organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-4-(3,3-di­chloro­all­yl­oxy)-1-nitro­benzene

aSchool of Pharmaceutics, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bR&D Center, Jiangsu Yabang Pharmaceutical Group, Liangchang Road East No. 6 Jingtan, Changzhou 213200, People's Republic of China
*Correspondence e-mail: zhengfyu@126.com

(Received 2 April 2012; accepted 25 April 2012; online 2 May 2012)

In the crystal structure of the title compound, C9H6Cl3NO3, mol­ecules are connected by C—H⋯O hydrogen bonds, forming chains along the b axis. The dihedral angle between the benzene ring and the plane of the nitro group is 16.2 (1)° and that between the benzene ring and the plane of the dichloro­allyl group is 10.2 (1)°.

Related literature

For background to the applications of the title compound, see: Kolosov et al. (2002[Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945-9954.]). For the synthesis, see: Walker et al. (2005[Walker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537-6540.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6Cl3NO3

  • Mr = 282.50

  • Monoclinic, P 21 /c

  • a = 12.476 (3) Å

  • b = 12.775 (3) Å

  • c = 7.2230 (14) Å

  • β = 92.32 (3)°

  • V = 1150.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.799, Tmax = 0.926

  • 2300 measured reflections

  • 2118 independent reflections

  • 1414 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.183

  • S = 1.00

  • 2118 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.54 3.449 (7) 165
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of phenanthrenes, which can be utilized to synthesize organic semiconductors and conjugated polymers (Walker et al., 2005). These materials are of wide current interest for applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002). We report here the crystal structure of the title compound, (I), which is of interest to us in this field.

The molecular structure of (I) is shown in Fig. 1. There is an intermolecular contact C—H···O in the title compound, forming molecular chains along the b axis direction (Table 1, Fig. 2). These molecular chains are linked by weak ππ interactions (Cg1···Cg1i distance = 3.724 (3) Å, Cg1 is the centroid of ring C1-C6, symmetry code: (i) x, 5/2 - y, -1/2 + z) to give a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure.

The dihedral angles between the planes A (atoms C1—C6), B (atoms N/O2/O3), C (atoms C7/C8/H8A/C9/Cl2/Cl3) are: A/B = 16.2 (1)°, A/C = 10.2 (1)°.

Related literature top

For background to the applications of the title compound, see: Kolosov et al. (2002). For the synthesis, see: Walker et al. (2005).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Walker et al., 2005). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed along the a axis (C-H···O hydrogen bonds are shown as broken lines).
2-Chloro-4-(3,3-dichloroallyloxy)-1-nitrobenzene top
Crystal data top
C9H6Cl3NO3F(000) = 568
Mr = 282.50Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.476 (3) Åθ = 10–13°
b = 12.775 (3) ŵ = 0.79 mm1
c = 7.2230 (14) ÅT = 293 K
β = 92.32 (3)°Block, colourless
V = 1150.3 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1414 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 1515
Absorption correction: ψ scan
(North et al., 1968)
k = 150
Tmin = 0.799, Tmax = 0.926l = 08
2300 measured reflections3 standard reflections every 200 reflections
2118 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.7P]
where P = (Fo2 + 2Fc2)/3
2118 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C9H6Cl3NO3V = 1150.3 (4) Å3
Mr = 282.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.476 (3) ŵ = 0.79 mm1
b = 12.775 (3) ÅT = 293 K
c = 7.2230 (14) Å0.30 × 0.20 × 0.10 mm
β = 92.32 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1414 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.799, Tmax = 0.9263 standard reflections every 200 reflections
2300 measured reflections intensity decay: 1%
2118 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.00Δρmax = 0.52 e Å3
2118 reflectionsΔρmin = 0.42 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.0625 (4)1.3968 (3)0.1971 (7)0.0603 (12)
Cl10.31002 (11)1.42882 (9)0.1250 (2)0.0643 (4)
C10.2996 (4)1.2216 (4)0.1245 (7)0.0468 (11)
H1A0.37241.22560.10210.056*
O10.3184 (3)1.0417 (2)0.1211 (5)0.0560 (9)
Cl20.45065 (11)0.67097 (10)0.1106 (2)0.0685 (5)
C20.2415 (4)1.3117 (3)0.1436 (7)0.0452 (11)
O20.1009 (4)1.4802 (3)0.2323 (8)0.1053 (18)
Cl30.22239 (11)0.70364 (10)0.1046 (2)0.0679 (5)
C30.1325 (3)1.3051 (3)0.1756 (7)0.0441 (11)
O30.0309 (3)1.3841 (4)0.1923 (12)0.157 (3)
C40.0837 (4)1.2084 (4)0.1880 (7)0.0505 (12)
H4A0.01051.20440.20730.061*
C50.1433 (4)1.1170 (4)0.1718 (7)0.0496 (12)
H5A0.11061.05200.18370.060*
C60.2501 (4)1.1231 (3)0.1384 (6)0.0432 (11)
C70.2718 (4)0.9380 (3)0.1296 (8)0.0585 (14)
H7A0.22130.92720.02560.070*
H7B0.23400.92970.24340.070*
C80.3611 (4)0.8612 (4)0.1230 (7)0.0542 (13)
H8A0.43100.88650.12580.065*
C90.3467 (4)0.7601 (4)0.1137 (7)0.0493 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.055 (3)0.040 (2)0.087 (3)0.0090 (19)0.005 (2)0.007 (2)
Cl10.0614 (8)0.0331 (6)0.0991 (11)0.0085 (5)0.0112 (7)0.0018 (6)
C10.042 (2)0.037 (2)0.062 (3)0.0005 (19)0.013 (2)0.005 (2)
O10.0505 (18)0.0324 (16)0.086 (2)0.0030 (14)0.0182 (17)0.0000 (17)
Cl20.0583 (8)0.0419 (7)0.1055 (12)0.0096 (6)0.0065 (7)0.0031 (7)
C20.052 (3)0.026 (2)0.058 (3)0.0048 (19)0.005 (2)0.001 (2)
O20.081 (3)0.042 (2)0.194 (6)0.011 (2)0.022 (3)0.013 (3)
Cl30.0563 (8)0.0419 (7)0.1063 (12)0.0047 (6)0.0121 (7)0.0094 (7)
C30.044 (2)0.031 (2)0.058 (3)0.0050 (19)0.002 (2)0.000 (2)
O30.037 (2)0.069 (3)0.366 (10)0.009 (2)0.019 (4)0.050 (5)
C40.041 (2)0.046 (3)0.065 (3)0.004 (2)0.010 (2)0.001 (2)
C50.054 (3)0.030 (2)0.066 (3)0.005 (2)0.011 (2)0.003 (2)
C60.051 (3)0.029 (2)0.050 (3)0.0001 (19)0.010 (2)0.001 (2)
C70.048 (3)0.032 (2)0.096 (4)0.006 (2)0.010 (3)0.002 (3)
C80.052 (3)0.037 (3)0.074 (3)0.005 (2)0.006 (2)0.002 (2)
C90.052 (3)0.037 (3)0.059 (3)0.004 (2)0.008 (2)0.006 (2)
Geometric parameters (Å, º) top
N—O31.176 (6)Cl3—C91.709 (5)
N—O21.192 (6)C3—C41.382 (6)
N—C31.472 (6)C4—C51.392 (6)
Cl1—C21.731 (4)C4—H4A0.9300
C1—C21.370 (6)C5—C61.367 (6)
C1—C61.406 (6)C5—H5A0.9300
C1—H1A0.9300C7—C81.487 (6)
O1—C61.353 (5)C7—H7A0.9700
O1—C71.449 (5)C7—H7B0.9700
Cl2—C91.727 (5)C8—C91.304 (7)
C2—C31.392 (6)C8—H8A0.9300
O3—N—O2121.2 (5)C6—C5—H5A120.2
O3—N—C3118.6 (4)C4—C5—H5A120.2
O2—N—C3119.9 (4)O1—C6—C5126.4 (4)
C2—C1—C6120.6 (4)O1—C6—C1113.6 (4)
C2—C1—H1A119.7C5—C6—C1119.9 (4)
C6—C1—H1A119.7O1—C7—C8107.5 (4)
C6—O1—C7116.4 (4)O1—C7—H7A110.2
C1—C2—C3119.4 (4)C8—C7—H7A110.2
C1—C2—Cl1117.0 (4)O1—C7—H7B110.2
C3—C2—Cl1123.6 (3)C8—C7—H7B110.2
C4—C3—C2120.1 (4)H7A—C7—H7B108.5
C4—C3—N116.1 (4)C9—C8—C7123.6 (5)
C2—C3—N123.9 (4)C9—C8—H8A118.2
C3—C4—C5120.4 (4)C7—C8—H8A118.2
C3—C4—H4A119.8C8—C9—Cl3122.9 (4)
C5—C4—H4A119.8C8—C9—Cl2123.4 (4)
C6—C5—C4119.7 (4)Cl3—C9—Cl2113.7 (3)
C6—C1—C2—C30.5 (7)C3—C4—C5—C61.8 (7)
C6—C1—C2—Cl1179.8 (4)C7—O1—C6—C53.3 (7)
C1—C2—C3—C40.0 (7)C7—O1—C6—C1178.5 (4)
Cl1—C2—C3—C4179.8 (4)C4—C5—C6—O1179.4 (5)
C1—C2—C3—N179.6 (5)C4—C5—C6—C11.3 (7)
Cl1—C2—C3—N0.1 (7)C2—C1—C6—O1178.4 (4)
O3—N—C3—C412.3 (8)C2—C1—C6—C50.2 (7)
O2—N—C3—C4162.1 (5)C6—O1—C7—C8175.5 (4)
O3—N—C3—C2167.3 (6)O1—C7—C8—C9174.5 (5)
O2—N—C3—C218.2 (8)C7—C8—C9—Cl30.9 (8)
C2—C3—C4—C51.1 (7)C7—C8—C9—Cl2178.7 (4)
N—C3—C4—C5179.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.543.449 (7)165
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H6Cl3NO3
Mr282.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.476 (3), 12.775 (3), 7.2230 (14)
β (°) 92.32 (3)
V3)1150.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.799, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
2300, 2118, 1414
Rint0.023
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.183, 1.00
No. of reflections2118
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.42

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.93002.54003.449 (7)165.00
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537–6540.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds