organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1909-o1910

4-[(3-Hy­dr­oxy­anil­ino)­(phenyl)­methyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aLaboratoire d'Electrochimie, d'Ingenierie Moléculaire et de Catalyse Redox, Departement de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif, Algeria, and bInstitut de Chimie de Strasbourg, UMR 7177 CNRS-UdS, Service de Radiocristallographie, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
*Correspondence e-mail: s_marouani20012002@yahoo.fr

(Received 5 May 2012; accepted 20 May 2012; online 26 May 2012)

In the title compound, C23H19N3O2, the dihedral angles formed by the pyrazolone ring with the three benzene rings are 30.91 (6), 60.96 (4) and 57.01 (4)°. The ligand is in the enamine–keto form and its structure is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, O—H⋯N hydrogen bonds link mol­ecules into chains parallel to [01-1].

Related literature

For the synthesis and applications of pyrazolo­nes and derivative compounds, see: Jensen (1959[Jensen, B. S. (1959). Acta Chem. Scand. 13, 1668-1670.]); Casas et al. (2007[Casas, J. S., Garcia-Tasende, M. S., Sanchez, S. J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561-1589.]); Metwally et al. (1985[Metwally, M. A., Youshif, M. Y., Osmaiel, A. M. & Amo, F. A. (1985). J. Indian Chem. Soc. 62, 54-56.]); Morris et al. (1986[Morris, G. E., Anderson, B. F. & Baker, E. N. (1986). J. Am. Chem. Soc. 108, 2784-2785.]); Raja et al. (2012[Raja, G., Ray, J. & Chinnasamy, B. (2012). Transition Met. Chem. 37, 169-174.]); Delgado et al. (2006[Delgado, S., Munoz, A., Medina, M. E. & Pastor, C. J. (2006). Inorg. Chim. Acta, 359, 109-117.]); Liskovskaya et al. (2006[Liskovskaya, T. I., Semyannikov, P. P., Baidina, I. A., Stabnikov, P. A., Pervukhina, N. V., Logvinenko, V. A., Igumenov, I. K. & Sokolov, I. E. (2006). J. Struct. Chem. 47, 726-734.]); Peng et al. (2004[Peng, B., Liu, G., Liu, L., Jia, D. & Yu, K. (2004). J. Mol. Struct. 692, 217-222.]); Wang et al. (2002[Wang, J.-L., Zhang, S.-M. & Miao, F.-M. (2002). Acta Cryst. E58, o1365-o1366.]); Ramasamy et al. (2010[Ramasamy, J., Gnanasambandam, V. & Pillutla, S. R. (2010). Org. Chem. Int. , Article ID 648589, 7 pages.]); Thakar et al. (2010[Thakar, A. S., Singh, K. K., Joshi, K. T., Pancholi, A. M. & Pandya, K. S. (2010). E-J. Chem. 7, 1396-1406.]); Xu et al. (2006[Xu, H.-Z., Si, X.-K., Zhu, Y.-Q. & Song, H.-B. (2006). Acta Cryst. E62, o3266-o3268.]); Zhu et al. (2005[Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387-o2388.]); Wang et al. (2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19N3O2

  • Mr = 369.41

  • Triclinic, [P \overline 1]

  • a = 9.5239 (3) Å

  • b = 10.4564 (4) Å

  • c = 10.8120 (4) Å

  • α = 66.870 (1)°

  • β = 72.208 (1)°

  • γ = 72.908 (1)°

  • V = 924.04 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.18 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.990

  • 11733 measured reflections

  • 4227 independent reflections

  • 3385 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.05

  • 4227 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.933 (16) 1.792 (17) 2.6189 (13) 146.1 (14)
O1—H1⋯N2i 0.93 (2) 1.84 (2) 2.7494 (13) 169.1 (18)
Symmetry code: (i) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4-Acyl-5-pyrazolones, a family of flexible β-diketonates and their derived Schiff bases are analgesics, antipyretics, anti-inflammatory agents and insecticides (Morris et al., 1986; Metwally et al., 1985; Casas et al., 2007; Raja et al., 2012). They have been widely used as extractants for metal traces (Delgado et al., 2006; Liskovskaya et al., 2006). Many of these compounds exhibit keto-enol tautomerism (Peng et al., 2004).

The reaction of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with primary amines affords Schiff bases that can function as N– and O-donor tridentates ligands,(Wang et al., 2002; Ramasamy et al., 2010; Thakar et al., 2010; Xu et al., 2006; Zhu et al., 2005; Wang et al., 2003). In order to expand this field, a novel Schiff base has been synthesized and its crystal structure is reported herein for the first time. The compound (I) was prepared from the reaction of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (H1PMBP) and 3-aminophenol. The asymmetric unit of structure (I), and the atomic numbering used, are illustrated in Fig.1.

Steric hindrance affects this structure: the pyrazolone ring C14—N3 is not coplanar with the C18–C23 benzene ring and not perpendicular to the other two benzene rings C8–C13 and C1–C6. The dihedral angles are 30.92 (6), 60.96 (4) and 57.01 (4)°.

The O atom of the 3-methyl-1-phenylpyrazol-5-one unit and the N atom of the (3-hydroxyphenyl) amine group are available for coordination with metals. The pyrazolone ring is planar and atoms O2, C16, C14, C7 and N1 are coplanar, the largest deviation being 0.0179 (7) Å for atom C16. The dihedral angle between this plane (O2 C16 C14 C7 N1) and the pyrazolone ring of PMBP is 4.43 (8)°, close to the values of 4.01 (12)° found in (4Z)-[4 fluorobenzylamino)(phenyl)-methylene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and 5.05 (3)° found in 4-[(2-hydroxyphenylamino)phenylmethylene] -5-methyl-2-phenyl-2H-pyrazol-3(4H)-one, respectively (Xu et al., 2006; Wang et al., 2002).

The C15—N2—N3—C18 torsion angle is 176.73 (10)° , different from the value of 16.7 (3)° in 3-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenylpyrazol-4-ylmino)-4,4,4-trifluoro-1-(2-thienyl)-butane-1,2-dione (Wang et al., 2002). Small torsion angles for N1 C7 C14 C16 [5.66 (17); O1 C1 C6 C5 [-178.76 (11)° ]and N1 C5 C6 C1 [-175.56 (11)° ] show that atoms O1, N1 and O2 are in a cis conformation and can act as the coordinating atoms of a tridentate ligand.

In the pyrazole ring, the bond lengths C14—C16, C14—C15, C15—N2, N2—N3 and C16—N3 lie between classical single and double bond lengths, indicating extensive conjugation and electron delocalization. The bond angles within this ring deviate by up to 4° from the 108° angle of a regular pentagon.

A strong intramolecular N1—H1N···O2 hydrogen bond (Table 1) is observed, leading to an enamine–keto tautomeric form. This case is similar to that found by Xu et al. (2006) for 4-[(2-hydroxyphenylamino)phenylmethylene] -5-methyl-2-phenyl-2H-pyrazol-3(4H)-one [N—O = 2.75 (3) Å and N3—H3···O1 = 143 (4)°]. The molecule is further stabilized by an intermolecular O—H···N hydrogen bond (Table1, Fig.2). Intermolecular O—H···N hydrogen bonds link molecules forming chains parallel to the [0 1 -1] direction. Part of the chain structure is shown in Fig.2.

Related literature top

For the synthesis and applications of pyrazolones and derivative compounds, see: Jensen (1959); Casas et al. (2007); Metwally et al. (1985); Morris et al. (1986); Raja et al. (2012); Delgado et al. (2006); Liskovskaya et al. (2006); Peng et al. (2004); Wang et al. (2002); Ramasamy et al. (2010); Thakar et al. (2010); Xu et al. (2006); Zhu et al. (2005); Wang et al. (2003).

Experimental top

All reagents were obtained from commercial sources and used without further purification. H1PMBP was synthesized according to the method proposed by Jensen (Jensen,1959). Ethanol solution of 139 mg (0.1 mol) of H1PMBP and 54.5 mg (0.1 mol) of m-aminophenol were refluxed together for 24 h over a steam bath. The excess solvent was removed by evaporation. The title compound separated out as a yellow powder, which was collected, dried in air and dissolved afterwards in a hot mixture ethanol/water (9.5/0.5). A bright yellow single crystals, suitable for X-ray analysis, were obtained by slow cooling of a warmed ethanol solution for one night. The product is stable in air, and soluble in acetone and ethanol. Elemental analysis: calculated C 74.78, H 5.18, N 11.37%; found C 74.34, H 5.20, N 11.33%.

Refinement top

The H atoms, except for the H-atoms of the OH and NH groups which were located from Fourier difference maps, were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the intra and intermolecular hydrogen bonds (dashed lines). H atoms not involved in hydrogen bondings have been omitted for clarity [symmetry code: (i) x, y - 1, z + 1].
4-[(3-Hydroxyanilino)(phenyl)methylidene]-3-methyl-1-phenyl-1H- pyrazol-5(4H)-one top
Crystal data top
C23H19N3O2Z = 2
Mr = 369.41F(000) = 388
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5239 (3) ÅCell parameters from 5178 reflections
b = 10.4564 (4) Åθ = 2.2–27.5°
c = 10.8120 (4) ŵ = 0.09 mm1
α = 66.870 (1)°T = 173 K
β = 72.208 (1)°Prism, yellow
γ = 72.908 (1)°0.18 × 0.18 × 0.12 mm
V = 924.04 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4227 independent reflections
Radiation source: fine-focus sealed tube3385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1212
Tmin = 0.985, Tmax = 0.990k = 1313
11733 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2126P]
where P = (Fo2 + 2Fc2)/3
4227 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H19N3O2γ = 72.908 (1)°
Mr = 369.41V = 924.04 (6) Å3
Triclinic, P1Z = 2
a = 9.5239 (3) ÅMo Kα radiation
b = 10.4564 (4) ŵ = 0.09 mm1
c = 10.8120 (4) ÅT = 173 K
α = 66.870 (1)°0.18 × 0.18 × 0.12 mm
β = 72.208 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
3385 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.020
11733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
4227 reflectionsΔρmin = 0.19 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01116 (13)0.22740 (12)1.05711 (11)0.0238 (2)
C20.09952 (13)0.14965 (12)1.04593 (12)0.0248 (2)
H20.11810.06321.11680.030*
C30.16031 (14)0.19913 (13)0.93055 (12)0.0279 (3)
H30.22080.14570.92320.034*
C40.13494 (14)0.32492 (13)0.82548 (12)0.0274 (3)
H40.17760.35790.74700.033*
C50.04596 (13)0.40146 (12)0.83745 (11)0.0223 (2)
C60.01657 (13)0.35299 (12)0.95185 (12)0.0237 (2)
H60.07850.40560.95840.028*
C70.08678 (13)0.63561 (12)0.65184 (11)0.0219 (2)
C80.25221 (13)0.65063 (12)0.68941 (12)0.0232 (2)
C90.33026 (14)0.64999 (13)0.82172 (13)0.0300 (3)
H90.27790.64440.88630.036*
C100.48420 (16)0.65755 (15)0.85869 (16)0.0407 (3)
H100.53780.65780.94850.049*
C110.56012 (16)0.66473 (16)0.76479 (18)0.0455 (4)
H110.66570.66900.79080.055*
C120.48350 (16)0.66578 (16)0.63376 (17)0.0419 (4)
H120.53640.67110.56970.050*
C130.32956 (14)0.65906 (14)0.59534 (14)0.0304 (3)
H130.27690.66020.50490.036*
C140.00957 (13)0.73156 (12)0.53841 (11)0.0222 (2)
C150.05592 (13)0.86809 (12)0.44249 (11)0.0225 (2)
C160.15253 (13)0.70331 (12)0.50200 (11)0.0235 (2)
C170.20976 (14)0.95569 (13)0.43172 (13)0.0307 (3)
H17A0.20251.05500.37910.046*
H17B0.27160.94860.52430.046*
H17C0.25610.92100.38470.046*
C180.33584 (13)0.83449 (13)0.30742 (11)0.0240 (2)
C190.36999 (15)0.96867 (14)0.24046 (13)0.0316 (3)
H190.29521.05060.24640.038*
C200.51470 (17)0.98159 (16)0.16477 (16)0.0442 (4)
H200.53841.07330.11810.053*
C210.62474 (17)0.86396 (17)0.15593 (16)0.0449 (4)
H210.72400.87420.10530.054*
C220.58928 (16)0.73101 (16)0.22143 (15)0.0410 (3)
H220.66450.64950.21480.049*
C230.44521 (15)0.71527 (14)0.29675 (14)0.0337 (3)
H230.42130.62350.34080.040*
N10.00339 (12)0.52529 (11)0.72968 (10)0.0260 (2)
N20.06091 (11)0.91852 (10)0.35404 (9)0.0235 (2)
N30.18928 (11)0.81690 (10)0.38753 (10)0.0235 (2)
O10.05168 (12)0.18868 (11)1.16665 (10)0.0402 (3)
O20.24418 (9)0.60062 (9)0.55996 (9)0.0323 (2)
H1N0.0991 (19)0.5271 (17)0.6993 (17)0.044 (4)*
H10.049 (2)0.096 (2)1.223 (2)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (6)0.0201 (6)0.0209 (5)0.0036 (4)0.0070 (4)0.0011 (4)
C20.0292 (6)0.0175 (5)0.0218 (5)0.0074 (4)0.0011 (5)0.0020 (4)
C30.0337 (7)0.0248 (6)0.0267 (6)0.0127 (5)0.0049 (5)0.0063 (5)
C40.0338 (7)0.0265 (6)0.0220 (5)0.0103 (5)0.0089 (5)0.0029 (5)
C50.0211 (5)0.0184 (5)0.0205 (5)0.0049 (4)0.0029 (4)0.0002 (4)
C60.0216 (6)0.0197 (5)0.0264 (6)0.0060 (4)0.0071 (4)0.0015 (5)
C70.0247 (6)0.0216 (6)0.0195 (5)0.0074 (4)0.0079 (4)0.0027 (4)
C80.0231 (6)0.0173 (5)0.0254 (5)0.0057 (4)0.0063 (4)0.0011 (4)
C90.0329 (7)0.0233 (6)0.0280 (6)0.0064 (5)0.0040 (5)0.0038 (5)
C100.0332 (7)0.0286 (7)0.0441 (8)0.0056 (6)0.0080 (6)0.0082 (6)
C110.0214 (7)0.0317 (7)0.0719 (11)0.0054 (5)0.0030 (7)0.0106 (7)
C120.0309 (7)0.0354 (8)0.0619 (9)0.0061 (6)0.0225 (7)0.0097 (7)
C130.0284 (6)0.0288 (7)0.0331 (6)0.0067 (5)0.0109 (5)0.0054 (5)
C140.0227 (6)0.0219 (6)0.0202 (5)0.0063 (4)0.0081 (4)0.0013 (4)
C150.0272 (6)0.0213 (6)0.0174 (5)0.0055 (4)0.0061 (4)0.0032 (4)
C160.0250 (6)0.0223 (6)0.0214 (5)0.0101 (5)0.0081 (4)0.0010 (4)
C170.0290 (6)0.0259 (6)0.0251 (6)0.0005 (5)0.0058 (5)0.0004 (5)
C180.0256 (6)0.0255 (6)0.0200 (5)0.0107 (5)0.0045 (4)0.0030 (5)
C190.0327 (7)0.0236 (6)0.0322 (6)0.0102 (5)0.0014 (5)0.0059 (5)
C200.0408 (8)0.0318 (7)0.0482 (8)0.0192 (6)0.0101 (6)0.0073 (6)
C210.0311 (7)0.0428 (8)0.0477 (8)0.0141 (6)0.0095 (6)0.0104 (7)
C220.0320 (7)0.0336 (8)0.0440 (8)0.0035 (6)0.0012 (6)0.0086 (6)
C230.0326 (7)0.0248 (6)0.0362 (7)0.0092 (5)0.0040 (5)0.0025 (5)
N10.0220 (5)0.0240 (5)0.0247 (5)0.0094 (4)0.0078 (4)0.0050 (4)
N20.0269 (5)0.0198 (5)0.0199 (4)0.0046 (4)0.0070 (4)0.0011 (4)
N30.0236 (5)0.0200 (5)0.0222 (5)0.0077 (4)0.0071 (4)0.0017 (4)
O10.0596 (7)0.0281 (5)0.0339 (5)0.0194 (5)0.0282 (5)0.0099 (4)
O20.0235 (4)0.0282 (5)0.0338 (5)0.0087 (4)0.0119 (4)0.0084 (4)
Geometric parameters (Å, º) top
C1—O11.3560 (14)C13—H130.9500
C1—C21.3875 (17)C14—C151.4334 (15)
C1—C61.3913 (15)C14—C161.4413 (16)
C2—C31.3847 (17)C15—N21.3150 (15)
C2—H20.9500C15—C171.4936 (16)
C3—C41.3872 (16)C16—O21.2499 (14)
C3—H30.9500C16—N31.3747 (14)
C4—C51.3865 (17)C17—H17A0.9800
C4—H40.9500C17—H17B0.9800
C5—C61.3863 (16)C17—H17C0.9800
C5—N11.4259 (14)C18—C191.3874 (17)
C6—H60.9500C18—C231.3887 (18)
C7—N11.3329 (15)C18—N31.4211 (15)
C7—C141.4026 (15)C19—C201.3859 (18)
C7—C81.4784 (16)C19—H190.9500
C8—C131.3907 (17)C20—C211.376 (2)
C8—C91.3945 (17)C20—H200.9500
C9—C101.3835 (19)C21—C221.380 (2)
C9—H90.9500C21—H210.9500
C10—C111.384 (2)C22—C231.3847 (18)
C10—H100.9500C22—H220.9500
C11—C121.378 (2)C23—H230.9500
C11—H110.9500N1—H1N0.933 (16)
C12—C131.3846 (18)N2—N31.3998 (13)
C12—H120.9500O1—H10.93 (2)
O1—C1—C2123.78 (10)C7—C14—C16120.73 (10)
O1—C1—C6116.53 (11)C15—C14—C16105.31 (9)
C2—C1—C6119.69 (10)N2—C15—C14111.05 (10)
C3—C2—C1119.42 (11)N2—C15—C17118.70 (10)
C3—C2—H2120.3C14—C15—C17130.25 (10)
C1—C2—H2120.3O2—C16—N3125.58 (11)
C2—C3—C4121.52 (11)O2—C16—C14129.22 (10)
C2—C3—H3119.2N3—C16—C14105.19 (10)
C4—C3—H3119.2C15—C17—H17A109.5
C5—C4—C3118.58 (11)C15—C17—H17B109.5
C5—C4—H4120.7H17A—C17—H17B109.5
C3—C4—H4120.7C15—C17—H17C109.5
C6—C5—C4120.65 (10)H17A—C17—H17C109.5
C6—C5—N1116.68 (10)H17B—C17—H17C109.5
C4—C5—N1122.45 (10)C19—C18—C23120.14 (11)
C5—C6—C1120.13 (11)C19—C18—N3120.74 (11)
C5—C6—H6119.9C23—C18—N3119.12 (11)
C1—C6—H6119.9C20—C19—C18119.12 (13)
N1—C7—C14116.75 (10)C20—C19—H19120.4
N1—C7—C8119.11 (10)C18—C19—H19120.4
C14—C7—C8124.14 (10)C21—C20—C19121.20 (13)
C13—C8—C9119.82 (11)C21—C20—H20119.4
C13—C8—C7120.26 (11)C19—C20—H20119.4
C9—C8—C7119.86 (11)C20—C21—C22119.28 (13)
C10—C9—C8119.79 (13)C20—C21—H21120.4
C10—C9—H9120.1C22—C21—H21120.4
C8—C9—H9120.1C21—C22—C23120.66 (14)
C9—C10—C11120.01 (14)C21—C22—H22119.7
C9—C10—H10120.0C23—C22—H22119.7
C11—C10—H10120.0C22—C23—C18119.59 (12)
C12—C11—C10120.40 (13)C22—C23—H23120.2
C12—C11—H11119.8C18—C23—H23120.2
C10—C11—H11119.8C7—N1—C5129.53 (10)
C11—C12—C13120.10 (14)C7—N1—H1N112.5 (10)
C11—C12—H12119.9C5—N1—H1N117.4 (10)
C13—C12—H12119.9C15—N2—N3106.92 (9)
C12—C13—C8119.87 (13)C16—N3—N2111.43 (9)
C12—C13—H13120.1C16—N3—C18126.83 (10)
C8—C13—H13120.1N2—N3—C18121.73 (9)
C7—C14—C15133.89 (11)C1—O1—H1112.6 (12)
O1—C1—C2—C3179.16 (12)C16—C14—C15—C17177.58 (12)
C6—C1—C2—C30.70 (18)C7—C14—C16—O21.3 (2)
C1—C2—C3—C40.02 (19)C15—C14—C16—O2176.13 (13)
C2—C3—C4—C50.24 (19)C7—C14—C16—N3179.66 (11)
C3—C4—C5—C60.17 (19)C15—C14—C16—N32.87 (13)
C3—C4—C5—N1174.57 (11)C23—C18—C19—C200.9 (2)
C4—C5—C6—C10.85 (18)N3—C18—C19—C20179.14 (12)
N1—C5—C6—C1175.56 (11)C18—C19—C20—C210.5 (2)
O1—C1—C6—C5178.76 (11)C19—C20—C21—C221.3 (3)
C2—C1—C6—C51.12 (18)C20—C21—C22—C230.8 (3)
N1—C7—C8—C13123.11 (13)C21—C22—C23—C180.6 (2)
C14—C7—C8—C1357.38 (17)C19—C18—C23—C221.4 (2)
N1—C7—C8—C954.03 (16)N3—C18—C23—C22178.59 (12)
C14—C7—C8—C9125.48 (13)C14—C7—N1—C5169.85 (12)
C13—C8—C9—C100.09 (18)C8—C7—N1—C510.60 (19)
C7—C8—C9—C10177.06 (11)C6—C5—N1—C7140.00 (13)
C8—C9—C10—C110.4 (2)C4—C5—N1—C745.39 (19)
C9—C10—C11—C120.6 (2)C14—C15—N2—N30.31 (13)
C10—C11—C12—C130.3 (2)C17—C15—N2—N3179.62 (10)
C11—C12—C13—C80.3 (2)O2—C16—N3—N2175.82 (12)
C9—C8—C13—C120.45 (19)C14—C16—N3—N23.24 (13)
C7—C8—C13—C12176.69 (12)O2—C16—N3—C185.2 (2)
N1—C7—C14—C15170.95 (13)C14—C16—N3—C18175.73 (11)
C8—C7—C14—C158.6 (2)C15—N2—N3—C162.30 (13)
N1—C7—C14—C165.66 (17)C15—N2—N3—C18176.73 (10)
C8—C7—C14—C16174.82 (11)C19—C18—N3—C16149.41 (12)
C7—C14—C15—N2178.60 (13)C23—C18—N3—C1630.60 (18)
C16—C14—C15—N21.63 (13)C19—C18—N3—N231.72 (17)
C7—C14—C15—C170.6 (2)C23—C18—N3—N2148.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.933 (16)1.792 (17)2.6189 (13)146.1 (14)
O1—H1···N2i0.93 (2)1.84 (2)2.7494 (13)169.1 (18)
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC23H19N3O2
Mr369.41
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.5239 (3), 10.4564 (4), 10.8120 (4)
α, β, γ (°)66.870 (1), 72.208 (1), 72.908 (1)
V3)924.04 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
11733, 4227, 3385
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.05
No. of reflections4227
No. of parameters262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.933 (16)1.792 (17)2.6189 (13)146.1 (14)
O1—H1···N2i0.93 (2)1.84 (2)2.7494 (13)169.1 (18)
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

The authors would like to thank Professor Jean Claude Daran, Laboratoire de Chimie de Coordination, Toulouse, France, and Professor J. P. Gisselbrecht, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, Strasbourg University, France, for their valuable contributions.

References

First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S., Sanchez, S. J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561–1589.  CrossRef CAS Google Scholar
First citationDelgado, S., Munoz, A., Medina, M. E. & Pastor, C. J. (2006). Inorg. Chim. Acta, 359, 109–117.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJensen, B. S. (1959). Acta Chem. Scand. 13, 1668–1670.  CrossRef CAS Web of Science Google Scholar
First citationLiskovskaya, T. I., Semyannikov, P. P., Baidina, I. A., Stabnikov, P. A., Pervukhina, N. V., Logvinenko, V. A., Igumenov, I. K. & Sokolov, I. E. (2006). J. Struct. Chem. 47, 726–734.  Web of Science CrossRef CAS Google Scholar
First citationMetwally, M. A., Youshif, M. Y., Osmaiel, A. M. & Amo, F. A. (1985). J. Indian Chem. Soc. 62, 54–56.  CAS Google Scholar
First citationMorris, G. E., Anderson, B. F. & Baker, E. N. (1986). J. Am. Chem. Soc. 108, 2784–2785.  CrossRef Web of Science Google Scholar
First citationPeng, B., Liu, G., Liu, L., Jia, D. & Yu, K. (2004). J. Mol. Struct. 692, 217–222.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaja, G., Ray, J. & Chinnasamy, B. (2012). Transition Met. Chem. 37, 169–174.  Web of Science CrossRef CAS Google Scholar
First citationRamasamy, J., Gnanasambandam, V. & Pillutla, S. R. (2010). Org. Chem. Int. , Article ID 648589, 7 pages.  Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakar, A. S., Singh, K. K., Joshi, K. T., Pancholi, A. M. & Pandya, K. S. (2010). E-J. Chem. 7, 1396–1406.  CrossRef CAS Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J.-L., Zhang, S.-M. & Miao, F.-M. (2002). Acta Cryst. E58, o1365–o1366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-Z., Si, X.-K., Zhu, Y.-Q. & Song, H.-B. (2006). Acta Cryst. E62, o3266–o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1909-o1910
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds