003 (2)
C50.046 (3)0.058 (2)0.082 (3)0.005 (2)0.007 (2)0.015 (2)
C60.062 (3)0.069 (3)0.054 (3)0.011 (2)0.011 (2)0.003 (2)
C70.047 (2)0.078 (3)0.040 (2)0.001 (2)0.0022 (17)0.000 (2)
C80.061 (3)0.080 (3)0.126 (5)0.009 (2)0.010 (3)0.005 (3)
C90.047 (2)0.080 (3)0.032 (2)0.009 (2)0.0050 (16)0.0006 (18)
C100.058 (3)0.070 (3)0.056 (3)0.016 (2)0.0031 (19)0.010 (2)
C110.066 (3)0.057 (2)0.059 (3)0.004 (2)0.010 (2)0.010 (2)
C120.086 (3)0.064 (3)0.070 (3)0.005 (2)0.012 (2)0.013 (2)
C130.082 (3)0.090 (3)0.046 (3)0.009 (3)0.003 (2)0.010 (2)
C140.054 (3)0.087 (3)0.064 (3)0.010 (2)0.010 (2)0.015 (2)
C150.047 (2)0.063 (2)0.056 (3)0.0041 (19)0.0013 (18)0.0006 (19)
C160.059 (3)0.059 (2)0.041 (2)0.0020 (18)0.0070 (17)0.0030 (17)
C170.063 (3)0.097 (3)0.095 (4)0.017 (3)0.015 (3)0.003 (3)
N30.056 (2)0.082 (2)0.044 (2)0.0203 (19)0.0089 (15)0.0063 (17)
N40.048 (2)0.083 (2)0.0340 (19)0.0071 (16)0.0073 (15)0.0019 (16)
O20.0605 (19)0.135 (3)0.0301 (16)0.0110 (17)0.0112 (13)0.0036 (16)
C180.044 (2)0.068 (2)0.043 (2)0.0034 (18)0.0063 (18)0.0051 (19)
C190.044 (2)0.058 (2)0.041 (2)0.0037 (17)0.0076 (17)0.0080 (18)
C200.044 (2)0.073 (3)0.045 (2)0.005 (2)0.0009 (17)0.004 (2)
C210.056 (3)0.071 (2)0.054 (3)0.002 (2)0.010 (2)0.008 (2)
C220.046 (2)0.053 (2)0.069 (3)0.0010 (18)0.007 (2)0.005 (2)
C230.052 (3)0.070 (3)0.067 (3)0.002 (2)0.014 (2)0.000 (2)
C240.054 (3)0.067 (2)0.046 (2)0.006 (2)0.0058 (19)0.0047 (19)
C250.063 (3)0.082 (3)0.109 (4)0.012 (3)0.009 (3)0.009 (3)
C260.043 (2)0.064 (2)0.041 (2)0.0059 (18)0.0099 (16)0.0014 (18)
C270.048 (2)0.058 (2)0.048 (2)0.0019 (18)0.0087 (17)0.0035 (18)
C280.048 (2)0.076 (3)0.042 (2)0.002 (2)0.0009 (17)0.004 (2)
C290.070 (3)0.108 (4)0.049 (3)0.025 (3)0.015 (2)0.016 (3)
C300.116 (4)0.099 (4)0.048 (3)0.021 (3)0.010 (3)0.014 (3)
C310.126 (5)0.076 (3)0.064 (3)0.028 (3)0.013 (3)0.011 (3)
C320.086 (3)0.059 (2)0.052 (3)0.013 (2)0.010 (2)0.0075 (19)
C330.070 (3)0.069 (2)0.051 (2)0.013 (2)0.008 (2)0.005 (2)
C340.076 (4)0.146 (5)0.078 (4)0.051 (4)0.005 (3)0.015 (3)
N50.057 (2)0.072 (2)0.0435 (19)0.0100 (17)0.0014 (15)0.0080 (17)
N60.054 (2)0.082 (2)0.0374 (19)0.0109 (18)0.0061 (16)0.0024 (18)
O30.0744 (19)0.100 (2)0.0400 (18)0.0044 (16)0.0157 (14)0.0029 (15)
C350.057 (3)0.060 (2)0.049 (3)0.002 (2)0.014 (2)0.0064 (19)
C360.052 (2)0.055 (2)0.054 (3)0.0003 (19)0.0161 (18)0.0068 (19)
C370.057 (3)0.058 (2)0.065 (3)0.000 (2)0.012 (2)0.003 (2)
C380.055 (3)0.066 (2)0.076 (3)0.008 (2)0.003 (2)0.000 (2)
C390.049 (3)0.069 (3)0.082 (3)0.001 (2)0.014 (2)0.012 (3)
C400.073 (3)0.069 (3)0.081 (4)0.012 (2)0.034 (3)0.001 (2)
C410.064 (3)0.072 (3)0.064 (3)0.004 (2)0.020 (2)0.001 (2)
C420.061 (3)0.114 (4)0.131 (5)0.012 (3)0.008 (3)0.004 (4)
C430.054 (3)0.064 (2)0.048 (2)0.0013 (19)0.0100 (18)0.0045 (18)
C440.070 (3)0.068 (3)0.068 (3)0.007 (2)0.012 (2)0.009 (2)
C450.075 (3)0.067 (2)0.034 (2)0.010 (2)0.0103 (19)0.0074 (18)
C460.095 (4)0.058 (3)0.084 (4)0.009 (2)0.008 (3)0.007 (2)
C470.115 (4)0.081 (3)0.051 (3)0.025 (3)0.016 (3)0.014 (2)
C480.077 (3)0.097 (3)0.059 (3)0.025 (3)0.025 (2)0.008 (2)
C490.057 (3)0.063 (2)0.061 (3)0.001 (2)0.009 (2)0.003 (2)
C500.060 (3)0.061 (2)0.061 (3)0.005 (2)0.012 (2)0.007 (2)
C510.073 (3)0.105 (4)0.078 (4)0.021 (3)0.015 (3)0.017 (3)
Geometric parameters (Å, º) top
N1—C111.449 (5)C26—C271.515 (5)
N1—C171.456 (5)C26—H260.9800
N1—C151.456 (5)C27—C281.530 (5)
N2—C11.315 (5)C27—H27A0.9700
N2—C91.448 (5)C27—H27B0.9700
N2—H2'0.846 (19)C28—C291.520 (6)
O1—C11.239 (5)C28—H280.9800
C1—C21.482 (5)C29—C301.511 (7)
C2—C71.367 (5)C29—H29A0.9700
C2—C31.394 (5)C29—H29B0.9700
C3—C41.363 (6)C30—C311.528 (7)
C3—H30.9300C30—H30A0.9700
C4—C51.385 (6)C30—H30B0.9700
C4—H40.9300C31—C321.510 (6)
C5—C61.361 (5)C31—H31A0.9700
C5—C81.493 (6)C31—H31B0.9700
C6—C71.365 (5)C32—C331.528 (6)
C6—H60.9300C32—H320.9800
C7—H70.9300C33—H33A0.9700
C8—H8A0.9600C33—H33B0.9700
C8—H8B0.9600C34—H34A0.9600
C8—H8C0.9600C34—H34B0.9600
C9—C101.508 (5)C34—H34C0.9600
C9—C161.523 (5)N5—C451.447 (5)
C9—H90.9800N5—C511.459 (5)
C10—C111.537 (6)N5—C491.469 (5)
C10—H10A0.9700N6—C351.319 (5)
C10—H10B0.9700N6—C431.456 (5)
C11—C121.525 (6)N6—H6'0.864 (19)
C11—H110.9800O3—C351.243 (5)
C12—C131.518 (6)C35—C361.492 (5)
C12—H12A0.9700C36—C411.374 (5)
C12—H12B0.9700C36—C371.381 (6)
C13—C141.503 (6)C37—C381.370 (5)
C13—H13A0.9700C37—H370.9300
C13—H13B0.9700C38—C391.364 (6)
C14—C151.545 (6)C38—H380.9300
C14—H14A0.9700C39—C401.381 (6)
C14—H14B0.9700C39—C421.498 (6)
C15—C161.530 (5)C40—C411.377 (6)
C15—H150.9800C40—H400.9300
C16—H16A0.9700C41—H410.9300
C16—H16B0.9700C42—H42A0.9600
C17—H17A0.9600C42—H42B0.9600
C17—H17B0.9600C42—H42C0.9600
C17—H17C0.9600C43—C501.506 (6)
N3—C341.446 (5)C43—C441.518 (6)
N3—C321.461 (5)C43—H430.9800
N3—C281.472 (5)C44—C451.526 (6)
N4—C181.327 (5)C44—H44A0.9700
N4—C261.447 (5)C44—H44B0.9700
N4—H4'0.859 (19)C45—C461.534 (6)
O2—C181.218 (5)C45—H450.9800
C18—C191.491 (5)C46—C471.520 (7)
C19—C201.375 (5)C46—H46A0.9700
C19—C241.382 (5)C46—H46B0.9700
C20—C211.360 (5)C47—C481.487 (7)
C20—H200.9300C47—H47A0.9700
C21—C221.362 (5)C47—H47B0.9700
C21—H210.9300C48—C491.521 (6)
C22—C231.375 (6)C48—H48A0.9700
C22—C251.504 (6)C48—H48B0.9700
C23—C241.364 (6)C49—C501.529 (5)
C23—H230.9300C49—H490.9800
C24—H240.9300C50—H50A0.9700
C25—H25A0.9600C50—H50B0.9700
C25—H25B0.9600C51—H51A0.9600
C25—H25C0.9600C51—H51B0.9600
C26—C331.512 (5)C51—H51C0.9600
C11—N1—C17114.0 (3)H27A—C27—H27B107.9
C11—N1—C15109.3 (3)N3—C28—C29112.5 (3)
C17—N1—C15113.2 (3)N3—C28—C27108.0 (3)
C1—N2—C9123.8 (3)C29—C28—C27112.2 (4)
C1—N2—H2'122 (3)N3—C28—H28108.0
C9—N2—H2'114 (3)C29—C28—H28108.0
O1—C1—N2121.8 (4)C27—C28—H28108.0
O1—C1—C2121.1 (3)C30—C29—C28112.2 (4)
N2—C1—C2117.1 (4)C30—C29—H29A109.2
C7—C2—C3116.9 (4)C28—C29—H29A109.2
C7—C2—C1124.1 (3)C30—C29—H29B109.2
C3—C2—C1119.0 (4)C28—C29—H29B109.2
C4—C3—C2120.5 (4)H29A—C29—H29B107.9
C4—C3—H3119.8C29—C30—C31110.9 (4)
C2—C3—H3119.8C29—C30—H30A109.5
C3—C4—C5122.5 (4)C31—C30—H30A109.5
C3—C4—H4118.8C29—C30—H30B109.5
C5—C4—H4118.8C31—C30—H30B109.5
C6—C5—C4115.9 (4)H30A—C30—H30B108.1
C6—C5—C8121.9 (4)C32—C31—C30110.8 (4)
C4—C5—C8122.1 (4)C32—C31—H31A109.5
C5—C6—C7122.6 (4)C30—C31—H31A109.5
C5—C6—H6118.7C32—C31—H31B109.5
C7—C6—H6118.7C30—C31—H31B109.5
C6—C7—C2121.6 (3)H31A—C31—H31B108.1
C6—C7—H7119.2N3—C32—C31113.1 (4)
C2—C7—H7119.2N3—C32—C33108.2 (3)
C5—C8—H8A109.5C31—C32—C33112.8 (4)
C5—C8—H8B109.5N3—C32—H32107.5
H8A—C8—H8B109.5C31—C32—H32107.5
C5—C8—H8C109.5C33—C32—H32107.5
H8A—C8—H8C109.5C26—C33—C32112.6 (3)
H8B—C8—H8C109.5C26—C33—H33A109.1
N2—C9—C10112.2 (3)C32—C33—H33A109.1
N2—C9—C16109.6 (3)C26—C33—H33B109.1
C10—C9—C16110.1 (3)C32—C33—H33B109.1
N2—C9—H9108.2H33A—C33—H33B107.8
C10—C9—H9108.2N3—C34—H34A109.5
C16—C9—H9108.2N3—C34—H34B109.5
C9—C10—C11112.5 (3)H34A—C34—H34B109.5
C9—C10—H10A109.1N3—C34—H34C109.5
C11—C10—H10A109.1H34A—C34—H34C109.5
C9—C10—H10B109.1H34B—C34—H34C109.5
C11—C10—H10B109.1C45—N5—C51113.5 (3)
H10A—C10—H10B107.8C45—N5—C49109.6 (3)
N1—C11—C12113.2 (3)C51—N5—C49113.3 (4)
N1—C11—C10108.4 (3)C35—N6—C43123.3 (3)
C12—C11—C10111.7 (4)C35—N6—H6'122 (3)
N1—C11—H11107.8C43—N6—H6'115 (3)
C12—C11—H11107.8O3—C35—N6122.5 (4)
C10—C11—H11107.8O3—C35—C36120.2 (4)
C13—C12—C11111.2 (3)N6—C35—C36117.3 (4)
C13—C12—H12A109.4C41—C36—C37118.3 (4)
C11—C12—H12A109.4C41—C36—C35118.7 (4)
C13—C12—H12B109.4C37—C36—C35123.1 (4)
C11—C12—H12B109.4C38—C37—C36120.1 (4)
H12A—C12—H12B108.0C38—C37—H37119.9
C14—C13—C12110.5 (4)C36—C37—H37119.9
C14—C13—H13A109.6C39—C38—C37122.6 (4)
C12—C13—H13A109.6C39—C38—H38118.7
C14—C13—H13B109.6C37—C38—H38118.7
C12—C13—H13B109.6C38—C39—C40116.8 (4)
H13A—C13—H13B108.1C38—C39—C42121.9 (5)
C13—C14—C15112.0 (3)C40—C39—C42121.3 (5)
C13—C14—H14A109.2C41—C40—C39121.7 (4)
C15—C14—H14A109.2C41—C40—H40119.1
C13—C14—H14B109.2C39—C40—H40119.1
C15—C14—H14B109.2C36—C41—C40120.5 (4)
H14A—C14—H14B107.9C36—C41—H41119.8
N1—C15—C16108.9 (3)C40—C41—H41119.8
N1—C15—C14112.5 (3)C39—C42—H42A109.5
C16—C15—C14111.6 (4)C39—C42—H42B109.5
N1—C15—H15107.9H42A—C42—H42B109.5
C16—C15—H15107.9C39—C42—H42C109.5
C14—C15—H15107.9H42A—C42—H42C109.5
C9—C16—C15111.9 (3)H42B—C42—H42C109.5
C9—C16—H16A109.2N6—C43—C50110.8 (3)
C15—C16—H16A109.2N6—C43—C44111.3 (3)
C9—C16—H16B109.2C50—C43—C44110.7 (4)
C15—C16—H16B109.2N6—C43—H43108.0
H16A—C16—H16B107.9C50—C43—H43108.0
N1—C17—H17A109.5C44—C43—H43108.0
N1—C17—H17B109.5C43—C44—C45112.9 (3)
H17A—C17—H17B109.5C43—C44—H44A109.0
N1—C17—H17C109.5C45—C44—H44A109.0
H17A—C17—H17C109.5C43—C44—H44B109.0
H17B—C17—H17C109.5C45—C44—H44B109.0
C34—N3—C32114.1 (4)H44A—C44—H44B107.8
C34—N3—C28113.0 (3)N5—C45—C44108.1 (3)
C32—N3—C28108.9 (3)N5—C45—C46112.2 (4)
C18—N4—C26123.4 (3)C44—C45—C46112.1 (3)
C18—N4—H4'119 (3)N5—C45—H45108.1
C26—N4—H4'117 (3)C44—C45—H45108.1
O2—C18—N4121.8 (4)C46—C45—H45108.1
O2—C18—C19121.2 (3)C47—C46—C45111.6 (3)
N4—C18—C19117.0 (4)C47—C46—H46A109.3
C20—C19—C24117.3 (3)C45—C46—H46A109.3
C20—C19—C18124.0 (3)C47—C46—H46B109.3
C24—C19—C18118.7 (4)C45—C46—H46B109.3
C21—C20—C19121.1 (3)H46A—C46—H46B108.0
C21—C20—H20119.4C48—C47—C46112.1 (4)
C19—C20—H20119.4C48—C47—H47A109.2
C20—C21—C22122.2 (4)C46—C47—H47A109.2
C20—C21—H21118.9C48—C47—H47B109.2
C22—C21—H21118.9C46—C47—H47B109.2
C21—C22—C23116.7 (4)H47A—C47—H47B107.9
C21—C22—C25121.8 (4)C47—C48—C49111.6 (4)
C23—C22—C25121.6 (4)C47—C48—H48A109.3
C24—C23—C22122.1 (4)C49—C48—H48A109.3
C24—C23—H23118.9C47—C48—H48B109.3
C22—C23—H23118.9C49—C48—H48B109.3
C23—C24—C19120.5 (4)H48A—C48—H48B108.0
C23—C24—H24119.8N5—C49—C48112.5 (3)
C19—C24—H24119.8N5—C49—C50108.6 (3)
C22—C25—H25A109.5C48—C49—C50112.5 (3)
C22—C25—H25B109.5N5—C49—H49107.7
H25A—C25—H25B109.5C48—C49—H49107.7
C22—C25—H25C109.5C50—C49—H49107.7
H25A—C25—H25C109.5C43—C50—C49112.2 (3)
H25B—C25—H25C109.5C43—C50—H50A109.2
N4—C26—C33111.5 (3)C49—C50—H50A109.2
N4—C26—C27110.5 (3)C43—C50—H50B109.2
C33—C26—C27109.6 (3)C49—C50—H50B109.2
N4—C26—H26108.4H50A—C50—H50B107.9
C33—C26—H26108.4N5—C51—H51A109.5
C27—C26—H26108.4N5—C51—H51B109.5
C26—C27—C28112.4 (3)H51A—C51—H51B109.5
C26—C27—H27A109.1N5—C51—H51C109.5
C28—C27—H27A109.1H51A—C51—H51C109.5
C26—C27—H27B109.1H51B—C51—H51C109.5
C28—C27—H27B109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.85 (2)2.10 (2)2.935 (5)171 (4)
N4—H4···O2ii0.86 (2)2.05 (2)2.894 (5)166 (4)
N6—H6···O3iii0.86 (2)2.30 (2)3.164 (5)174 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H24N2O
Mr272.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)38.68 (2), 12.300 (7), 9.975 (5)
β (°) 101.263 (7)
V3)4654 (4)
Z12
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.982, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10320, 6399, 4035
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 0.96
No. of reflections6399
No. of parameters556
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23
Absolute structureFlack, H. D. (1983). Acta Cryst. A39, 876–881.
Absolute structure parameter3.4 (17)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2'···O1i0.846 (19)2.10 (2)2.935 (5)171 (4)
N4—H4'···O2ii0.859 (19)2.05 (2)2.894 (5)166 (4)
N6—H6'···O3iii0.864 (19)2.30 (2)3.164 (5)174 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y+2, z1/2.
 

References

First citationBermudez, J., Dabbs, S. & King, F. D. (1990). J. Med. Chem. 33, 1932–1935.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernekar, S. K. V., Hallaq, H. Y., Clarkson, G., Thompson, A. J., Silvestri, L., Lummis, S. C. R. & Lochner, M. (2010). J. Med. Chem. 33, 2324–2328.  Web of Science CSD CrossRef Google Scholar
First citationYang, Z., et al. (2010). Bioorg. Med. Chem. Lett. 20, 6538–6541.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds