metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{N′-[1-(pyridin-2-yl)ethyl­­idene]picolinohydrazide-κ2N′,O}cadmium

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, 51666 Tabriz, Iran, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 9 May 2012; accepted 21 May 2012; online 31 May 2012)

The title compound, [CdBr2(C13H12N4O)], was obtained from the reaction of Cd(NO3)2·4H2O with meth­yl(pyridin-2-yl)methanone picolinoylhydrazone and sodium bromide. The Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand and two bromide anions, forming a Br2CdN2O polyhedron with a distorted trigonal–bipyramidal coordination geometry. In the crystal, non-classical C—H⋯Br hydrogen bonds are observed. In addition, ππ stacking inter­actions [centroid–centroid distance = 3.7455 (19) Å] contribute to the stabilization of the crystal structure.

Related literature

For related complexes with similar tridentate ligands, see: Kasuga et al. (2001[Kasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomia, K. (2001). J. Inorg. Biochem. 84, 55-65.]); Chen et al. (2005[Chen, L., Zhang, W., Huang, S., Jin, X. & Sun, W.-H. (2005). Inorg. Chem. Commun. 8, 41-43.]); Datta et al. (2011[Datta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011). Acta Cryst. E67, m123.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C13H12N4O)]

  • Mr = 512.48

  • Monoclinic, P 21 /n

  • a = 8.1336 (3) Å

  • b = 13.6111 (5) Å

  • c = 14.6102 (5) Å

  • β = 90.550 (1)°

  • V = 1617.38 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.29 mm−1

  • T = 296 K

  • 0.32 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.267, Tmax = 0.365

  • 15317 measured reflections

  • 3874 independent reflections

  • 2859 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.062

  • S = 1.02

  • 3874 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯Br2i 0.96 2.91 3.810 (4) 157
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. Recently, the relative unsymmetrical tridentate Schiff base ligands and their hydrogenated derivatives have been introduced into the coordination chemistry to assemble polymers with beautiful molecular structures. Some organic N-donor ligands are often chosen to fabricate these various complexes. In this connection, some complexes with similar tridentate ligands have been studied (Kasuga et al., 2001; Chen et al., 2005; Datta et al., 2011). Herein, we report the structure of a new cadmium complex based on a pyridine based tridentate Schiff base ligand.

The molecular structure of title compound is shown in Fig. 1. The Cd ion is five coordinated forming a distorted trigonal-bipyramidal coordination sphere, in which three positions are occupied by two N atoms and one O atom from the tridentate Schiff base ligand, and two positions coming from two bromide ions. As can be seen in Fig. 1, all non-H atoms of the tridentate Schiff base ligand are nearly coplanar, with maximum deviations of -0.053 (4) Å for C7 and 0.049 (2) Å for N2.

Molecules are linked to each other, via weak C—H···Br intermolecular hydrogen bonds along the crystallographic a axis (Table 1, Fig. 2). In the crystal, weak π-π stacking interactions also contribute to the stabilization: [Cg3···Cg3(1 - x, -y, 1 - z) = 3.7455 (19) Å; where Cg3 is the centroid of the N1/C1–C5 ring].

Related literature top

For related complexes with similar tridentate ligands, see: Kasuga et al. (2001); Chen et al. (2005); Datta et al. (2011).

Experimental top

The potentially tridenatate ligand methyl-2-pyridyl ketone picolinoyl hydrazone was obtained by condensation of methyl-2-pyridyl ketone and picolinic acid hydrazide with the ratio 1:1 in methanol. The title compound C13H12Br2CdN4O has been synthesized by the reaction of methanolic solution of the ligand and Cd(NO3)2.4H2O in the presence of excess amount of NaBr. The ligand (1 mmol, 0.240 g) and cadmium nitrate (1 mmol, 279 g) were placed in main arm of a branched tube; sodium bromide (2 mmol, 0.206 g) was added to the mixture too. Methanol was carefully added to fill the arms. The tube was sealed and the ligand-containing arm was immersed in an oil bath at 333 K while the branched arm was kept at ambient temperature. After five days, suitable single crystals, were deposited in the cooler arm which were isolated, filtered off, washed with acetone and ether and air dried.

Refinement top

H atoms bonded to C atoms were positioned geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H. The amine H atom was located in difference Fourier map and refined freely [N—H = 0.86 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the intermolecular C—H···Br hydrogen bonds and π-π stacking interactions of the title compound. H atoms not involved in hydrogen bonding are omitted.
Dibromido{N'-[1-(pyridin-2-yl)ethylidene]picolinohydrazide- κ2N',O}cadmium top
Crystal data top
[CdBr2(C13H12N4O)]F(000) = 976
Mr = 512.48Dx = 2.105 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 545 reflections
a = 8.1336 (3) Åθ = 4.2–18.3°
b = 13.6111 (5) ŵ = 6.29 mm1
c = 14.6102 (5) ÅT = 296 K
β = 90.550 (1)°Prism, colourless
V = 1617.38 (10) Å30.32 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3874 independent reflections
Radiation source: fine-focus sealed tube2859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 28.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.267, Tmax = 0.365k = 1718
15317 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.5132P]
where P = (Fo2 + 2Fc2)/3
3874 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.54 e Å3
Crystal data top
[CdBr2(C13H12N4O)]V = 1617.38 (10) Å3
Mr = 512.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1336 (3) ŵ = 6.29 mm1
b = 13.6111 (5) ÅT = 296 K
c = 14.6102 (5) Å0.32 × 0.18 × 0.16 mm
β = 90.550 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2859 reflections with I > 2σ(I)
Tmin = 0.267, Tmax = 0.365Rint = 0.032
15317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.47 e Å3
3874 reflectionsΔρmin = 0.54 e Å3
195 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.32238 (3)0.16938 (2)0.27655 (2)0.0429 (1)
Br10.04606 (5)0.15378 (3)0.35202 (3)0.0626 (1)
Br20.42596 (5)0.34049 (2)0.23982 (3)0.0550 (1)
O10.2555 (3)0.10824 (15)0.12175 (14)0.0493 (8)
N10.5195 (3)0.12698 (18)0.38976 (17)0.0438 (9)
N20.4511 (3)0.02135 (16)0.24438 (15)0.0370 (8)
N30.4106 (3)0.02318 (18)0.16427 (17)0.0401 (8)
N40.3565 (3)0.11450 (19)0.01147 (18)0.0495 (10)
C10.5632 (5)0.1867 (2)0.4579 (2)0.0555 (11)
C20.6781 (5)0.1618 (3)0.5230 (2)0.0585 (11)
C30.7498 (4)0.0712 (3)0.5186 (2)0.0585 (14)
C40.7079 (4)0.0090 (2)0.4477 (2)0.0487 (11)
C50.5925 (4)0.0390 (2)0.3832 (2)0.0385 (9)
C60.5464 (3)0.0217 (2)0.3021 (2)0.0377 (9)
C70.6137 (5)0.1226 (2)0.2915 (2)0.0577 (11)
C80.3114 (4)0.0268 (2)0.1050 (2)0.0392 (9)
C90.2810 (4)0.0274 (2)0.01743 (19)0.0381 (9)
C100.1844 (4)0.0113 (2)0.0505 (2)0.0473 (11)
C110.1592 (4)0.0425 (2)0.1296 (2)0.0523 (11)
C120.2361 (5)0.1319 (2)0.1370 (2)0.0543 (11)
C130.3333 (5)0.1652 (2)0.0658 (2)0.0569 (13)
H10.513400.248000.461400.0660*
H20.706800.205600.569300.0700*
H30.825900.051700.562900.0700*
H3N0.434 (4)0.0819 (15)0.150 (2)0.056 (10)*
H40.756700.052600.443100.0580*
H7A0.545300.159200.249900.0860*
H7B0.616100.154800.349900.0860*
H7C0.723200.118900.267800.0860*
H100.136300.072800.043600.0570*
H110.092000.018800.176500.0630*
H120.222800.169600.189700.0650*
H130.385100.225800.071800.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0474 (1)0.0383 (1)0.0428 (1)0.0045 (1)0.0051 (1)0.0016 (1)
Br10.0532 (2)0.0726 (3)0.0622 (2)0.0011 (2)0.0063 (2)0.0021 (2)
Br20.0638 (2)0.0413 (2)0.0598 (2)0.0049 (2)0.0091 (2)0.0024 (2)
O10.0616 (15)0.0432 (13)0.0429 (12)0.0105 (11)0.0085 (11)0.0083 (10)
N10.0503 (16)0.0397 (14)0.0412 (15)0.0023 (12)0.0086 (12)0.0021 (11)
N20.0393 (14)0.0367 (13)0.0350 (14)0.0022 (11)0.0031 (11)0.0016 (10)
N30.0476 (15)0.0354 (14)0.0373 (14)0.0005 (12)0.0045 (11)0.0063 (11)
N40.0654 (19)0.0394 (15)0.0436 (16)0.0006 (13)0.0089 (13)0.0043 (12)
C10.075 (2)0.0403 (18)0.051 (2)0.0047 (17)0.0117 (18)0.0030 (15)
C20.071 (2)0.061 (2)0.0433 (19)0.0144 (19)0.0141 (17)0.0057 (16)
C30.056 (2)0.073 (3)0.046 (2)0.0134 (18)0.0175 (17)0.0083 (17)
C40.0471 (19)0.0505 (19)0.0483 (19)0.0019 (15)0.0065 (15)0.0107 (15)
C50.0371 (16)0.0401 (16)0.0381 (16)0.0056 (13)0.0025 (13)0.0074 (13)
C60.0359 (16)0.0361 (16)0.0411 (17)0.0045 (13)0.0005 (13)0.0033 (13)
C70.065 (2)0.0458 (19)0.062 (2)0.0137 (17)0.0072 (18)0.0003 (17)
C80.0396 (16)0.0418 (17)0.0362 (16)0.0092 (14)0.0016 (13)0.0004 (13)
C90.0384 (16)0.0383 (16)0.0376 (16)0.0058 (13)0.0000 (13)0.0005 (12)
C100.0495 (19)0.0458 (18)0.0464 (19)0.0008 (15)0.0065 (15)0.0043 (15)
C110.056 (2)0.057 (2)0.0437 (19)0.0102 (17)0.0101 (16)0.0044 (15)
C120.069 (2)0.053 (2)0.0408 (19)0.0194 (18)0.0046 (17)0.0082 (15)
C130.075 (3)0.0397 (18)0.056 (2)0.0021 (17)0.0054 (19)0.0107 (16)
Geometric parameters (Å, º) top
Cd1—Br12.5218 (5)C5—C61.490 (4)
Cd1—Br22.5359 (4)C6—C71.487 (4)
Cd1—O12.466 (2)C8—C91.495 (4)
Cd1—N12.364 (2)C9—C101.366 (4)
Cd1—N22.321 (2)C10—C111.382 (4)
O1—C81.224 (4)C11—C121.373 (4)
N1—C11.331 (4)C12—C131.377 (5)
N1—C51.341 (4)C1—H10.9300
N2—N31.356 (3)C2—H20.9300
N2—C61.282 (4)C3—H30.9300
N3—C81.360 (4)C4—H40.9300
N4—C91.338 (4)C7—H7A0.9600
N4—C131.335 (4)C7—H7B0.9600
N3—H3N0.85 (2)C7—H7C0.9600
C1—C21.370 (5)C10—H100.9300
C2—C31.366 (6)C11—H110.9300
C3—C41.378 (4)C12—H120.9300
C4—C51.385 (4)C13—H130.9300
Br1—Cd1—Br2117.98 (2)O1—C8—N3123.0 (3)
Br1—Cd1—O1100.54 (6)O1—C8—C9124.0 (3)
Br1—Cd1—N1105.95 (6)C8—C9—C10121.4 (3)
Br1—Cd1—N2114.91 (6)N4—C9—C8114.9 (3)
Br2—Cd1—O1100.76 (5)N4—C9—C10123.8 (3)
Br2—Cd1—N198.50 (6)C9—C10—C11118.9 (3)
Br2—Cd1—N2127.09 (6)C10—C11—C12118.1 (3)
O1—Cd1—N1134.55 (8)C11—C12—C13119.4 (3)
O1—Cd1—N267.49 (8)N4—C13—C12123.0 (3)
N1—Cd1—N268.01 (8)N1—C1—H1118.00
Cd1—O1—C8114.21 (19)C2—C1—H1119.00
Cd1—N1—C1123.3 (2)C1—C2—H2121.00
Cd1—N1—C5117.77 (19)C3—C2—H2121.00
C1—N1—C5118.9 (3)C2—C3—H3120.00
Cd1—N2—N3117.17 (17)C4—C3—H3120.00
Cd1—N2—C6122.33 (18)C3—C4—H4120.00
N3—N2—C6120.3 (2)C5—C4—H4120.00
N2—N3—C8117.6 (2)C6—C7—H7A109.00
C9—N4—C13116.9 (3)C6—C7—H7B109.00
C8—N3—H3N117 (2)C6—C7—H7C109.00
N2—N3—H3N126 (2)H7A—C7—H7B109.00
N1—C1—C2123.0 (3)H7A—C7—H7C109.00
C1—C2—C3118.7 (3)H7B—C7—H7C109.00
C2—C3—C4119.2 (3)C9—C10—H10121.00
C3—C4—C5119.4 (3)C11—C10—H10121.00
N1—C5—C4120.8 (3)C10—C11—H11121.00
C4—C5—C6122.8 (3)C12—C11—H11121.00
N1—C5—C6116.4 (3)C11—C12—H12120.00
N2—C6—C7125.1 (3)C13—C12—H12120.00
C5—C6—C7120.3 (2)N4—C13—H13119.00
N2—C6—C5114.6 (2)C12—C13—H13119.00
N3—C8—C9113.0 (2)
Br1—Cd1—O1—C8107.6 (2)Cd1—N2—C6—C7170.9 (2)
Br2—Cd1—O1—C8131.0 (2)Cd1—N2—N3—C86.6 (3)
N1—Cd1—O1—C817.6 (3)Cd1—N2—C6—C511.0 (3)
N2—Cd1—O1—C85.2 (2)N3—N2—C6—C73.4 (4)
Br1—Cd1—N1—C176.1 (3)N3—N2—C6—C5174.8 (2)
Br2—Cd1—N1—C146.4 (3)N2—N3—C8—O11.5 (4)
O1—Cd1—N1—C1160.7 (2)N2—N3—C8—C9177.5 (2)
N2—Cd1—N1—C1173.0 (3)C9—N4—C13—C120.5 (5)
Br1—Cd1—N1—C5105.4 (2)C13—N4—C9—C8179.7 (3)
Br2—Cd1—N1—C5132.2 (2)C13—N4—C9—C100.4 (5)
O1—Cd1—N1—C517.9 (3)N1—C1—C2—C30.8 (6)
N2—Cd1—N1—C55.6 (2)C1—C2—C3—C41.8 (5)
Br1—Cd1—N2—N385.55 (18)C2—C3—C4—C50.9 (5)
Br2—Cd1—N2—N392.50 (19)C3—C4—C5—N11.0 (5)
O1—Cd1—N2—N35.94 (17)C3—C4—C5—C6177.0 (3)
N1—Cd1—N2—N3176.5 (2)N1—C5—C6—N25.2 (4)
Br1—Cd1—N2—C688.8 (2)C4—C5—C6—C75.3 (4)
Br2—Cd1—N2—C693.1 (2)C4—C5—C6—N2172.9 (3)
O1—Cd1—N2—C6179.7 (2)N1—C5—C6—C7176.6 (3)
N1—Cd1—N2—C69.2 (2)O1—C8—C9—N4178.4 (3)
Cd1—O1—C8—C9177.1 (2)N3—C8—C9—C10179.9 (3)
Cd1—O1—C8—N34.0 (4)O1—C8—C9—C101.0 (5)
Cd1—N1—C5—C62.6 (3)N3—C8—C9—N40.6 (4)
Cd1—N1—C1—C2179.7 (3)N4—C9—C10—C111.4 (5)
C1—N1—C5—C42.0 (4)C8—C9—C10—C11179.3 (3)
C1—N1—C5—C6176.1 (3)C9—C10—C11—C121.5 (5)
C5—N1—C1—C21.1 (5)C10—C11—C12—C130.7 (5)
Cd1—N1—C5—C4179.3 (2)C11—C12—C13—N40.3 (6)
C6—N2—N3—C8178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···Br2i0.962.913.810 (4)157
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CdBr2(C13H12N4O)]
Mr512.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1336 (3), 13.6111 (5), 14.6102 (5)
β (°) 90.550 (1)
V3)1617.38 (10)
Z4
Radiation typeMo Kα
µ (mm1)6.29
Crystal size (mm)0.32 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.267, 0.365
No. of measured, independent and
observed [I > 2σ(I)] reflections
15317, 3874, 2859
Rint0.032
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.02
No. of reflections3874
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···Br2i0.962.913.810 (4)157
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Zhang, W., Huang, S., Jin, X. & Sun, W.-H. (2005). Inorg. Chem. Commun. 8, 41–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationDatta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011). Acta Cryst. E67, m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomia, K. (2001). J. Inorg. Biochem. 84, 55–65.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds