metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m788-m789

Di­chloridobis[ethyl 2-(2-amino-1,3-thia­zol-4-yl)acetate-κ2O,N3]cadmium

aSchool of Chemistry and Chemical Engineering, Shangrao Normal University, Shangrao 334001, People's Republic of China
*Correspondence e-mail: ljzhang@sru.jx.cn

(Received 12 April 2012; accepted 15 May 2012; online 26 May 2012)

The asymmetric unit of the title compound, [CdCl2(C7H10N2O2S)2], contains two complex molecules with similar configurations. The CdII atoms are each six-coordinated by two thiazole N and two carbonyl O atoms from the 2-(2-amino-1,3-thiazol-4-yl)acetate ligand, and by two Cl anions in a distorted octa­hedral geometry. In the crystal, intra- and inter­molecular N—H⋯Cl hydrogen bonds create parallel chains along [1-10]. C—H⋯Cl inter­actions also occur.

Related literature

For the pharmacological activity, including anti­tumor activity, of metal complexes with thia­zole ligands, see: Alexandru et al. (2010[Alexandru, M.-G., Velickovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639-645.]); Chang et al. (1982[Chang, C. K., Myoung, S. K. & Ward, B. (1982). Chem. Commun. pp. 716-719.]). For related structures and preparative procedures, see: Alexandru et al. (2010[Alexandru, M.-G., Velickovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639-645.]); He et al. (2009[He, Q.-F., Li, D.-S., Zhao, J., Ke, X.-J. & Li, C. (2009). Acta Cryst. E65, m666.]); Siddiqui et al. (2009[Siddiqui, K. A., Mehrotra, G. K. & LaDuca, R. L. (2009). Polyhedron, 28, 4077-4083.]); Yang et al. (2009[Yang, L., Wang, Q. & Li, S. (2009). Z. Kristallogr. 224, 453-454.]); Usman et al. (2003[Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41-m43.]); Zhang et al. (2008a[Zhang, L.-J., Shen, X.-C. & Liang, H. (2008a). Acta Cryst. E64, m1413-m1414.],b[Zhang, L.-J., Shen, X.-C. & Liang, H. (2008b). Acta Cryst. E64, m1248.], 2009[Zhang, L.-J., Shen, X.-C., Yang, Y. & Liang, H. (2009). Acta Cryst. E65, m1517.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C7H10N2O2S)2]

  • Mr = 555.76

  • Monoclinic, C c

  • a = 16.860 (3) Å

  • b = 16.630 (3) Å

  • c = 16.220 (3) Å

  • β = 105.41 (3)°

  • V = 4384.3 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.13 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.833, Tmax = 0.892

  • 14070 measured reflections

  • 8707 independent reflections

  • 8223 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.048

  • S = 1.02

  • 8707 reflections

  • 492 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3396 Friedel pairs

  • Flack parameter: 0.003 (12)

Table 1
Selected bond lengths (Å)

Cd1—N3 2.343 (2)
Cd1—N4 2.315 (2)
Cd1—O7 2.475 (2)
Cd1—O8 2.384 (2)
Cd1—Cl3 2.5041 (8)
Cd1—Cl4 2.5664 (8)
Cd2—N1 2.344 (2)
Cd2—N2 2.347 (2)
Cd2—O4 2.511 (2)
Cd2—O6 2.377 (3)
Cd2—Cl1 2.5491 (9)
Cd2—Cl2 2.5051 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯Cl3 0.86 2.46 3.291 (3) 163
N6—H6A⋯Cl4 0.86 2.43 3.277 (3) 167
N7—H7A⋯Cl1 0.86 2.43 3.242 (3) 157
N8—H8A⋯Cl2 0.86 2.43 3.248 (3) 160
C14—H14B⋯Cl2 0.97 2.80 3.607 (3) 141
C34—H34A⋯Cl2 0.93 2.81 3.687 (4) 158
N5—H5B⋯Cl1i 0.86 2.67 3.435 (3) 149
N6—H6B⋯Cl1ii 0.86 2.41 3.189 (3) 152
N8—H8B⋯Cl4iii 0.86 2.57 3.373 (3) 155
C35—H35A⋯Cl3iv 0.93 2.82 3.681 (4) 153
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with thiazole ligands have received attention as potential metal-based drugs due to pharmacological activity (Chang et al., 1982). Organic ligands containing aminothiazole group such as ethyl 2-aminothiazole-4-acetate (EATA) and 2-amino-4-thiazole acetate (ATA) possess strong coordination ability and display diverse coordination modes due to the present of N, O coordination atoms (Usman et al., 2003). We have recently determined the crystal structures of metal complexes with EATA or ATA as ligands, including bicoordinated [Ag(C7H10N2O2S)2]NO3 (Zhang et al., 2008a), four-coordinated 2-amino-4-thiazole acetic acid (ATAA) (Zhang et al., 2008b), five-coordinated [Zn(C5H5N2O2S)2(H2O)] (Zhang et al., 2009). Single crystal structure determinations of five-coordinated NiII (He et al., 2009), MnII (Alexandru et al., 2010) and ZnII (Siddiqui et al., 2009; Yang et al., 2009) complexes with aminothiazole acetate (ATA) derivative have been carried out by other groups, and it is found that the corresponding CuII and MnII complexes exhibit promising antitumor activity against cancerous cells (HeLa) (Alexandru et al., 2010). Here, we report a new six-coordinated title complex [Cd(C7H10N2O2S)2Cl2], I, using EATA as ligand. Interestingly, when cadmium chloride hydrate instead of ZnSO4 was used as starting material, EATA molecule would not hydrolyze under ultrasonic irradiation at room temperature.

In the crystal structure, the central Cd atom is six-coordinated by two N atoms, two O atoms and two Cl atoms in a distorted octahedral geometry, each EATA ligand provides one thiazole nitrogen and one oxygen atoms as coordinated atoms (Table 1, Fig. 1). Numerous hydrogen bonds including the intramolecular N—H···Cl hydrogen bonds between one H atom of NH2 group on a thiazole ring and one Cl atom from the same molecule, the intermolecular N—H···Cl hydrogen bonds between the other H atom of NH2 group on the thiazole ring and Cl atom from another molecule, and the intermolecular and intramolecular C—H···Cl hydrogen bonds between the H atom of the thiazole ring or CH2 group and Cl atom are formed, which further stabilize and aggregate the [Cd(C7H10N2O2S)2Cl2] molecules and create parallel one-dimensional chains along [1-10] (Table 2, Fig. 2).

Related literature top

For the pharmacological activity, including antitumor activity, of metal complexes with thiazole ligands, see: Alexandru et al. (2010); Chang et al. (1982). For related structures and preparative procedures, see: Alexandru et al. (2010); He et al. (2009); Siddiqui et al. (2009); Yang et al. (2009); Usman et al. (2003); Zhang et al. (2008a,b, 2009).

Experimental top

An ethanol-water solution of ethyl 2-aminothiazole-4-acetate (EATA) was prepared by first dissolving EATA (1 mmol, 0.186 g) in ethanol (5 ml) and then adding distilled water (5 ml) under stirring. Then, CdCl2 (1 mmol, 0.228 g) was added and dissolved after a 10-minutes ultrasonic treatment. The resulting solution was filtered and left at room temperature for overnight. Big block pale-yellow single crystals were obtained in about 38% yield (based on Cd).

Refinement top

All hydrogen atoms have been refined in a riding mode model on their carrier atom, with C–H = 0.93 Å (thiazole ring), 0.96 Å (CH2 group), and 0.97 Å (CH3 group), N–H = 0.86 Å and Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.2Ueq (C from thiazole ring and CH2 group), Uiso(H) = 1.5Ueq (C from CH3 group). The methyl groups appear to be slightly disordered, but attempts to model this disorder did not result in a better fit.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms were omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Intermolecular and intramolecular N—H···Cl and C—H···Cl hydrogen bonds are indicated by dashed lines. All hydrogen atoms not involved in hydrogen bonding were omitted for clarity.
Dichloridobis[ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate-κ2O,N3]cadmium top
Crystal data top
[CdCl2(C7H10N2O2S)2]F(000) = 2224
Mr = 555.76Dx = 1.684 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 8288 reflections
a = 16.860 (3) Åθ = 4.8–56.3°
b = 16.630 (3) ŵ = 1.46 mm1
c = 16.220 (3) ÅT = 293 K
β = 105.41 (3)°Cube, yellow
V = 4384.3 (15) Å30.13 × 0.11 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8707 independent reflections
Radiation source: fine-focus sealed tube8223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1622
Tmin = 0.833, Tmax = 0.892k = 2118
14070 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0214P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
8707 reflectionsΔρmax = 0.48 e Å3
492 parametersΔρmin = 0.28 e Å3
2 restraintsAbsolute structure: Flack (1983), 3396 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (12)
Crystal data top
[CdCl2(C7H10N2O2S)2]V = 4384.3 (15) Å3
Mr = 555.76Z = 8
Monoclinic, CcMo Kα radiation
a = 16.860 (3) ŵ = 1.46 mm1
b = 16.630 (3) ÅT = 293 K
c = 16.220 (3) Å0.13 × 0.11 × 0.08 mm
β = 105.41 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8223 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.892Rint = 0.015
14070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.48 e Å3
S = 1.02Δρmin = 0.28 e Å3
8707 reflectionsAbsolute structure: Flack (1983), 3396 Friedel pairs
492 parametersAbsolute structure parameter: 0.003 (12)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An appro ximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd20.485132 (11)0.050594 (11)0.483618 (12)0.03730 (5)
Cl10.38342 (5)0.15043 (5)0.51743 (7)0.0622 (2)
Cl20.60420 (5)0.05382 (6)0.61452 (6)0.0573 (2)
S10.32127 (6)0.17849 (6)0.52649 (8)0.0677 (3)
S20.57839 (7)0.27697 (5)0.35146 (8)0.0709 (3)
O10.5970 (2)0.17949 (17)0.4071 (2)0.0845 (9)
O20.35439 (19)0.00228 (19)0.21198 (17)0.0745 (7)
O40.55304 (17)0.05458 (14)0.41459 (17)0.0589 (6)
O60.38851 (15)0.03458 (16)0.34818 (16)0.0607 (6)
N10.42536 (14)0.06974 (14)0.51274 (15)0.0370 (5)
N20.53823 (15)0.13812 (15)0.39801 (17)0.0443 (6)
N70.29128 (17)0.02223 (16)0.4987 (2)0.0570 (8)
H7A0.30460.02640.49020.068*
H7B0.24150.03340.49880.068*
N80.60648 (19)0.22120 (17)0.5118 (2)0.0624 (8)
H8A0.60410.18540.54930.075*
H8B0.62950.26680.52790.075*
C30.46569 (19)0.14287 (17)0.5250 (2)0.0424 (7)
C140.55607 (19)0.14566 (19)0.5285 (2)0.0493 (8)
H14A0.57690.19980.54200.059*
H14B0.58650.10990.57300.059*
C180.34717 (18)0.07983 (17)0.51152 (19)0.0418 (6)
C200.57463 (19)0.20604 (18)0.4289 (2)0.0493 (8)
C230.56813 (19)0.1206 (2)0.4444 (2)0.0504 (8)
C310.4774 (2)0.0671 (2)0.2587 (2)0.0584 (9)
H31A0.51940.02570.26810.070*
H31B0.46340.08110.19850.070*
C320.5135 (2)0.1403 (2)0.3099 (2)0.0504 (8)
C330.4027 (2)0.0327 (2)0.2788 (2)0.0510 (8)
C350.4212 (2)0.2063 (2)0.5344 (3)0.0602 (9)
H35A0.44120.25860.54380.072*
C360.5297 (2)0.2101 (3)0.2750 (3)0.0679 (11)
H36A0.51600.22030.21650.081*
C380.2991 (3)0.1286 (4)0.2447 (4)0.1113 (19)
H38A0.24880.15650.24270.167*
H38B0.32480.15220.20430.167*
H38C0.33540.13270.30120.167*
C390.2811 (3)0.0433 (3)0.2232 (3)0.0775 (12)
H39A0.26290.01740.26860.093*
H39B0.23710.03940.17090.093*
C410.6056 (4)0.1653 (3)0.3213 (4)0.113 (2)
H41A0.61130.10820.31220.135*
H41B0.65430.19240.31410.135*
C430.5325 (5)0.1963 (5)0.2599 (5)0.155 (3)
H43A0.54210.19830.20420.233*
H43B0.52070.24940.27660.233*
H43C0.48670.16160.25850.233*
Cd11.014298 (12)0.019131 (11)0.516063 (12)0.03457 (5)
Cl31.05317 (5)0.12360 (5)0.63094 (5)0.04869 (18)
Cl41.13217 (4)0.08244 (4)0.56401 (5)0.04280 (16)
S31.18288 (6)0.11604 (6)0.34483 (6)0.0617 (2)
S40.80771 (6)0.15640 (6)0.57326 (9)0.0819 (4)
O30.88349 (16)0.10310 (18)0.27228 (15)0.0719 (8)
O50.76489 (15)0.14017 (18)0.42157 (16)0.0714 (7)
O70.89008 (13)0.09262 (15)0.43589 (14)0.0526 (5)
O80.95805 (15)0.07188 (14)0.40191 (15)0.0559 (6)
N30.90975 (15)0.04584 (14)0.56106 (17)0.0395 (5)
N41.06655 (14)0.07518 (14)0.41083 (15)0.0386 (5)
N51.17737 (16)0.13937 (18)0.50584 (18)0.0533 (7)
H5A1.15510.13580.54750.064*
H5B1.22480.16180.51350.064*
N60.96308 (16)0.17675 (17)0.5695 (2)0.0617 (8)
H6A1.01100.16030.56780.074*
H6B0.95400.22740.57310.074*
C70.90311 (18)0.12415 (19)0.5664 (2)0.0454 (7)
C150.83681 (18)0.0086 (2)0.5619 (2)0.0449 (7)
C161.13877 (18)0.11042 (18)0.4296 (2)0.0425 (7)
C190.83232 (19)0.10455 (19)0.4647 (2)0.0476 (7)
C241.0442 (2)0.0512 (2)0.3255 (2)0.0469 (7)
C250.9363 (2)0.0568 (2)0.3274 (2)0.0495 (8)
C270.9611 (2)0.0157 (2)0.2847 (2)0.0574 (8)
H27A0.92010.05720.28180.069*
H27B0.95950.00110.22630.069*
C290.8293 (2)0.0817 (2)0.5528 (2)0.0498 (8)
H29A0.87390.10740.59470.060*
H29B0.77770.09930.56260.060*
C301.0989 (2)0.0682 (2)0.2821 (2)0.0599 (9)
H30A1.09220.05560.22470.072*
C340.7765 (2)0.0577 (2)0.5684 (3)0.0680 (11)
H34A0.72440.04080.57010.082*
C370.8494 (3)0.1722 (3)0.3080 (3)0.0815 (13)
H37A0.81660.15380.34520.098*
H37B0.89350.20570.34120.098*
C400.7588 (3)0.1582 (4)0.3317 (3)0.121 (2)
H40A0.81310.17070.32540.146*
H40B0.72430.20510.31440.146*
C420.7984 (4)0.2179 (4)0.2368 (3)0.120 (2)
H42A0.78470.26890.25710.179*
H42B0.74890.18850.21180.179*
H42C0.82810.22640.19460.179*
C440.7253 (4)0.0925 (8)0.2773 (5)0.194 (5)
H44A0.70890.11050.21900.291*
H44B0.76610.05100.28320.291*
H44C0.67830.07150.29300.291*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd20.03566 (10)0.03306 (10)0.04408 (11)0.00243 (9)0.01218 (8)0.00147 (9)
Cl10.0430 (4)0.0399 (4)0.1096 (7)0.0052 (3)0.0305 (4)0.0189 (4)
Cl20.0486 (4)0.0598 (5)0.0562 (5)0.0012 (4)0.0010 (4)0.0068 (4)
S10.0590 (5)0.0406 (5)0.1071 (8)0.0101 (4)0.0285 (5)0.0137 (5)
S20.0710 (6)0.0411 (5)0.1128 (8)0.0020 (4)0.0456 (6)0.0174 (5)
O10.121 (2)0.0509 (15)0.103 (2)0.0169 (16)0.066 (2)0.0038 (15)
O20.0798 (18)0.085 (2)0.0513 (15)0.0108 (15)0.0053 (13)0.0091 (13)
O40.0739 (17)0.0446 (14)0.0666 (16)0.0107 (12)0.0334 (13)0.0010 (11)
O60.0545 (14)0.0800 (18)0.0478 (14)0.0151 (12)0.0138 (11)0.0068 (12)
N10.0365 (12)0.0302 (12)0.0459 (13)0.0005 (10)0.0135 (10)0.0027 (10)
N20.0436 (13)0.0367 (13)0.0577 (16)0.0005 (11)0.0225 (12)0.0011 (11)
N70.0408 (15)0.0421 (15)0.095 (2)0.0009 (12)0.0307 (15)0.0132 (15)
N80.0664 (18)0.0423 (16)0.082 (2)0.0204 (14)0.0251 (16)0.0147 (15)
C30.0473 (16)0.0349 (16)0.0437 (16)0.0024 (13)0.0097 (13)0.0022 (12)
C140.0442 (17)0.0398 (17)0.062 (2)0.0096 (14)0.0107 (14)0.0028 (14)
C180.0445 (16)0.0342 (15)0.0489 (17)0.0031 (13)0.0163 (13)0.0032 (12)
C200.0430 (16)0.0352 (16)0.079 (2)0.0018 (13)0.0317 (16)0.0010 (15)
C230.0409 (16)0.0473 (19)0.065 (2)0.0041 (14)0.0183 (14)0.0073 (16)
C310.068 (2)0.061 (2)0.0495 (19)0.0025 (18)0.0224 (17)0.0046 (16)
C320.0482 (17)0.0515 (19)0.056 (2)0.0060 (15)0.0213 (15)0.0058 (15)
C330.055 (2)0.0463 (18)0.0482 (19)0.0081 (14)0.0075 (15)0.0026 (14)
C350.060 (2)0.0325 (17)0.089 (3)0.0015 (15)0.0204 (19)0.0082 (16)
C360.067 (2)0.068 (3)0.076 (3)0.0113 (19)0.032 (2)0.024 (2)
C380.092 (4)0.094 (4)0.144 (5)0.006 (3)0.023 (4)0.015 (4)
C390.055 (2)0.087 (3)0.080 (3)0.007 (2)0.001 (2)0.018 (2)
C410.163 (6)0.089 (4)0.119 (5)0.024 (4)0.093 (5)0.010 (3)
C430.188 (8)0.182 (8)0.095 (5)0.020 (7)0.038 (5)0.035 (5)
Cd10.03415 (9)0.03501 (10)0.03617 (9)0.00204 (9)0.01218 (7)0.00289 (8)
Cl30.0538 (4)0.0426 (4)0.0497 (4)0.0013 (3)0.0139 (3)0.0144 (3)
Cl40.0347 (3)0.0369 (4)0.0590 (4)0.0000 (3)0.0164 (3)0.0013 (3)
S30.0545 (5)0.0756 (6)0.0644 (5)0.0017 (4)0.0322 (4)0.0149 (5)
S40.0514 (5)0.0565 (6)0.1508 (11)0.0117 (4)0.0493 (6)0.0076 (6)
O30.0619 (15)0.101 (2)0.0495 (14)0.0320 (15)0.0092 (12)0.0130 (14)
O50.0548 (15)0.090 (2)0.0695 (17)0.0322 (14)0.0169 (12)0.0130 (14)
O70.0440 (12)0.0659 (15)0.0514 (12)0.0130 (11)0.0186 (10)0.0070 (11)
O80.0655 (15)0.0555 (14)0.0442 (13)0.0079 (11)0.0100 (11)0.0085 (10)
N30.0358 (13)0.0365 (13)0.0493 (14)0.0029 (10)0.0169 (11)0.0026 (10)
N40.0382 (13)0.0406 (13)0.0398 (13)0.0041 (10)0.0153 (10)0.0046 (10)
N50.0414 (14)0.0585 (18)0.0611 (17)0.0124 (13)0.0154 (13)0.0036 (14)
N60.0426 (15)0.0356 (14)0.113 (3)0.0029 (12)0.0303 (16)0.0039 (15)
C70.0370 (15)0.0416 (17)0.0596 (19)0.0053 (13)0.0166 (14)0.0016 (14)
C150.0378 (15)0.0477 (18)0.0529 (18)0.0026 (13)0.0186 (13)0.0003 (14)
C160.0378 (15)0.0375 (16)0.0547 (18)0.0035 (12)0.0165 (13)0.0075 (13)
C190.0414 (16)0.0433 (17)0.0558 (19)0.0070 (13)0.0087 (14)0.0029 (14)
C240.0487 (17)0.0526 (18)0.0400 (16)0.0064 (14)0.0126 (13)0.0047 (13)
C250.0437 (17)0.060 (2)0.0475 (19)0.0031 (15)0.0170 (14)0.0151 (15)
C270.0554 (19)0.074 (2)0.0390 (17)0.0023 (18)0.0054 (14)0.0020 (16)
C290.0453 (17)0.0503 (19)0.0578 (19)0.0073 (15)0.0208 (15)0.0054 (15)
C300.064 (2)0.072 (2)0.049 (2)0.0088 (19)0.0260 (17)0.0085 (17)
C340.0437 (19)0.061 (2)0.108 (3)0.0000 (17)0.037 (2)0.003 (2)
C370.074 (3)0.102 (3)0.070 (3)0.037 (3)0.021 (2)0.014 (2)
C400.082 (3)0.199 (7)0.083 (3)0.081 (4)0.023 (3)0.041 (4)
C420.127 (5)0.144 (6)0.096 (4)0.063 (4)0.044 (3)0.027 (4)
C440.086 (4)0.386 (16)0.101 (5)0.010 (6)0.011 (4)0.101 (8)
Geometric parameters (Å, º) top
Cd1—N32.343 (2)C41—C431.457 (9)
Cd1—N42.315 (2)C41—H41A0.9700
Cd1—O72.475 (2)C41—H41B0.9700
Cd1—O82.384 (2)C43—H43A0.9600
Cd1—Cl32.5041 (8)C43—H43B0.9600
Cd1—Cl42.5664 (8)C43—H43C0.9600
Cd2—N12.344 (2)S3—C301.705 (4)
Cd2—N22.347 (2)S3—C161.730 (3)
Cd2—O42.511 (2)S4—C341.720 (4)
Cd2—O62.377 (3)S4—C71.727 (3)
Cd2—Cl12.5491 (9)O3—C251.327 (4)
Cd2—Cl22.5051 (12)O3—C371.472 (5)
S1—C351.719 (4)O5—C191.307 (4)
S1—C181.731 (3)O5—C401.465 (6)
S2—C361.706 (5)O7—C191.203 (4)
S2—C201.736 (3)O8—C251.193 (4)
O1—C231.310 (4)N3—C71.312 (4)
O1—C411.456 (6)N3—C151.380 (4)
O2—C331.307 (4)N4—C161.312 (4)
O2—C391.465 (5)N4—C241.393 (4)
O4—C231.200 (4)N5—C161.326 (4)
O6—C331.212 (4)N5—H5A0.8579
N1—C181.324 (4)N5—H5B0.8610
N1—C31.382 (4)N6—C71.328 (4)
N2—C201.319 (4)N6—H6A0.8603
N2—C321.379 (4)N6—H6B0.8609
N7—C181.321 (4)C15—C341.330 (5)
N7—H7A0.8602C15—C291.510 (5)
N7—H7B0.8600C19—C291.493 (5)
N8—C201.334 (5)C24—C301.332 (5)
N8—H8A0.8596C24—C271.501 (5)
N8—H8B0.8602C25—C271.504 (5)
C3—C351.327 (4)C27—H27A0.9700
C3—C141.511 (4)C27—H27B0.9700
C14—C231.491 (5)C29—H29A0.9700
C14—H14A0.9700C29—H29B0.9700
C14—H14B0.9700C30—H30A0.9300
C31—C331.496 (5)C34—H34A0.9300
C31—C321.507 (5)C37—C421.457 (6)
C31—H31A0.9700C37—H37A0.9700
C31—H31B0.9700C37—H37B0.9700
C32—C361.350 (5)C40—C441.423 (10)
C35—H35A0.9300C40—H40A0.9700
C36—H36A0.9300C40—H40B0.9700
C38—C391.473 (7)C42—H42A0.9600
C38—H38A0.9600C42—H42B0.9600
C38—H38B0.9600C42—H42C0.9600
C38—H38C0.9600C44—H44A0.9600
C39—H39A0.9700C44—H44B0.9600
C39—H39B0.9700C44—H44C0.9600
N1—Cd2—N2154.22 (9)N4—Cd1—N3151.71 (9)
N1—Cd2—O682.23 (8)N4—Cd1—O880.43 (8)
N2—Cd2—O678.35 (9)N3—Cd1—O876.84 (9)
N1—Cd2—Cl297.94 (6)N4—Cd1—O781.28 (8)
N2—Cd2—Cl298.19 (7)N3—Cd1—O777.87 (8)
O6—Cd2—Cl2169.70 (7)O8—Cd1—O778.40 (9)
N1—Cd2—O476.50 (8)N4—Cd1—Cl3101.17 (7)
N2—Cd2—O482.96 (8)N3—Cd1—Cl399.09 (7)
O6—Cd2—O477.97 (9)O8—Cd1—Cl3171.75 (6)
Cl2—Cd2—O492.02 (7)O7—Cd1—Cl393.79 (6)
N1—Cd2—Cl199.37 (6)N4—Cd1—Cl494.17 (6)
N2—Cd2—Cl196.17 (7)N3—Cd1—Cl4100.84 (6)
O6—Cd2—Cl186.37 (7)O8—Cd1—Cl486.20 (7)
Cl2—Cd2—Cl1103.71 (3)O7—Cd1—Cl4164.45 (6)
O4—Cd2—Cl1164.19 (7)Cl3—Cd1—Cl4101.69 (3)
C35—S1—C1889.26 (15)C30—S3—C1689.15 (16)
C36—S2—C2088.85 (18)C34—S4—C788.83 (17)
C23—O1—C41117.6 (3)C25—O3—C37116.7 (3)
C33—O2—C39117.7 (3)C19—O5—C40116.5 (3)
C23—O4—Cd2122.1 (2)C19—O7—Cd1122.5 (2)
C33—O6—Cd2127.2 (2)C25—O8—Cd1127.3 (2)
C18—N1—C3109.9 (2)C7—N3—C15110.7 (3)
C18—N1—Cd2125.78 (19)C7—N3—Cd1124.3 (2)
C3—N1—Cd2123.98 (18)C15—N3—Cd1122.8 (2)
C20—N2—C32110.7 (3)C16—N4—C24110.4 (3)
C20—N2—Cd2121.2 (2)C16—N4—Cd1121.4 (2)
C32—N2—Cd2124.9 (2)C24—N4—Cd1124.2 (2)
C18—N7—H7A120.1C16—N5—H5A120.1
C18—N7—H7B119.9C16—N5—H5B119.9
H7A—N7—H7B120.0H5A—N5—H5B120.0
C20—N8—H8A120.1C7—N6—H6A120.1
C20—N8—H8B120.1C7—N6—H6B120.0
H8A—N8—H8B119.9H6A—N6—H6B119.9
C35—C3—N1116.4 (3)N3—C7—N6125.4 (3)
C35—C3—C14124.5 (3)N3—C7—S4114.2 (2)
N1—C3—C14119.0 (3)N6—C7—S4120.4 (2)
C23—C14—C3109.8 (3)C34—C15—N3115.3 (3)
C23—C14—H14A109.7C34—C15—C29124.9 (3)
C3—C14—H14A109.7N3—C15—C29119.8 (3)
C23—C14—H14B109.7N4—C16—N5125.0 (3)
C3—C14—H14B109.7N4—C16—S3114.1 (2)
H14A—C14—H14B108.2N5—C16—S3120.9 (2)
N7—C18—N1125.2 (3)O7—C19—O5123.1 (3)
N7—C18—S1120.9 (2)O7—C19—C29124.5 (3)
N1—C18—S1113.9 (2)O5—C19—C29112.4 (3)
N2—C20—N8124.5 (3)C30—C24—N4114.9 (3)
N2—C20—S2114.2 (3)C30—C24—C27123.1 (3)
N8—C20—S2121.3 (2)N4—C24—C27121.7 (3)
O4—C23—O1124.3 (3)O8—C25—O3122.1 (3)
O4—C23—C14123.9 (3)O8—C25—C27125.9 (3)
O1—C23—C14111.8 (3)O3—C25—C27111.9 (3)
C33—C31—C32115.4 (3)C24—C27—C25116.9 (3)
C33—C31—H31A108.4C24—C27—H27A108.1
C32—C31—H31A108.4C25—C27—H27A108.1
C33—C31—H31B108.4C24—C27—H27B108.1
C32—C31—H31B108.4C25—C27—H27B108.1
H31A—C31—H31B107.5H27A—C27—H27B107.3
C36—C32—N2114.7 (3)C19—C29—C15108.9 (3)
C36—C32—C31124.0 (3)C19—C29—H29A109.9
N2—C32—C31121.1 (3)C15—C29—H29A109.9
O6—C33—O2123.2 (3)C19—C29—H29B109.9
O6—C33—C31125.3 (3)C15—C29—H29B109.9
O2—C33—C31111.5 (3)H29A—C29—H29B108.3
C3—C35—S1110.5 (2)C24—C30—S3111.4 (3)
C3—C35—H35A124.8C24—C30—H30A124.3
S1—C35—H35A124.8S3—C30—H30A124.3
C32—C36—S2111.5 (3)C15—C34—S4111.0 (3)
C32—C36—H36A124.2C15—C34—H34A124.5
S2—C36—H36A124.2S4—C34—H34A124.5
C39—C38—H38A109.5C42—C37—O3107.8 (4)
C39—C38—H38B109.5C42—C37—H37A110.2
H38A—C38—H38B109.5O3—C37—H37A110.2
C39—C38—H38C109.5C42—C37—H37B110.2
H38A—C38—H38C109.5O3—C37—H37B110.2
H38B—C38—H38C109.5H37A—C37—H37B108.5
O2—C39—C38110.5 (4)C44—C40—O5111.8 (7)
O2—C39—H39A109.5C44—C40—H40A109.3
C38—C39—H39A109.5O5—C40—H40A109.3
O2—C39—H39B109.5C44—C40—H40B109.3
C38—C39—H39B109.5O5—C40—H40B109.3
H39A—C39—H39B108.1H40A—C40—H40B107.9
O1—C41—C43108.4 (5)C37—C42—H42A109.5
O1—C41—H41A110.0C37—C42—H42B109.5
C43—C41—H41A110.0H42A—C42—H42B109.5
O1—C41—H41B110.0C37—C42—H42C109.5
C43—C41—H41B110.0H42A—C42—H42C109.5
H41A—C41—H41B108.4H42B—C42—H42C109.5
C41—C43—H43A109.5C40—C44—H44A109.5
C41—C43—H43B109.5C40—C44—H44B109.5
H43A—C43—H43B109.5H44A—C44—H44B109.5
C41—C43—H43C109.5C40—C44—H44C109.5
H43A—C43—H43C109.5H44A—C44—H44C109.5
H43B—C43—H43C109.5H44B—C44—H44C109.5
N1—Cd2—O4—C2334.1 (3)N4—Cd1—O7—C19165.4 (3)
N2—Cd2—O4—C23161.6 (3)N3—Cd1—O7—C1933.8 (3)
O6—Cd2—O4—C23118.9 (3)O8—Cd1—O7—C19112.6 (3)
Cl2—Cd2—O4—C2363.6 (3)Cl3—Cd1—O7—C1964.7 (3)
Cl1—Cd2—O4—C23110.6 (3)Cl4—Cd1—O7—C19120.6 (3)
N1—Cd2—O6—C33124.6 (3)N4—Cd1—O8—C2533.3 (3)
N2—Cd2—O6—C3338.3 (3)N3—Cd1—O8—C25129.8 (3)
Cl2—Cd2—O6—C3333.0 (6)O7—Cd1—O8—C2549.7 (3)
O4—Cd2—O6—C3346.9 (3)Cl4—Cd1—O8—C25128.2 (3)
Cl1—Cd2—O6—C33135.4 (3)N4—Cd1—N3—C791.3 (3)
N2—Cd2—N1—C18102.8 (3)O8—Cd1—N3—C753.9 (3)
O6—Cd2—N1—C1861.4 (2)O7—Cd1—N3—C7134.7 (3)
Cl2—Cd2—N1—C18129.0 (2)Cl3—Cd1—N3—C7133.4 (3)
O4—Cd2—N1—C18140.9 (3)Cl4—Cd1—N3—C729.5 (3)
Cl1—Cd2—N1—C1823.6 (2)N4—Cd1—N3—C1570.0 (3)
N2—Cd2—N1—C370.1 (3)O8—Cd1—N3—C15107.4 (2)
O6—Cd2—N1—C3111.4 (2)O7—Cd1—N3—C1526.7 (2)
Cl2—Cd2—N1—C358.2 (2)Cl3—Cd1—N3—C1565.3 (2)
O4—Cd2—N1—C332.0 (2)Cl4—Cd1—N3—C15169.2 (2)
Cl1—Cd2—N1—C3163.6 (2)N3—Cd1—N4—C16176.6 (2)
N1—Cd2—N2—C20173.0 (2)O8—Cd1—N4—C16146.6 (2)
O6—Cd2—N2—C20145.1 (2)O7—Cd1—N4—C16133.8 (2)
Cl2—Cd2—N2—C2044.7 (2)Cl3—Cd1—N4—C1641.6 (2)
O4—Cd2—N2—C20135.8 (2)Cl4—Cd1—N4—C1661.2 (2)
Cl1—Cd2—N2—C2060.1 (2)N3—Cd1—N4—C2428.4 (3)
N1—Cd2—N2—C3229.3 (4)O8—Cd1—N4—C248.4 (2)
O6—Cd2—N2—C3212.6 (2)O7—Cd1—N4—C2471.2 (2)
Cl2—Cd2—N2—C32157.5 (2)Cl3—Cd1—N4—C24163.4 (2)
O4—Cd2—N2—C3266.5 (2)Cl4—Cd1—N4—C2493.8 (2)
Cl1—Cd2—N2—C3297.6 (2)C15—N3—C7—N6178.1 (3)
C18—N1—C3—C351.1 (4)Cd1—N3—C7—N618.6 (5)
Cd2—N1—C3—C35175.0 (2)C15—N3—C7—S40.3 (4)
C18—N1—C3—C14179.9 (3)Cd1—N3—C7—S4163.56 (15)
Cd2—N1—C3—C146.1 (4)C34—S4—C7—N30.0 (3)
C35—C3—C14—C23117.1 (4)C34—S4—C7—N6178.0 (3)
N1—C3—C14—C2364.0 (4)C7—N3—C15—C340.5 (4)
C3—N1—C18—N7178.1 (3)Cd1—N3—C15—C34164.0 (3)
Cd2—N1—C18—N74.3 (5)C7—N3—C15—C29177.6 (3)
C3—N1—C18—S10.7 (3)Cd1—N3—C15—C2914.0 (4)
Cd2—N1—C18—S1174.40 (13)C24—N4—C16—N5179.4 (3)
C35—S1—C18—N7178.7 (3)Cd1—N4—C16—N521.3 (4)
C35—S1—C18—N10.1 (3)C24—N4—C16—S30.0 (3)
C32—N2—C20—N8178.7 (3)Cd1—N4—C16—S3158.08 (14)
Cd2—N2—C20—N820.7 (4)C30—S3—C16—N40.0 (3)
C32—N2—C20—S21.3 (3)C30—S3—C16—N5179.3 (3)
Cd2—N2—C20—S2159.31 (14)Cd1—O7—C19—O5176.9 (2)
C36—S2—C20—N20.8 (3)Cd1—O7—C19—C293.8 (4)
C36—S2—C20—N8179.2 (3)C40—O5—C19—O76.2 (6)
Cd2—O4—C23—O1174.0 (3)C40—O5—C19—C29174.4 (4)
Cd2—O4—C23—C145.9 (5)C16—N4—C24—C300.1 (4)
C41—O1—C23—O44.6 (6)Cd1—N4—C24—C30157.3 (2)
C41—O1—C23—C14175.3 (4)C16—N4—C24—C27174.6 (3)
C3—C14—C23—O464.5 (5)Cd1—N4—C24—C2728.0 (4)
C3—C14—C23—O1115.4 (3)Cd1—O8—C25—O3158.4 (2)
C20—N2—C32—C361.3 (4)Cd1—O8—C25—C2719.4 (5)
Cd2—N2—C32—C36158.5 (2)C37—O3—C25—O83.1 (5)
C20—N2—C32—C31174.2 (3)C37—O3—C25—C27175.0 (3)
Cd2—N2—C32—C3126.1 (4)C30—C24—C27—C25130.4 (4)
C33—C31—C32—C36127.5 (4)N4—C24—C27—C2555.3 (5)
C33—C31—C32—N257.5 (4)O8—C25—C27—C2429.2 (5)
Cd2—O6—C33—O2155.9 (3)O3—C25—C27—C24152.9 (3)
Cd2—O6—C33—C3122.2 (5)O7—C19—C29—C1562.1 (4)
C39—O2—C33—O62.2 (5)O5—C19—C29—C15118.6 (3)
C39—O2—C33—C31176.2 (3)C34—C15—C29—C19110.3 (4)
C32—C31—C33—O631.3 (5)N3—C15—C29—C1967.5 (4)
C32—C31—C33—O2150.3 (3)N4—C24—C30—S30.1 (4)
N1—C3—C35—S11.0 (4)C27—C24—C30—S3174.5 (3)
C14—C3—C35—S1179.9 (3)C16—S3—C30—C240.1 (3)
C18—S1—C35—C30.5 (3)N3—C15—C34—S40.5 (4)
N2—C32—C36—S20.7 (4)C29—C15—C34—S4177.5 (3)
C31—C32—C36—S2174.6 (3)C7—S4—C34—C150.2 (3)
C20—S2—C36—C320.1 (3)C25—O3—C37—C42175.8 (4)
C33—O2—C39—C3891.7 (5)C19—O5—C40—C4487.5 (5)
C23—O1—C41—C4395.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl30.862.463.291 (3)163
N6—H6A···Cl40.862.433.277 (3)167
N7—H7A···Cl10.862.433.242 (3)157
N8—H8A···Cl20.862.433.248 (3)160
C14—H14B···Cl20.972.803.607 (3)141
C34—H34A···Cl20.932.813.687 (4)158
N5—H5B···Cl1i0.862.673.435 (3)149
N6—H6B···Cl1ii0.862.413.189 (3)152
N8—H8B···Cl4iii0.862.573.373 (3)155
C35—H35A···Cl3iv0.932.823.681 (4)153
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[CdCl2(C7H10N2O2S)2]
Mr555.76
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)16.860 (3), 16.630 (3), 16.220 (3)
β (°) 105.41 (3)
V3)4384.3 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.13 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.833, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
14070, 8707, 8223
Rint0.015
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.048, 1.02
No. of reflections8707
No. of parameters492
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.28
Absolute structureFlack (1983), 3396 Friedel pairs
Absolute structure parameter0.003 (12)

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N32.343 (2)Cd2—N12.344 (2)
Cd1—N42.315 (2)Cd2—N22.347 (2)
Cd1—O72.475 (2)Cd2—O42.511 (2)
Cd1—O82.384 (2)Cd2—O62.377 (3)
Cd1—Cl32.5041 (8)Cd2—Cl12.5491 (9)
Cd1—Cl42.5664 (8)Cd2—Cl22.5051 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl30.862.463.291 (3)162.6
N6—H6A···Cl40.862.433.277 (3)166.6
N7—H7A···Cl10.862.433.242 (3)157.3
N8—H8A···Cl20.862.433.248 (3)159.6
C14—H14B···Cl20.972.803.607 (3)141
C34—H34A···Cl20.932.813.687 (4)158
N5—H5B···Cl1i0.862.673.435 (3)149.4
N6—H6B···Cl1ii0.862.413.189 (3)151.7
N8—H8B···Cl4iii0.862.573.373 (3)155.2
C35—H35A···Cl3iv0.932.823.681 (4)153
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Research Start-up Funds of Shangrao Normal University, the Education Department of Jiangxi Province (No. GJJ10611) and the Fourth Characteristic Specialty Foundation of Universities of the Ministry of Education (TS11524).

References

First citationAlexandru, M.-G., Velickovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639–645.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, C. K., Myoung, S. K. & Ward, B. (1982). Chem. Commun. pp. 716–719.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, Q.-F., Li, D.-S., Zhao, J., Ke, X.-J. & Li, C. (2009). Acta Cryst. E65, m666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, K. A., Mehrotra, G. K. & LaDuca, R. L. (2009). Polyhedron, 28, 4077–4083.  Web of Science CSD CrossRef CAS Google Scholar
First citationUsman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L., Wang, Q. & Li, S. (2009). Z. Kristallogr. 224, 453–454.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L.-J., Shen, X.-C. & Liang, H. (2008a). Acta Cryst. E64, m1413–m1414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-J., Shen, X.-C. & Liang, H. (2008b). Acta Cryst. E64, m1248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-J., Shen, X.-C., Yang, Y. & Liang, H. (2009). Acta Cryst. E65, m1517.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m788-m789
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds