metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-1,3-benzo­thia­zol-3-ium) bis­­(7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato)cadmate hexa­hydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 10 May 2012; accepted 17 May 2012; online 26 May 2012)

In the structure of the title complex, (C7H7N2S)2[Cd(C8H8O5)2]·6H2O, the CdII atom is located on an inversion center and is O,O′,O′′-chelated by two symmetry-related 7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxyl­ate ligands in a distorted octa­hedral geometry. The 2-amino­benzothia­zolium cation links with the Cd complex anion via N—H⋯O hydrogen bonding. Extensive O—H⋯O and N—H⋯O hydrogen bonds involving lattice water mol­ecules occur in the crystal structure.

Related literature

For background to the applications of 7-oxabicyclo­[2,2,1]heptane-2,3-dicarb­oxy­lic anhydride (norcantharidin), see: Yin et al. (2005[Yin, F.-L., Zou, J.-J., Xu, L., Wang, X. & Li, R.-C. (2005). J. Rare Earths, 23, 596-599.]). For a manganese(II) analogue, see: Wang et al. (2010a[Wang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010a). Acta Cryst. E66, m762.]), for a cobalt(II) analogue, see: Wang et al. (2010b[Wang, N., Lin, Q.-Y., Feng, J., Li, S.-K. & Zhao, J.-J. (2010b). Acta Cryst. E66, m763-m764.]), for a nickel(II) analogue, see: Wang et al. (2012[Wang, G.-X., Zhang, Q.-W. & Zhang, F. (2012). Acta Cryst. E68, m683.]) and for a zinc(II) analogue, see: Zhang et al. (2012[Zhang, F., Lv, T.-X., Feng, J. & Lin, Q.-Y. (2012). Acta Cryst. E68, m684.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H7N2S)2[Cd(C8H8O5)2]·6H2O

  • Mr = 891.23

  • Triclinic, [P \overline 1]

  • a = 6.6990 (8) Å

  • b = 10.3103 (10) Å

  • c = 13.0979 (13) Å

  • α = 89.039 (7)°

  • β = 89.004 (7)°

  • γ = 82.062 (7)°

  • V = 895.76 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 296 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.957

  • 12401 measured reflections

  • 3138 independent reflections

  • 2782 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.07

  • 3138 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.2108 (18)
Cd1—O3 2.2954 (18)
Cd1—O5 2.3499 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2 0.85 1.85 2.682 (3) 167
O2W—H2WB⋯O3W 0.85 2.15 2.995 (3) 170
O1W—H1WB⋯O3W 0.85 1.96 2.806 (3) 173
O3W—H3WB⋯O4 0.85 2.02 2.837 (3) 161
N1—H1A⋯O4i 0.86 1.84 2.700 (3) 176
N2—H2A⋯O3i 0.86 2.00 2.845 (3) 169
N2—H2B⋯O1Wii 0.86 2.00 2.824 (3) 160
O2W—H2WA⋯O1Wii 0.85 1.93 2.758 (4) 164
O3W—H3WA⋯O2Wiii 0.85 1.96 2.794 (3) 166
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride (norcantharidin), which possesses great anti-cancer activity, has been used in clinic tests (Yin et al., 2005). An isostructural norcantharadin manganese complex (Wang et al., 2010a), a cobalt complex (Wang et al., 2010b), a nickel complex (Wang et al.,2012) and a zinc complex (Zhang et al., 2012) have been reported. The molecular structure of the title complex is shown in Fig.1. The cadmium atom is six-coordinated in a distorted octahedral coordination mode, binding to two bridging O atoms of the bicycloheptane unit and four carboxylate O atoms of two symmetry-related and fully deprotonated ligands. 2-aminobenzothiazole is not involved in the coordination of the cation, and N atom of thiazole ring is protonated.The crystal structure is stabilized by N—H···O hydrogen-bonding interactions between the cations and anions and O—H···O hydrogen bonds including the crystal water molecules.

Related literature top

For background to the applications of 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride (norcantharidin), see: Yin et al. (2005). For a manganese(II) analogue, see: Wang et al. (2010a), for a cobalt(II) analogue, see: Wang et al. (2010b), for a nickel(II) analogue, see: Wang et al. (2012) and for a zinc(II) analogue, see: Zhang et al. (2012).

Experimental top

A mixture of 0.5 mmol norcantharidin, 0.5 mmol cadmium acetate, 0.5 mmol 2-aminobenzothiazole and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then slowly cooled to room temperature. The solution was filtered and block-shaped colorless crystals were obtained.

Refinement top

The H atoms bonded to O atoms were located in a difference Fourier maps, repositionned to a correct geometry and subsequently refined using a riding model and allowed to rotate around the pivot oxygen atom (AFIX 6 in SHELXL). The isotropic ADP of the water hydrogen atoms were set as follows: Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.97–0.98 and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
Bis(2-amino-1,3-benzothiazol-3-ium) bis(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)cadmate hexahydrate top
Crystal data top
(C7H7N2S)2[Cd(C8H8O5)2]·6H2OZ = 1
Mr = 891.23F(000) = 458
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6990 (8) ÅCell parameters from 3684 reflections
b = 10.3103 (10) Åθ = 1.6–25.0°
c = 13.0979 (13) ŵ = 0.81 mm1
α = 89.039 (7)°T = 296 K
β = 89.004 (7)°Block, colourless
γ = 82.062 (7)°0.12 × 0.08 × 0.06 mm
V = 895.76 (16) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3138 independent reflections
Radiation source: fine-focus sealed tube2782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.927, Tmax = 0.957k = 1212
12401 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.3371P]
where P = (Fo2 + 2Fc2)/3
3138 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
(C7H7N2S)2[Cd(C8H8O5)2]·6H2Oγ = 82.062 (7)°
Mr = 891.23V = 895.76 (16) Å3
Triclinic, P1Z = 1
a = 6.6990 (8) ÅMo Kα radiation
b = 10.3103 (10) ŵ = 0.81 mm1
c = 13.0979 (13) ÅT = 296 K
α = 89.039 (7)°0.12 × 0.08 × 0.06 mm
β = 89.004 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
3138 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2782 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.957Rint = 0.037
12401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
3138 reflectionsΔρmin = 0.33 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.00000.02740 (11)
S10.67420 (11)0.26053 (7)0.52095 (5)0.03489 (19)
N10.7260 (3)0.0299 (2)0.59906 (16)0.0269 (5)
H1A0.73630.03340.64310.032*
N20.6614 (4)0.1938 (2)0.71990 (17)0.0357 (6)
H2A0.67000.13740.76930.043*
H2B0.63610.27610.73250.043*
O10.6235 (3)0.16660 (17)0.06762 (15)0.0342 (5)
O1W0.4780 (4)0.5348 (2)0.28331 (18)0.0480 (6)
H1WA0.51860.48900.23170.072*
H1WB0.38710.49860.31410.072*
O20.6139 (3)0.35871 (19)0.14105 (15)0.0394 (5)
O2W0.1911 (4)0.4499 (3)0.59727 (19)0.0624 (7)
H2WA0.30360.45880.62340.094*
H2WB0.20540.43350.53400.094*
O30.2779 (3)0.01702 (17)0.13613 (13)0.0333 (5)
O3W0.1839 (4)0.3984 (2)0.37312 (18)0.0552 (6)
H3WA0.07240.44900.37130.083*
H3WB0.18800.34050.32740.083*
O40.2247 (3)0.16445 (18)0.25914 (14)0.0342 (5)
O50.2679 (3)0.16742 (17)0.07122 (13)0.0297 (4)
C60.1262 (4)0.3800 (3)0.1106 (2)0.0329 (6)
H6A0.13380.38240.18460.039*
H6B0.10480.46880.08540.039*
C50.0403 (4)0.3011 (3)0.0718 (2)0.0348 (7)
H5A0.13790.35370.02860.042*
H5B0.10950.26770.12800.042*
C10.3151 (4)0.3013 (2)0.06518 (19)0.0268 (6)
H1B0.44000.31490.10130.032*
C40.0804 (4)0.1902 (3)0.0110 (2)0.0290 (6)
H4A0.01230.11230.00290.035*
C20.3217 (4)0.3217 (2)0.05110 (19)0.0236 (6)
H2C0.28070.41450.06590.028*
C30.1510 (4)0.2401 (2)0.08993 (19)0.0240 (6)
H3A0.04060.29980.12060.029*
C70.5339 (4)0.2791 (3)0.0913 (2)0.0264 (6)
C80.2237 (4)0.1329 (3)0.1673 (2)0.0266 (6)
C90.7242 (4)0.1270 (3)0.4387 (2)0.0300 (6)
C100.7405 (4)0.1277 (3)0.3330 (2)0.0395 (7)
H10A0.72400.20580.29560.047*
C110.7818 (5)0.0087 (3)0.2852 (2)0.0451 (8)
H11A0.79380.00650.21440.054*
C120.8059 (4)0.1076 (3)0.3408 (2)0.0408 (7)
H12A0.83370.18650.30650.049*
C130.7897 (4)0.1093 (3)0.4460 (2)0.0327 (6)
H13A0.80530.18760.48310.039*
C140.7494 (4)0.0096 (3)0.49408 (19)0.0257 (6)
C150.6867 (4)0.1544 (3)0.6253 (2)0.0269 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03353 (18)0.01935 (16)0.02779 (17)0.00173 (11)0.00364 (12)0.00422 (11)
S10.0462 (5)0.0268 (4)0.0307 (4)0.0022 (3)0.0007 (3)0.0056 (3)
N10.0304 (13)0.0259 (12)0.0248 (12)0.0054 (9)0.0008 (9)0.0044 (9)
N20.0538 (16)0.0271 (13)0.0257 (12)0.0046 (11)0.0014 (11)0.0006 (10)
O10.0308 (11)0.0251 (10)0.0456 (12)0.0010 (8)0.0048 (9)0.0076 (9)
O1W0.0570 (16)0.0340 (12)0.0522 (14)0.0043 (10)0.0143 (11)0.0108 (10)
O20.0370 (12)0.0364 (12)0.0467 (12)0.0089 (9)0.0047 (9)0.0161 (10)
O2W0.0599 (16)0.0736 (18)0.0512 (15)0.0011 (14)0.0085 (12)0.0075 (14)
O30.0461 (12)0.0223 (10)0.0289 (10)0.0031 (8)0.0099 (9)0.0026 (8)
O3W0.0620 (16)0.0484 (15)0.0533 (15)0.0003 (12)0.0115 (12)0.0161 (12)
O40.0501 (13)0.0284 (10)0.0235 (10)0.0034 (9)0.0028 (9)0.0002 (8)
O50.0389 (11)0.0233 (10)0.0255 (10)0.0012 (8)0.0019 (8)0.0045 (8)
C60.0436 (18)0.0274 (15)0.0262 (14)0.0003 (12)0.0045 (12)0.0035 (12)
C50.0343 (17)0.0332 (16)0.0357 (16)0.0002 (12)0.0086 (13)0.0007 (13)
C10.0333 (15)0.0227 (14)0.0240 (14)0.0036 (11)0.0058 (11)0.0021 (11)
C40.0282 (15)0.0226 (14)0.0364 (16)0.0041 (11)0.0021 (12)0.0001 (12)
C20.0302 (15)0.0151 (13)0.0250 (13)0.0004 (10)0.0003 (11)0.0035 (10)
C30.0250 (14)0.0203 (13)0.0254 (13)0.0009 (10)0.0052 (11)0.0013 (11)
C70.0310 (15)0.0238 (15)0.0251 (14)0.0066 (12)0.0041 (11)0.0012 (11)
C80.0243 (14)0.0258 (15)0.0295 (15)0.0040 (11)0.0086 (11)0.0030 (12)
C90.0268 (15)0.0329 (16)0.0302 (15)0.0037 (12)0.0033 (11)0.0037 (12)
C100.0404 (18)0.052 (2)0.0262 (15)0.0056 (14)0.0030 (13)0.0081 (14)
C110.0399 (19)0.072 (2)0.0240 (15)0.0108 (16)0.0002 (13)0.0062 (16)
C120.0357 (17)0.0481 (19)0.0387 (18)0.0045 (14)0.0006 (13)0.0152 (15)
C130.0289 (16)0.0330 (16)0.0367 (16)0.0048 (12)0.0021 (12)0.0043 (13)
C140.0188 (14)0.0331 (15)0.0253 (14)0.0034 (11)0.0022 (10)0.0004 (12)
C150.0273 (15)0.0267 (15)0.0270 (14)0.0046 (11)0.0025 (11)0.0020 (12)
Geometric parameters (Å, º) top
Cd1—O1i2.2108 (18)C6—C11.530 (4)
Cd1—O12.2108 (18)C6—C51.543 (4)
Cd1—O32.2954 (18)C6—H6A0.9700
Cd1—O3i2.2954 (18)C6—H6B0.9700
Cd1—O5i2.3499 (17)C5—C41.527 (4)
Cd1—O52.3499 (17)C5—H5A0.9700
S1—C151.733 (3)C5—H5B0.9700
S1—C91.754 (3)C1—C21.543 (3)
N1—C151.324 (3)C1—H1B0.9800
N1—C141.397 (3)C4—C31.532 (4)
N1—H1A0.8600C4—H4A0.9800
N2—C151.311 (3)C2—C71.528 (4)
N2—H2A0.8600C2—C31.583 (3)
N2—H2B0.8600C2—H2C0.9800
O1—C71.271 (3)C3—C81.522 (3)
O1W—H1WA0.8501C3—H3A0.9800
O1W—H1WB0.8500C9—C101.388 (4)
O2—C71.240 (3)C9—C141.391 (4)
O2W—H2WA0.8499C10—C111.378 (4)
O2W—H2WB0.8500C10—H10A0.9300
O3—C81.271 (3)C11—C121.384 (4)
O3W—H3WA0.8500C11—H11A0.9300
O3W—H3WB0.8500C12—C131.381 (4)
O4—C81.252 (3)C12—H12A0.9300
O5—C11.461 (3)C13—C141.378 (4)
O5—C41.464 (3)C13—H13A0.9300
O1i—Cd1—O1180.00 (10)C2—C1—H1B113.6
O1i—Cd1—O394.23 (7)O5—C4—C5101.6 (2)
O1—Cd1—O385.77 (7)O5—C4—C3102.5 (2)
O1i—Cd1—O3i85.77 (7)C5—C4—C3110.9 (2)
O1—Cd1—O3i94.23 (7)O5—C4—H4A113.6
O3—Cd1—O3i180.00 (6)C5—C4—H4A113.6
O1i—Cd1—O5i82.90 (6)C3—C4—H4A113.6
O1—Cd1—O5i97.10 (6)C7—C2—C1110.9 (2)
O3—Cd1—O5i96.23 (6)C7—C2—C3116.9 (2)
O3i—Cd1—O5i83.77 (6)C1—C2—C3100.8 (2)
O1i—Cd1—O597.10 (6)C7—C2—H2C109.3
O1—Cd1—O582.90 (6)C1—C2—H2C109.3
O3—Cd1—O583.77 (6)C3—C2—H2C109.3
O3i—Cd1—O596.23 (6)C8—C3—C4114.5 (2)
O5i—Cd1—O5180.00 (8)C8—C3—C2113.7 (2)
C15—S1—C990.15 (13)C4—C3—C2101.3 (2)
C15—N1—C14114.6 (2)C8—C3—H3A109.0
C15—N1—H1A122.7C4—C3—H3A109.0
C14—N1—H1A122.7C2—C3—H3A109.0
C15—N2—H2A120.0O2—C7—O1123.2 (3)
C15—N2—H2B120.0O2—C7—C2118.2 (2)
H2A—N2—H2B120.0O1—C7—C2118.5 (2)
C7—O1—Cd1129.36 (17)O4—C8—O3123.6 (2)
H1WA—O1W—H1WB108.2O4—C8—C3117.4 (2)
H2WA—O2W—H2WB110.7O3—C8—C3119.0 (2)
C8—O3—Cd1115.11 (15)C10—C9—C14120.7 (3)
H3WA—O3W—H3WB110.4C10—C9—S1128.6 (2)
C1—O5—C495.87 (18)C14—C9—S1110.64 (19)
C1—O5—Cd1117.20 (15)C11—C10—C9117.7 (3)
C4—O5—Cd1112.02 (14)C11—C10—H10A121.1
C1—C6—C5101.8 (2)C9—C10—H10A121.1
C1—C6—H6A111.4C10—C11—C12121.2 (3)
C5—C6—H6A111.4C10—C11—H11A119.4
C1—C6—H6B111.4C12—C11—H11A119.4
C5—C6—H6B111.4C13—C12—C11121.5 (3)
H6A—C6—H6B109.3C13—C12—H12A119.3
C4—C5—C6102.0 (2)C11—C12—H12A119.3
C4—C5—H5A111.4C14—C13—C12117.5 (3)
C6—C5—H5A111.4C14—C13—H13A121.2
C4—C5—H5B111.4C12—C13—H13A121.2
C6—C5—H5B111.4C13—C14—C9121.4 (2)
H5A—C5—H5B109.2C13—C14—N1126.8 (2)
O5—C1—C6101.6 (2)C9—C14—N1111.9 (2)
O5—C1—C2102.46 (18)N2—C15—N1124.0 (2)
C6—C1—C2110.8 (2)N2—C15—S1123.3 (2)
O5—C1—H1B113.6N1—C15—S1112.69 (19)
C6—C1—H1B113.6
O3—Cd1—O1—C755.7 (2)C5—C4—C3—C272.4 (2)
O3i—Cd1—O1—C7124.3 (2)C7—C2—C3—C82.8 (3)
O5i—Cd1—O1—C7151.4 (2)C1—C2—C3—C8123.0 (2)
O5—Cd1—O1—C728.6 (2)C7—C2—C3—C4120.5 (2)
O1i—Cd1—O3—C8146.03 (18)C1—C2—C3—C40.3 (2)
O1—Cd1—O3—C833.97 (18)Cd1—O1—C7—O2170.25 (19)
O5i—Cd1—O3—C8130.68 (18)Cd1—O1—C7—C213.6 (3)
O5—Cd1—O3—C849.32 (18)C1—C2—C7—O2126.0 (2)
O1i—Cd1—O5—C1167.19 (16)C3—C2—C7—O2119.3 (3)
O1—Cd1—O5—C112.81 (16)C1—C2—C7—O150.4 (3)
O3—Cd1—O5—C199.31 (16)C3—C2—C7—O164.3 (3)
O3i—Cd1—O5—C180.69 (16)Cd1—O3—C8—O4131.4 (2)
O1i—Cd1—O5—C483.43 (16)Cd1—O3—C8—C349.3 (3)
O1—Cd1—O5—C496.57 (16)C4—C3—C8—O4158.7 (2)
O3—Cd1—O5—C410.07 (15)C2—C3—C8—O485.5 (3)
O3i—Cd1—O5—C4169.93 (15)C4—C3—C8—O320.6 (3)
C1—C6—C5—C40.2 (3)C2—C3—C8—O395.1 (3)
C4—O5—C1—C657.3 (2)C15—S1—C9—C10179.8 (3)
Cd1—O5—C1—C6175.78 (14)C15—S1—C9—C140.5 (2)
C4—O5—C1—C257.3 (2)C14—C9—C10—C110.1 (4)
Cd1—O5—C1—C261.1 (2)S1—C9—C10—C11179.8 (2)
C5—C6—C1—O535.4 (2)C9—C10—C11—C120.2 (5)
C5—C6—C1—C272.9 (3)C10—C11—C12—C130.0 (5)
C1—O5—C4—C557.2 (2)C11—C12—C13—C140.3 (4)
Cd1—O5—C4—C5179.65 (15)C12—C13—C14—C90.6 (4)
C1—O5—C4—C357.6 (2)C12—C13—C14—N1179.6 (2)
Cd1—O5—C4—C364.89 (19)C10—C9—C14—C130.5 (4)
C6—C5—C4—O534.9 (3)S1—C9—C14—C13179.8 (2)
C6—C5—C4—C373.4 (3)C10—C9—C14—N1179.6 (2)
O5—C1—C2—C789.5 (2)S1—C9—C14—N10.7 (3)
C6—C1—C2—C7162.8 (2)C15—N1—C14—C13179.6 (3)
O5—C1—C2—C334.9 (2)C15—N1—C14—C90.5 (3)
C6—C1—C2—C372.8 (2)C14—N1—C15—N2179.4 (2)
O5—C4—C3—C887.4 (2)C14—N1—C15—S10.1 (3)
C5—C4—C3—C8164.8 (2)C9—S1—C15—N2179.7 (2)
O5—C4—C3—C235.3 (2)C9—S1—C15—N10.2 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.851.852.682 (3)167
O2W—H2WB···O3W0.852.152.995 (3)170
O1W—H1WB···O3W0.851.962.806 (3)173
O3W—H3WB···O40.852.022.837 (3)161
N1—H1A···O4ii0.861.842.700 (3)176
N2—H2A···O3ii0.862.002.845 (3)169
N2—H2B···O1Wiii0.862.002.824 (3)160
O2W—H2WA···O1Wiii0.851.932.758 (4)164
O3W—H3WA···O2Wiv0.851.962.794 (3)166
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C7H7N2S)2[Cd(C8H8O5)2]·6H2O
Mr891.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.6990 (8), 10.3103 (10), 13.0979 (13)
α, β, γ (°)89.039 (7), 89.004 (7), 82.062 (7)
V3)895.76 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.927, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
12401, 3138, 2782
Rint0.037
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.07
No. of reflections3138
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.33

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.2108 (18)Cd1—O52.3499 (17)
Cd1—O32.2954 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.851.852.682 (3)167.0
O2W—H2WB···O3W0.852.152.995 (3)169.8
O1W—H1WB···O3W0.851.962.806 (3)173.2
O3W—H3WB···O40.852.022.837 (3)161.0
N1—H1A···O4i0.861.842.700 (3)175.7
N2—H2A···O3i0.862.002.845 (3)168.5
N2—H2B···O1Wii0.862.002.824 (3)159.7
O2W—H2WA···O1Wii0.851.932.758 (4)164.1
O3W—H3WA···O2Wiii0.851.962.794 (3)165.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N., Lin, Q.-Y., Feng, J., Li, S.-K. & Zhao, J.-J. (2010b). Acta Cryst. E66, m763–m764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010a). Acta Cryst. E66, m762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G.-X., Zhang, Q.-W. & Zhang, F. (2012). Acta Cryst. E68, m683.  CSD CrossRef IUCr Journals Google Scholar
First citationYin, F.-L., Zou, J.-J., Xu, L., Wang, X. & Li, R.-C. (2005). J. Rare Earths, 23, 596–599.  Google Scholar
First citationZhang, F., Lv, T.-X., Feng, J. & Lin, Q.-Y. (2012). Acta Cryst. E68, m684.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds