organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1592-o1593

Brusatol

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of, Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 1 April 2012; accepted 25 April 2012; online 2 May 2012)

The title compound, C26H32O11, is composed of an α,β-unsaturated cyclo­hexa­none ring (A), two cyclo­hexane rings (B and C), a six-membered lactone ring (D) and tetra­hydro­furan ring (E). Ring A exists in a half-chair conformation with a C atom displaced by 0.679 (2) Å from the mean plane through the remaining five atoms. Ring B exists in a normal chair conformation. Both rings C and D exist in a twisted-chair conformation due to the O-atom bridge and the carbonyl group in rings C and D, respectively. Ring E shows an envelope conformation with a C atom displaced by 0.761 (1) Å from the mean plane through the remaining five atoms. The ring junctions are A/B trans, B/C trans, C/D cis and D/E cis. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, O—H⋯O hydrogen bonds involving the hy­droxy, lactone and ester groups and C—H⋯O inter­actions are observed.

Related literature

For the isolation of brusatol, see: Sim et al. (1968[Sim, K. Y., Sims, J. J. & Geissman, T. A. (1968). J. Org. Chem. 33, 429-431.]); Kim et al. (2004[Kim, I.-H., Takashima, S., Hitotsuyanagi, Y., Hasuda, T. & Takeya, K. (2004). J. Nat. Prod. 67, 863-868.]). For its anti­cancer activity, see: Zhao et al. (2011[Zhao, M., Lau, S.-T., Leung, P.-S., Che, C.-T. & Lin, Z.-X. (2011). Phytother. Res. 25, 1796-1800.]) and for its anti­viral activity, see: Yan et al. (2010[Yan, X.-H., Chen, J., Di, Y.-T., Fang, X., Dong, J.-H., Sang, P., Wang, Y.-H., He, H.-P., Zhang, Z.-K. & Hao, X.-J. (2010). J. Agric. Food Chem. 58, 1572-1577.]). For the enhancement of the efficacy for chemotherapy, see: Ren et al. (2011[Ren, D.-M., Villeneuve, N. F., Jiang, T., Wu, T.-D., Lau, A., Toppin, H. A. & Zhang, D.-D. (2011). Proc. Natl Acad. Sci. USA, 108, 1433-1438.]). For the crystal structure of bruceine A, see: Feng et al. 2010[Feng, X.-H., Zhang, Y.-N., He, W.-Z., Zhang, L. & Jiang, H.-Y. (2010). Acta Cryst. E66, o854-o855.]. For the absolute configuration of simalikalactone D, see: Moher et al. (1992[Moher, E. D., Collins, J. L. & Grieco, P. A. (1992). J. Am. Chem. Soc. 114, 2764-2765.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32O11

  • Mr = 520.52

  • Orthorhombic, P 21 21 21

  • a = 6.7162 (1) Å

  • b = 13.6796 (2) Å

  • c = 25.9859 (5) Å

  • V = 2387.45 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.96 mm−1

  • T = 288 K

  • 0.44 × 0.15 × 0.11 mm

Data collection
  • Oxford Gemini S Ultra Sapphire CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]) Tmin = 0.748, Tmax = 1.000

  • 4961 measured reflections

  • 3380 independent reflections

  • 3182 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.03

  • 3380 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1167 Friedel pairs

  • Flack parameter: −0.07 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 2.17 2.629 (3) 116
O3—H3A⋯O11i 0.82 2.09 2.911 (2) 173
O4—H4A⋯O9ii 0.82 2.41 3.180 (2) 157
O4—H4A⋯O8ii 0.82 2.33 3.066 (2) 149
C11—H11A⋯O9ii 0.98 2.54 3.368 (4) 142
C5′—H5′B⋯O1iii 0.96 2.76 3.650 (3) 155
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound brusatol is a natural product originally isolated from the seeds of Brucea sumatrana (Sim et al., 1968). It was also isolated from the chinese herbal medicine Brucea javanica (Kim et al., 2004). Brusatol was found to show potent anticancer activity (Zhao et al., 2011) and antiviral activity against the tobaccomosaic virus (Yan et al., 2010). Furthermore, it was reported that brusatol could effectively enhance the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism (Ren et al., 2011). The crystal strcuture of bruceine A, an analogue of brusatol, was reported recently (Feng et al., 2010); however, no detailed structural information was provided. We report herein the three-dimensional structure of the title compound.

Brusatol consists of an α,β-unsaturated cyclohexanone ring (A), two cyclohexane rings (B and C), a six-membered lactone ring (D) and tetrahydrofuran ring (E). Ring A exists in a half chair conformation with C10 displaced by 0.679 (2) Å from the least squares plane through the remaining five atoms (C1, C2, C3, C4 and C5). Ring B exists in a normal chair conformation. Both rings C and D exist in a twisted chair conformation due to the oxygen bridge and carbonyl group in rings C and D, respectively. Ring E shows an envelop conformation with C14 displaced by 0.761 (1) Å from the least squares plane through the remaining four atoms (C8, C13, C20 and O7). The planes through rings A and E are roughly perpendicular to each other with a dihedral angle of 86.15 (9)°. There are two side chains at C13 and C15. The planes through the two ester groups in the side chains make a dihedral angle of 62.36 (10). The ring junctures are A/B trans, B/C trans, C/D cis and D/E cis. The absolute configuration determined for simalikalactone D (Moher et al., 1992), a similar quassinoid, was invoked, giving the assignments of the chiral centres in the molecule as shown in Fig. 1.

Intermolecular O–H···O hydrogen bonds (Table 1) between the hydroxyl groups at C11 and the ester group at C1' [O3···O11i = 2.911 (2) Å, symmetry code: (i) -x, 0.5 + y, 0.5 - z], between the hydroxyl group at C12 and the lactone group at C16 [O4···O8ii = 3.066 (2) Å and O4···O9ii = 3.180 (2) Å, symmetry code: (ii) 1 - x, 0.5 + y, 0.5 - z], and short C–H···O contacts between the methine group at C11 and the lactone group at C16 [C11···O9ii = 3.368 (4) Å] link adjacent molecules into chains along the b-axis. Adjacent chains are further linked by weak C–H···O interactions between the terminal methyl group and the ketone group at C2 [C5'···O1iii = 3.650 (3) Å, symmetry code: (iii) 0.5 - x, 1 - y, 0.5 + z] into a three-dimensional network (Fig. 2).

Related literature top

For the isolation of brusatol, see: Sim et al. (1968); Kim et al. (2004). For its anticancer activity, see: Zhao et al. (2011) and for its antiviral activity, see: Yan et al. (2010). For the enhancement of the efficacy for chemotherapy, see: Ren et al. (2011). For the crystal structure of bruceine A, see: Feng et al. 2010. For the absolute configuration of simalikalactone D, see: Moher et al. (1992).

Experimental top

Dried seeds of brucea javanica (10 kg) were milled and extracted with 95% ethanol at room temperature and the extracted solution were concentrated to afford a syrup. The crude syrup was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol, successively. The ethyl acetate extract (82 g) was dissolved in warm methanol. After cooling, the raw brusatol precipitated as white powder. Then the powder (100 mg) was subjected to reverse phase HPLC to afford pure brusatol (83 mg). Colorless needles of the title compound were crystallized directly from the HPLC eluate acetonitrile: water 45:55.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The absolute configuration can be unambiguously assigned with reference to the known configuration of the closed related compound simalikalactone D. The Flack parameter was refined to -0.07 (19).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram viewed down the a axis. The dashed lines represent intermolecular O—H···O hydrogen bonds and C—H···O short contacts. Selected H-atoms highlighting the hydrogen bondings and short contacts are shown.
brusatol top
Crystal data top
C26H32O11Dx = 1.448 Mg m3
Mr = 520.52Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2860 reflections
a = 6.7162 (1) Åθ = 3.2–62.6°
b = 13.6796 (2) ŵ = 0.96 mm1
c = 25.9859 (5) ÅT = 288 K
V = 2387.45 (7) Å3Needle, colourless
Z = 40.44 × 0.15 × 0.11 mm
F(000) = 1104
Data collection top
Oxford Gemini S Ultra Sapphire CCD
diffractometer
3380 independent reflections
Radiation source: fine-focus sealed tube3182 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
ω scanθmax = 62.6°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 76
Tmin = 0.748, Tmax = 1.000k = 1315
4961 measured reflectionsl = 2929
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5393P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.27 e Å3
3380 reflectionsΔρmin = 0.18 e Å3
338 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0070 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1167 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (19)
Crystal data top
C26H32O11V = 2387.45 (7) Å3
Mr = 520.52Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.7162 (1) ŵ = 0.96 mm1
b = 13.6796 (2) ÅT = 288 K
c = 25.9859 (5) Å0.44 × 0.15 × 0.11 mm
Data collection top
Oxford Gemini S Ultra Sapphire CCD
diffractometer
3380 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3182 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 1.000Rint = 0.020
4961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.27 e Å3
S = 1.03Δρmin = 0.18 e Å3
3380 reflectionsAbsolute structure: Flack (1983), 1167 Friedel pairs
338 parametersAbsolute structure parameter: 0.07 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6704 (3)0.54720 (14)0.02225 (7)0.0561 (6)
O20.7863 (3)0.37039 (16)0.00367 (7)0.0551 (5)
H2A0.79750.42340.01810.094 (15)*
O30.0404 (3)0.54519 (13)0.14364 (6)0.0441 (5)
H3A0.02960.59190.15160.080 (12)*
O40.2361 (3)0.56662 (12)0.27424 (6)0.0411 (4)
H4A0.28870.61820.26560.069 (11)*
O50.2473 (3)0.51540 (14)0.30530 (8)0.0653 (6)
O60.0670 (2)0.39701 (16)0.34093 (6)0.0505 (5)
O70.1327 (2)0.40828 (12)0.21639 (6)0.0342 (4)
O80.4711 (2)0.23809 (11)0.21922 (6)0.0349 (4)
O90.6417 (3)0.25571 (13)0.28957 (6)0.0424 (4)
O100.3429 (2)0.35608 (10)0.33806 (5)0.0281 (3)
O110.2397 (3)0.20076 (11)0.33187 (6)0.0389 (4)
C10.5140 (4)0.50092 (16)0.10202 (8)0.0332 (5)
H1A0.43640.56050.09900.040*
H1B0.61120.51040.12920.040*
C20.6203 (4)0.48223 (18)0.05223 (9)0.0377 (6)
C30.6762 (4)0.38148 (18)0.04044 (9)0.0370 (6)
C40.6333 (4)0.30630 (17)0.07122 (8)0.0333 (5)
C50.5044 (3)0.32145 (15)0.11842 (8)0.0273 (5)
H5A0.59710.33060.14710.033*
C60.3745 (4)0.23359 (15)0.13322 (8)0.0311 (5)
H6A0.26540.22710.10900.037*
H6B0.45320.17420.13190.037*
C70.2931 (3)0.24785 (15)0.18675 (8)0.0276 (5)
H7A0.20180.19400.19460.033*
C80.1859 (3)0.34436 (15)0.19626 (8)0.0237 (5)
C90.2988 (3)0.43333 (15)0.17275 (8)0.0247 (5)
H9A0.42030.43880.19340.030*
C100.3752 (3)0.41578 (15)0.11664 (8)0.0256 (5)
C110.1883 (4)0.53042 (16)0.18209 (8)0.0309 (5)
H11A0.28590.58330.17880.037*
C120.0966 (3)0.53777 (15)0.23619 (8)0.0293 (5)
H12A0.01040.58640.23520.035*
C130.0083 (3)0.44045 (16)0.25471 (8)0.0293 (5)
C140.1578 (3)0.35654 (15)0.25474 (8)0.0236 (4)
H14A0.08740.29830.26710.028*
C150.3574 (3)0.35998 (15)0.28264 (7)0.0250 (4)
H15A0.42010.42250.27380.030*
C160.4981 (4)0.27969 (16)0.26507 (8)0.0299 (5)
C180.7205 (4)0.2074 (2)0.06165 (10)0.0464 (7)
H18A0.79840.20890.03070.070*
H18B0.61520.16050.05800.070*
H18C0.80380.18930.09010.070*
C190.2138 (4)0.40703 (18)0.07452 (8)0.0340 (5)
H19A0.27630.39650.04180.051*
H19B0.13710.46620.07340.051*
H19C0.12780.35300.08230.051*
C200.0349 (3)0.34250 (16)0.18165 (8)0.0302 (5)
H20A0.05300.36370.14630.036*
H20B0.08840.27700.18520.036*
C210.1136 (4)0.45655 (17)0.30335 (9)0.0355 (6)
C220.1880 (5)0.4031 (3)0.38682 (10)0.0779 (11)
H22A0.14120.35650.41170.117*
H22B0.32400.38890.37830.117*
H22C0.17900.46770.40100.117*
C1'0.2828 (3)0.27079 (16)0.35871 (8)0.0308 (5)
C2'0.2793 (4)0.26745 (17)0.41472 (8)0.0365 (6)
H2'A0.26460.20510.42840.044*
C3'0.2934 (4)0.33837 (18)0.44969 (9)0.0384 (6)
C4'0.3105 (5)0.44546 (19)0.43916 (10)0.0527 (7)
H4'A0.31440.45620.40270.079*
H4'B0.43050.47010.45450.079*
H4'C0.19770.47880.45360.079*
C5'0.2881 (5)0.3129 (2)0.50613 (9)0.0623 (9)
H5'A0.28020.24320.51000.093*
H5'B0.17390.34270.52180.093*
H5'C0.40700.33650.52250.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0727 (14)0.0511 (11)0.0444 (10)0.0068 (11)0.0227 (11)0.0081 (9)
O20.0584 (12)0.0674 (13)0.0396 (10)0.0005 (11)0.0244 (9)0.0064 (10)
O30.0530 (11)0.0436 (10)0.0356 (9)0.0246 (9)0.0004 (8)0.0049 (7)
O40.0518 (10)0.0336 (9)0.0378 (9)0.0135 (9)0.0035 (8)0.0034 (7)
O50.0682 (14)0.0472 (11)0.0805 (14)0.0163 (11)0.0418 (12)0.0069 (10)
O60.0322 (9)0.0896 (14)0.0296 (8)0.0093 (10)0.0090 (8)0.0096 (9)
O70.0231 (7)0.0424 (9)0.0372 (8)0.0033 (7)0.0018 (7)0.0045 (7)
O80.0376 (9)0.0365 (8)0.0308 (8)0.0146 (8)0.0027 (8)0.0025 (7)
O90.0359 (9)0.0523 (10)0.0388 (9)0.0117 (8)0.0061 (8)0.0073 (8)
O100.0336 (8)0.0287 (8)0.0219 (7)0.0042 (7)0.0026 (7)0.0022 (6)
O110.0555 (11)0.0297 (8)0.0314 (8)0.0101 (8)0.0033 (8)0.0006 (7)
C10.0356 (12)0.0338 (12)0.0301 (11)0.0011 (11)0.0055 (10)0.0005 (9)
C20.0378 (13)0.0440 (14)0.0311 (12)0.0058 (12)0.0058 (11)0.0008 (11)
C30.0319 (12)0.0496 (15)0.0295 (11)0.0001 (11)0.0092 (10)0.0069 (11)
C40.0285 (11)0.0406 (13)0.0307 (11)0.0020 (11)0.0014 (11)0.0105 (11)
C50.0256 (11)0.0306 (11)0.0259 (10)0.0027 (10)0.0019 (10)0.0041 (9)
C60.0355 (12)0.0257 (11)0.0321 (11)0.0020 (11)0.0011 (11)0.0056 (9)
C70.0275 (11)0.0249 (10)0.0303 (11)0.0003 (9)0.0016 (10)0.0014 (9)
C80.0234 (11)0.0241 (11)0.0235 (10)0.0005 (9)0.0000 (9)0.0037 (8)
C90.0257 (10)0.0254 (10)0.0230 (10)0.0007 (9)0.0004 (9)0.0014 (8)
C100.0239 (10)0.0283 (11)0.0248 (11)0.0021 (10)0.0012 (9)0.0004 (9)
C110.0362 (12)0.0241 (10)0.0323 (11)0.0037 (10)0.0055 (10)0.0037 (9)
C120.0328 (12)0.0235 (11)0.0316 (11)0.0052 (10)0.0058 (10)0.0007 (9)
C130.0266 (10)0.0305 (12)0.0307 (11)0.0006 (10)0.0038 (10)0.0009 (9)
C140.0246 (10)0.0229 (10)0.0234 (10)0.0025 (9)0.0009 (9)0.0010 (8)
C150.0271 (10)0.0270 (10)0.0209 (9)0.0019 (9)0.0010 (9)0.0042 (9)
C160.0308 (12)0.0301 (12)0.0289 (11)0.0009 (10)0.0015 (10)0.0068 (9)
C180.0416 (14)0.0490 (15)0.0487 (15)0.0056 (13)0.0082 (13)0.0169 (12)
C190.0337 (12)0.0423 (13)0.0260 (11)0.0037 (12)0.0039 (10)0.0007 (10)
C200.0257 (11)0.0352 (12)0.0299 (11)0.0013 (10)0.0024 (10)0.0015 (9)
C210.0325 (12)0.0319 (12)0.0421 (13)0.0048 (11)0.0101 (11)0.0058 (11)
C220.0446 (17)0.157 (4)0.0324 (15)0.009 (2)0.0143 (13)0.0076 (19)
C1'0.0333 (12)0.0300 (12)0.0291 (11)0.0013 (11)0.0003 (10)0.0034 (10)
C2'0.0463 (14)0.0349 (12)0.0284 (11)0.0027 (12)0.0004 (11)0.0069 (10)
C3'0.0368 (13)0.0484 (14)0.0299 (12)0.0042 (12)0.0002 (11)0.0020 (11)
C4'0.0618 (18)0.0455 (15)0.0508 (16)0.0112 (15)0.0082 (15)0.0182 (13)
C5'0.081 (2)0.077 (2)0.0292 (13)0.019 (2)0.0019 (15)0.0030 (14)
Geometric parameters (Å, º) top
O1—C21.229 (3)C9—C111.541 (3)
O2—C31.372 (3)C9—C101.564 (3)
O2—H2A0.8200C9—H9A0.9800
O3—C111.423 (3)C10—C191.545 (3)
O3—H3A0.8200C11—C121.538 (3)
O4—C121.418 (3)C11—H11A0.9800
O4—H4A0.8200C12—C131.535 (3)
O5—C211.207 (3)C12—H12A0.9800
O6—C211.310 (3)C13—C211.522 (3)
O6—C221.445 (3)C13—C141.525 (3)
O7—C201.434 (3)C14—C151.525 (3)
O7—C131.443 (3)C14—H14A0.9800
O8—C161.333 (3)C15—C161.519 (3)
O8—C71.469 (3)C15—H15A0.9800
O9—C161.201 (3)C18—H18A0.9600
O10—C1'1.346 (3)C18—H18B0.9600
O10—C151.444 (2)C18—H18C0.9600
O11—C1'1.220 (3)C19—H19A0.9600
C1—C21.500 (3)C19—H19B0.9600
C1—C101.539 (3)C19—H19C0.9600
C1—H1A0.9700C20—H20A0.9700
C1—H1B0.9700C20—H20B0.9700
C2—C31.461 (3)C22—H22A0.9600
C3—C41.334 (3)C22—H22B0.9600
C4—C181.495 (3)C22—H22C0.9600
C4—C51.516 (3)C1'—C2'1.456 (3)
C5—C61.534 (3)C2'—C3'1.333 (3)
C5—C101.556 (3)C2'—H2'A0.9300
C5—H5A0.9800C3'—C4'1.495 (4)
C6—C71.507 (3)C3'—C5'1.508 (3)
C6—H6A0.9700C4'—H4'A0.9600
C6—H6B0.9700C4'—H4'B0.9600
C7—C81.524 (3)C4'—H4'C0.9600
C7—H7A0.9800C5'—H5'A0.9600
C8—C201.531 (3)C5'—H5'B0.9600
C8—C141.540 (3)C5'—H5'C0.9600
C8—C91.559 (3)
C3—O2—H2A109.5O7—C13—C21105.32 (18)
C11—O3—H3A109.5O7—C13—C14101.70 (16)
C12—O4—H4A109.5C21—C13—C14117.56 (19)
C21—O6—C22116.4 (2)O7—C13—C12107.57 (17)
C20—O7—C13108.99 (16)C21—C13—C12110.05 (18)
C16—O8—C7125.83 (17)C14—C13—C12113.48 (18)
C1'—O10—C15116.72 (16)C15—C14—C13123.77 (18)
C2—C1—C10111.86 (18)C15—C14—C8111.37 (17)
C2—C1—H1A109.2C13—C14—C899.31 (16)
C10—C1—H1A109.2C15—C14—H14A107.1
C2—C1—H1B109.2C13—C14—H14A107.1
C10—C1—H1B109.2C8—C14—H14A107.1
H1A—C1—H1B107.9O10—C15—C16108.35 (16)
O1—C2—C3118.6 (2)O10—C15—C14114.43 (17)
O1—C2—C1123.6 (2)C16—C15—C14112.44 (17)
C3—C2—C1117.6 (2)O10—C15—H15A107.1
C4—C3—O2122.1 (2)C16—C15—H15A107.1
C4—C3—C2123.1 (2)C14—C15—H15A107.1
O2—C3—C2114.7 (2)O9—C16—O8117.8 (2)
C3—C4—C18120.9 (2)O9—C16—C15122.5 (2)
C3—C4—C5120.2 (2)O8—C16—C15119.52 (18)
C18—C4—C5118.8 (2)C4—C18—H18A109.5
C4—C5—C6114.88 (17)C4—C18—H18B109.5
C4—C5—C10114.09 (17)H18A—C18—H18B109.5
C6—C5—C10109.88 (17)C4—C18—H18C109.5
C4—C5—H5A105.7H18A—C18—H18C109.5
C6—C5—H5A105.7H18B—C18—H18C109.5
C10—C5—H5A105.7C10—C19—H19A109.5
C7—C6—C5109.64 (17)C10—C19—H19B109.5
C7—C6—H6A109.7H19A—C19—H19B109.5
C5—C6—H6A109.7C10—C19—H19C109.5
C7—C6—H6B109.7H19A—C19—H19C109.5
C5—C6—H6B109.7H19B—C19—H19C109.5
H6A—C6—H6B108.2O7—C20—C8106.08 (17)
O8—C7—C6102.92 (17)O7—C20—H20A110.5
O8—C7—C8111.71 (16)C8—C20—H20A110.5
C6—C7—C8115.66 (18)O7—C20—H20B110.5
O8—C7—H7A108.8C8—C20—H20B110.5
C6—C7—H7A108.8H20A—C20—H20B108.7
C8—C7—H7A108.8O5—C21—O6124.2 (2)
C7—C8—C20113.77 (18)O5—C21—C13122.1 (2)
C7—C8—C14108.16 (17)O6—C21—C13113.6 (2)
C20—C8—C1497.32 (17)O6—C22—H22A109.5
C7—C8—C9112.53 (17)O6—C22—H22B109.5
C20—C8—C9112.77 (17)H22A—C22—H22B109.5
C14—C8—C9111.21 (16)O6—C22—H22C109.5
C11—C9—C8112.15 (17)H22A—C22—H22C109.5
C11—C9—C10115.92 (17)H22B—C22—H22C109.5
C8—C9—C10113.89 (16)O11—C1'—O10121.61 (19)
C11—C9—H9A104.5O11—C1'—C2'122.9 (2)
C8—C9—H9A104.5O10—C1'—C2'115.5 (2)
C10—C9—H9A104.5C3'—C2'—C1'131.1 (2)
C1—C10—C19107.97 (17)C3'—C2'—H2'A114.4
C1—C10—C5107.28 (17)C1'—C2'—H2'A114.4
C19—C10—C5110.36 (17)C2'—C3'—C4'126.4 (2)
C1—C10—C9108.21 (17)C2'—C3'—C5'119.6 (2)
C19—C10—C9116.26 (18)C4'—C3'—C5'114.0 (2)
C5—C10—C9106.41 (16)C3'—C4'—H4'A109.5
O3—C11—C12110.70 (18)C3'—C4'—H4'B109.5
O3—C11—C9110.37 (17)H4'A—C4'—H4'B109.5
C12—C11—C9113.15 (17)C3'—C4'—H4'C109.5
O3—C11—H11A107.5H4'A—C4'—H4'C109.5
C12—C11—H11A107.5H4'B—C4'—H4'C109.5
C9—C11—H11A107.5C3'—C5'—H5'A109.5
O4—C12—C13106.15 (17)C3'—C5'—H5'B109.5
O4—C12—C11113.04 (18)H5'A—C5'—H5'B109.5
C13—C12—C11112.62 (17)C3'—C5'—H5'C109.5
O4—C12—H12A108.3H5'A—C5'—H5'C109.5
C13—C12—H12A108.3H5'B—C5'—H5'C109.5
C11—C12—H12A108.3
C10—C1—C2—O1149.1 (2)O3—C11—C12—C1385.9 (2)
C10—C1—C2—C334.3 (3)C9—C11—C12—C1338.6 (3)
O1—C2—C3—C4178.2 (2)C20—O7—C13—C21148.07 (18)
C1—C2—C3—C41.5 (4)C20—O7—C13—C1424.9 (2)
O1—C2—C3—O21.5 (4)C20—O7—C13—C1294.6 (2)
C1—C2—C3—O2175.2 (2)O4—C12—C13—O7179.23 (16)
O2—C3—C4—C186.0 (4)C11—C12—C13—O755.0 (2)
C2—C3—C4—C18170.5 (2)O4—C12—C13—C2166.5 (2)
O2—C3—C4—C5177.6 (2)C11—C12—C13—C21169.28 (19)
C2—C3—C4—C56.0 (4)O4—C12—C13—C1467.5 (2)
C3—C4—C5—C6148.1 (2)C11—C12—C13—C1456.6 (2)
C18—C4—C5—C635.4 (3)O7—C13—C14—C15170.06 (18)
C3—C4—C5—C1019.9 (3)C21—C13—C14—C1575.6 (3)
C18—C4—C5—C10163.6 (2)C12—C13—C14—C1554.8 (3)
C4—C5—C6—C7166.34 (18)O7—C13—C14—C846.42 (19)
C10—C5—C6—C763.4 (2)C21—C13—C14—C8160.78 (19)
C16—O8—C7—C6152.39 (19)C12—C13—C14—C868.8 (2)
C16—O8—C7—C827.7 (3)C7—C8—C14—C1561.3 (2)
C5—C6—C7—O869.4 (2)C20—C8—C14—C15179.31 (17)
C5—C6—C7—C852.7 (3)C9—C8—C14—C1562.8 (2)
O8—C7—C8—C20156.51 (17)C7—C8—C14—C13166.73 (17)
C6—C7—C8—C2086.2 (2)C20—C8—C14—C1348.70 (19)
O8—C7—C8—C1449.6 (2)C9—C8—C14—C1369.2 (2)
C6—C7—C8—C14166.86 (19)C1'—O10—C15—C1657.0 (2)
O8—C7—C8—C973.7 (2)C1'—O10—C15—C1469.3 (2)
C6—C7—C8—C943.6 (2)C13—C14—C15—O1071.0 (3)
C7—C8—C9—C11179.43 (18)C8—C14—C15—O10170.89 (16)
C20—C8—C9—C1149.1 (2)C13—C14—C15—C16164.80 (18)
C14—C8—C9—C1159.0 (2)C8—C14—C15—C1646.7 (2)
C7—C8—C9—C1045.3 (2)C7—O8—C16—O9171.5 (2)
C20—C8—C9—C1085.0 (2)C7—O8—C16—C1513.0 (3)
C14—C8—C9—C10166.82 (17)O10—C15—C16—O935.3 (3)
C2—C1—C10—C1962.7 (2)C14—C15—C16—O9162.7 (2)
C2—C1—C10—C556.3 (2)O10—C15—C16—O8149.45 (18)
C2—C1—C10—C9170.74 (19)C14—C15—C16—O822.0 (3)
C4—C5—C10—C149.7 (2)C13—O7—C20—C86.9 (2)
C6—C5—C10—C1179.60 (17)C7—C8—C20—O7148.59 (17)
C4—C5—C10—C1967.7 (2)C14—C8—C20—O735.0 (2)
C6—C5—C10—C1963.0 (2)C9—C8—C20—O781.7 (2)
C4—C5—C10—C9165.37 (18)C22—O6—C21—O50.9 (4)
C6—C5—C10—C964.0 (2)C22—O6—C21—C13175.2 (2)
C11—C9—C10—C157.6 (2)O7—C13—C21—O561.0 (3)
C8—C9—C10—C1170.06 (18)C14—C13—C21—O5173.3 (2)
C11—C9—C10—C1964.1 (3)C12—C13—C21—O554.7 (3)
C8—C9—C10—C1968.3 (2)O7—C13—C21—O6115.2 (2)
C11—C9—C10—C5172.60 (18)C14—C13—C21—O62.8 (3)
C8—C9—C10—C555.0 (2)C12—C13—C21—O6129.1 (2)
C8—C9—C11—O384.4 (2)C15—O10—C1'—O111.1 (3)
C10—C9—C11—O348.7 (2)C15—O10—C1'—C2'177.03 (19)
C8—C9—C11—C1240.2 (2)O11—C1'—C2'—C3'169.2 (3)
C10—C9—C11—C12173.40 (18)O10—C1'—C2'—C3'12.7 (4)
O3—C11—C12—O4153.84 (17)C1'—C2'—C3'—C4'2.3 (5)
C9—C11—C12—O481.7 (2)C1'—C2'—C3'—C5'179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.172.629 (3)116
O3—H3A···O11i0.822.092.911 (2)173
O4—H4A···O9ii0.822.413.180 (2)157
O4—H4A···O8ii0.822.333.066 (2)149
C11—H11A···O9ii0.982.543.368 (4)142
C5—H5B···O1iii0.962.763.650 (3)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H32O11
Mr520.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)288
a, b, c (Å)6.7162 (1), 13.6796 (2), 25.9859 (5)
V3)2387.45 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.96
Crystal size (mm)0.44 × 0.15 × 0.11
Data collection
DiffractometerOxford Gemini S Ultra Sapphire CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.748, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4961, 3380, 3182
Rint0.020
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.03
No. of reflections3380
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.18
Absolute structureFlack (1983), 1167 Friedel pairs
Absolute structure parameter0.07 (19)

Computer programs: CrysAlis PRO (Agilent, 2011), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.172.629 (3)115.7
O3—H3A···O11i0.822.092.911 (2)172.6
O4—H4A···O9ii0.822.413.180 (2)156.5
O4—H4A···O8ii0.822.333.066 (2)148.9
C11—H11A···O9ii0.982.543.368 (4)141.6
C5'—H5'B···O1iii0.962.763.650 (3)154.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z+1/2.
 

Acknowledgements

This work was supported by grants from the New Century Excellent Talents Scheme of the Ministry of Education (NCET-08–0612), the National Science Foundation of China (21072078), the Guangdong High Level Talent Scheme and the Fundamental Research Funds for the Central Universities (21609202).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.  Google Scholar
First citationFeng, X.-H., Zhang, Y.-N., He, W.-Z., Zhang, L. & Jiang, H.-Y. (2010). Acta Cryst. E66, o854–o855.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, I.-H., Takashima, S., Hitotsuyanagi, Y., Hasuda, T. & Takeya, K. (2004). J. Nat. Prod. 67, 863–868.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoher, E. D., Collins, J. L. & Grieco, P. A. (1992). J. Am. Chem. Soc. 114, 2764–2765.  CrossRef CAS Web of Science Google Scholar
First citationRen, D.-M., Villeneuve, N. F., Jiang, T., Wu, T.-D., Lau, A., Toppin, H. A. & Zhang, D.-D. (2011). Proc. Natl Acad. Sci. USA, 108, 1433–1438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, K. Y., Sims, J. J. & Geissman, T. A. (1968). J. Org. Chem. 33, 429–431.  CrossRef CAS Web of Science Google Scholar
First citationYan, X.-H., Chen, J., Di, Y.-T., Fang, X., Dong, J.-H., Sang, P., Wang, Y.-H., He, H.-P., Zhang, Z.-K. & Hao, X.-J. (2010). J. Agric. Food Chem. 58, 1572–1577.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, M., Lau, S.-T., Leung, P.-S., Che, C.-T. & Lin, Z.-X. (2011). Phytother. Res. 25, 1796–1800.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1592-o1593
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds