inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Na7Mg13Nd(PO4)12

aFaculté des Sciences, 5019 Monastir, Tunisia
*Correspondence e-mail: mourad_hidouri@yahoo.fr

(Received 16 February 2012; accepted 21 April 2012; online 16 May 2012)

Investigations of the quasi-ternary system Na3PO4–Mg3(PO4)2–NdPO4 allowed us to obtain the new phosphate hepta­sodium trideca­magnesium neodymium dodeca­kis­phosphate, Na7Mg13Nd(PO4)12, by applying a flux method. The crystal structure is isotypic with that of the previously reported Na7Mg13Ln(PO4)12 (Ln = Eu, La) compounds. It consists of a complex three-dimensional framework built up from an NdO8 polyhedron (m symmetry), an MO6 octa­hedron statistically occupied by M = Mg and Na, and eight MgOx (x = 5, 6) polyhedra (four with site symmetry m), linked either directely by sharing corners, edges and faces, or by one of the eight unique PO4 tetra­hedra through common corners. Two of the PO4 tetra­hedra are statisticaly disordered over a mirror plane. The whole structure can be described as resutling from an assembly of two types of structural units, viz [Mg4MP4O22]2 layers extending parallel to (100) and stacked along [100], and [Mg4NdP4O36]1 undulating chains running along the [010] direction. The six different Na+ cations (five with site symmetry m and one with 0.5 occupancy) are situated in six distinct cavities delimited by the framework. The structure was refined from data of a racemic twin.

Related literature

For the synthesis and luminescent properties of new phosphates for optical devices, see: Ngee et al. (2009[Ngee, H. L., Hatsumori, T., Kazuyoshi, U., Tadashi, I., Toda, K. & Sato, M. (2009). Phys. Proc. 2, 171-183.]); Shinde et al. (2011[Shinde, K. N., Dhoble, S. J. & Kumar, A. (2011). J. Lumin. 131, 931-937.]). The title structure is isotypic with Na7Mg13Ln(PO4)12 (Ln = La, Eu) (Jerbi et al., 2010[Jerbi, H., Hidouri, M., Glorieux, B., Darriet, J., Garcia, A., Jubera, V. & Ben Amara, M. (2010). J. Solid State Chem. 183, 1752-1760.]). For P—O distances in orthophosphates, see: Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]). For Mg—O distances, see: Ben Amara et al. (1983[Ben Amara, M., Vlasse, M., Olazcuaga, R., Le Flem, G. & Hagenmuller, P. (1983). Acta Cryst. C39, 936-939.]); Jaulmes et al. (1997[Jaulmes, S., Elfzkir, A., Quarton, M., Brunet, F. & Chopin, C. (1997). J. Solid State Chem. 129, 341-345.]); Klevtsova et al. (1980[Klevtsova, R. F., Kim, V. G. & Klevtsov, P. N. (1980). Kristallografiya, 25, 1148-1154.]), For Na—O distances, see: Donnay & Allmann (1970[Donnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003-1015.]), and for Nd—O distances, see: Albrand et al. (1974[Albrand, K. R., Attig, R., Fenner, J., Jeser, J. P. & Mootz, D. (1974). Mater. Res. Bull. 212, 129-140.]).

Experimental

Crystal data
  • Na7Mg13Nd(PO4)12

  • Mr = 1760.84

  • Orthorhombic, C m c 21

  • a = 10.301 (3) Å

  • b = 15.461 (4) Å

  • c = 23.384 (6) Å

  • V = 3724.2 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 293 K

  • 0.40 × 0.22 × 0.17 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: analytical (Alcock, 1970[Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.]) Tmin = 0.716, Tmax = 0.878

  • 44522 measured reflections

  • 11948 independent reflections

  • 8244 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.107

  • S = 1.05

  • 11948 reflections

  • 424 parameters

  • 1 restraint

  • Δρmax = 2.37 e Å−3

  • Δρmin = −2.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5847 Friedel pairs

  • Flack parameter: 0.257 (9)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, the growing interest in new luminophores for light emitting diodes (LEDs) let to synthesis and characterization of news inorganic phosphates for use in next generation optical devices (Ngee et al., 2009; Shinde et al. 2011). The knowledge of the crystal structure is necessary to understand the luminescence properties of the synthesized materials. Bearing this in mind, we recently started a systematic investigation of rare earth phosphates belonging to the quasi-ternary Na3PO4–Mg3(PO4)2LnPO4 (Ln is a lanthanoid) systems. As part of this ongoing study, the new phosphate Na7Mg13Nd(PO4)12 has been isolated in form of single crystals by applying a flux method. The underlying crystal structure is isotypic with the previously La and Eu analogues (Jerbi et al., 2010).

The complex framework structure of the title compound is displayed in Fig. 1. It consists of an assembly of NdO8, MO6 (M = 0.5 Mg + 0.5 Na) and MgOx (x = 5, 6) polyhedra which are linked either directly through common corners, edges or faces, or by the phosphate groups. The Na+ cations are located within 6 crystallographically distinct cavities delimited by the framework.

As shown in Fig. 2, the whole structure can be decomposed into layers. [Mg4MP4O22] layers extend parallel to (100) and are stacked along [100]. These layers are interconnected by [Mg4NdP4O36] undulating chains which run along the [010] direction. The [Mg4MP4O22] layer is made up of [Mg2P2O12] chains alternating with [Mg2MP2O14] ribbons, both spreading along the [010] direction. The [Mg4NdP4O36] undulating chain (Fig. 4) is built from NdO8, Mg(1)O5 and Mg(4)O6 polyhedra and Mg2O9 bioctahedral units of face-sharing MgO6 octahedra. Such units are linked to each other by means of the PO4 tetrahedra through common corners. The connection of the layers and the undulating chains induces a rigid skeleton which forms six distinct cavities, occupied by the Na+ cations.

The environment of the Nd3+ site consists of eight O atoms with Nd—O distances in the range 2.385 (5) - 2.529 (3) Å and a mean distance of 2.499 Å, close to that of 2.484 Å, observed for the 8-coordinate Nd3+ in NdP5O14 (Albrand et al., 1974). The M (M = 0.5 Mg + 0.5 Na) site is formally 8-coordinated. However, due to the statistically disordered phosphate tetrahedra (P7 with O73x and O74x; P8 with O83x and O(84)x), the effective number of O atoms surrounding the M is 6 (Fig. 5), and the average M—O distance is 2.175 Å. This is less than 2.230 Å as reported for the M (M = 0.5Mg + 0.5Na) site with a similar coordination in the molybdate Na2Mg5(MoO4)6 (Klevtsova et al., 1980). The eight distinct Mg2+ sites display various coordination polyhedra. Mg2 to Mg5 are 6-coordinate with Mg—O distances in the range 1.961 (6) - 2.223 (4) Å leading to an overall distance of 2.097 Å, slightly lower but consistent with that of 2.14 Å as reported for octahedrally surrounded Mg2+ ions in Mg3(PO4)2 (Jaulmes et al., 1997). Mg1, Mg6, Mg7 and Mg8 are 5-coordinate with Mg—O distances in the range 1.925 (9) - 2.348 (8) Å, leading to an overall value of 2.066 Å, close to that 2.080 Å reported for the likewise 5-coordinate Mg2+ ion in NaMg4(PO4)3 (Ben Amara et al., 1983). The P—O distances within the PO4 tetrahedra are in the range 1.507 (6) - 1.563 (4) Å with an overall value of 1.533 Å, nearly the same of 1.537 Å as predicted by Baur for the orthophosphate group (Baur, 1974).

As already described above, the phosphate groups involving the atoms P7 and P8 are statistically disordered, occupying two positions which are slightly displaced from the (0,y,z) mirror plane. This leads to two orientations for each tetrahedron, namely a left and right orientation (Fig. 5). This behaviour is attributed to the need to accommodate the environments of neighboring Ln and M sites. For describing the environments of the Na+ cations Na—O distances below Lmax = 3.13 Å, as suggested by Donnay and Allmann (1970) were taken into account. Hence their coordination numbers range from 5 to 10 with Na—O distances scattering from 1.968 (9) for the statistically disordered Na site to 2.979 (6) Å.

Related literature top

For the synthesis and luminescent properties of new phosphates for optical devices, see: Ngee et al. (2009); Shinde et al. (2011). The title structure is isotypic with Na7Mg13Ln(PO4)12 (Ln = La, Eu) (Jerbi et al., 2010). For P—O distances in orthophosphates, see: Baur (1974). For Mg—O distances, see: Ben Amara et al. (1983); Jaulmes et al. (1997); Klevtsova et al. (1980), For Na—O distances, see: Donnay & Allmann (1970), and for Nd—O distances, see: Albrand et al. (1974).

Experimental top

Single crystals of the Na7Mg13Nd(PO4)12 phoshate were grown in a flux of sodium molybdate Na2MoO4 starting from mixtures of Na2CO3, MgCO3, Nd2O3, NH4H2PO4 and Na2MoO4.2H2O in a molar ratio of 2.5:14:0.5:12:6. This mixture was ground in an agate mortar and heated in a platinum crucible for 24 h at 673 K to expel H2O, CO2 and NH3. After being reground, the product was molten for 2 h at 1273 K and subsequently cooled down to 773 K with a 10Kh-1 rate, after which the furnace was turned off. Hexagonally shaped crystals were obtained by washing the solidified product with warm water. Elemental analysis by ICP indicated the exclusive presence of Na, Nd, Mg and P in an atomic ratio of Na: Mg: Nd: P = 7.4:13.2: 0.95:12.

Refinement top

During refinement it turned out that each of the P7, P8, O72, O73, O74, O82, O83, O84 and Na6 atoms is statistically disordered over two positions (left and right), symmetrically related by the (0,y,z) mirror plane. These positions cannot be filled simultaneously. The MO6 site is likewise disordered and occupied statistically by Mg and Na atoms. The remaining highest and lowest electron densities are 2.37 e.Å-3 0.36 Å from O84x and -2.33 e.Å-3 0.03 Å from Nd, respectively. The crystal under investigation was an inversion twin with an approximate ratio of the twin domains of 3:1.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Projection of the structure along the [100] direction.
[Figure 2] Fig. 2. Projection along the [001] direction showing the [Mg4MP4O22] layers and the [Mg4NdP4O36] undulating chains.
[Figure 3] Fig. 3. One [Mg4MP4O22] layer
[Figure 4] Fig. 4. One [Mg4NdP4O36] undulating chain
[Figure 5] Fig. 5. The left and right orientations of the (P7O4)x and (P8O4)x tetrahedra around the M site. Displacement ellipsoids are drawn at the 50% probability level.
heptasodium tridecamagnesium neodymium dodecakisphosphate top
Crystal data top
Na7Mg13Nd(PO4)12Dx = 3.140 Mg m3
Mr = 1760.84Melting point: 1007 K
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2c -2Cell parameters from 44599 reflections
a = 10.301 (3) Åθ = 2.4–40°
b = 15.461 (4) ŵ = 2.38 mm1
c = 23.384 (6) ÅT = 293 K
V = 3724.2 (17) Å3Parallelepiped, purple
Z = 40.40 × 0.22 × 0.17 mm
F(000) = 3428
Data collection top
Bruker–Nonius KappaCCD
diffractometer
11948 independent reflections
Radiation source: fine-focus sealed tube8244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
non–profiled ω scansθmax = 40.0°, θmin = 3.2°
Absorption correction: analytical
(Alcock, 1970)
h = 1218
Tmin = 0.716, Tmax = 0.878k = 2727
44522 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0124P)2 + 42.9558P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.37 e Å3
11948 reflectionsΔρmin = 2.23 e Å3
424 parametersAbsolute structure: Flack (1983), 5847 Friedel pairs
1 restraintAbsolute structure parameter: 0.257 (9)
Crystal data top
Na7Mg13Nd(PO4)12V = 3724.2 (17) Å3
Mr = 1760.84Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 10.301 (3) ŵ = 2.38 mm1
b = 15.461 (4) ÅT = 293 K
c = 23.384 (6) Å0.40 × 0.22 × 0.17 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
11948 independent reflections
Absorption correction: analytical
(Alcock, 1970)
8244 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.878Rint = 0.103
44522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0124P)2 + 42.9558P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107Δρmax = 2.37 e Å3
S = 1.05Δρmin = 2.23 e Å3
11948 reflectionsAbsolute structure: Flack (1983), 5847 Friedel pairs
424 parametersAbsolute structure parameter: 0.257 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd0.00000.54408 (2)0.000015 (13)0.00904 (5)
P10.21976 (9)0.43115 (7)0.05989 (4)0.00612 (16)
O110.1824 (3)0.3576 (2)0.09995 (13)0.0116 (6)
O120.3671 (3)0.4462 (2)0.05621 (14)0.0129 (6)
O130.1558 (3)0.41806 (18)0.00077 (17)0.0125 (5)
O140.1526 (3)0.5162 (2)0.08102 (14)0.0112 (5)
P20.74694 (10)0.46442 (7)0.22216 (5)0.00978 (18)
O210.7715 (4)0.5517 (2)0.19519 (16)0.0232 (8)
O220.7106 (3)0.4816 (2)0.28494 (15)0.0191 (7)
O230.6391 (3)0.4113 (2)0.19233 (14)0.0125 (6)
O240.8668 (3)0.4038 (2)0.21746 (13)0.0107 (5)
P30.24602 (11)0.70154 (7)0.98592 (4)0.00913 (18)
O310.2995 (3)0.6688 (2)0.04252 (14)0.0168 (7)
O320.1777 (4)0.6272 (2)0.95352 (15)0.0170 (7)
O330.3605 (3)0.7387 (2)0.95155 (16)0.0153 (6)
O340.1511 (3)0.7784 (2)0.98766 (14)0.0160 (7)
P40.23934 (11)0.72710 (8)0.81954 (5)0.0116 (2)
O410.3634 (4)0.6820 (3)0.8390 (2)0.0337 (12)
O420.2489 (5)0.7603 (3)0.75815 (16)0.0286 (9)
O430.1310 (3)0.6600 (2)0.82915 (14)0.0143 (6)
O440.2043 (4)0.8076 (2)0.85537 (15)0.0210 (8)
P50.00000.72322 (10)0.11586 (7)0.0069 (3)
O510.00000.6619 (3)0.0654 (2)0.0144 (8)
O520.00000.8177 (3)0.09809 (19)0.0105 (8)
O530.1213 (3)0.7066 (2)0.15281 (15)0.0132 (6)
P60.50000.64818 (10)0.16991 (6)0.0060 (2)
O610.6206 (3)0.7003 (2)0.15437 (17)0.0180 (7)
O620.50000.5682 (3)0.1316 (2)0.0294 (14)
O630.50000.6231 (4)0.2330 (2)0.0169 (10)
P70.02504 (19)0.55827 (15)0.36368 (10)0.0078 (5)0.50
O710.00000.5300 (3)0.3018 (2)0.0166 (9)
O72X0.020 (3)0.6490 (5)0.3742 (4)0.037 (6)0.50
O73X0.0621 (7)0.4980 (6)0.3999 (3)0.0252 (18)0.50
O74X0.1652 (7)0.5446 (5)0.3848 (3)0.0177 (12)*0.50
P80.5147 (8)0.53079 (15)0.39974 (9)0.0120 (12)0.50
O810.50000.5645 (4)0.3388 (2)0.0255 (13)
O82X0.4470 (6)0.5929 (4)0.4417 (3)0.0130 (12)0.50
O83X0.3373 (6)0.5306 (4)0.4107 (3)0.0141 (12)0.50
O84X0.5429 (8)0.4411 (6)0.4069 (4)0.037 (2)*0.50
Mg10.00000.40172 (15)0.28024 (9)0.0100 (4)
Mg20.50000.43819 (13)0.13099 (9)0.0072 (4)
Mg30.00000.85120 (14)0.01707 (9)0.0082 (4)
Mg40.00000.78245 (17)0.39476 (10)0.0115 (4)
Mg50.76130 (15)0.29805 (10)0.17575 (7)0.0091 (3)
Mg60.2319 (3)0.63904 (12)0.43096 (8)0.0284 (5)
Mg70.34561 (18)0.60958 (11)0.28670 (8)0.0187 (4)
Mg80.24440 (18)0.61726 (10)0.11851 (7)0.0155 (3)
Mg0.2460 (2)0.56877 (13)0.87518 (8)0.0254 (5)0.50
Na0.2460 (2)0.56877 (13)0.87518 (8)0.0254 (5)0.50
Na10.00000.0937 (2)0.78091 (13)0.0195 (6)
Na20.00000.2634 (2)0.40137 (14)0.0226 (7)
Na30.00000.4531 (3)0.14512 (14)0.0235 (8)
Na40.50000.4330 (2)0.52265 (14)0.0230 (6)
Na50.50000.7765 (2)0.05347 (18)0.0352 (9)
Na60.9685 (5)0.6495 (4)0.2386 (2)0.0455 (19)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd0.00955 (11)0.00944 (11)0.00815 (11)0.0000.0000.00003 (13)
P10.0045 (4)0.0058 (4)0.0080 (4)0.0004 (3)0.0007 (3)0.0007 (3)
O110.0116 (14)0.0103 (14)0.0129 (14)0.0008 (11)0.0013 (11)0.0024 (11)
O120.0077 (12)0.0131 (15)0.0180 (14)0.0004 (10)0.0045 (11)0.0040 (12)
O130.0140 (12)0.0133 (12)0.0101 (11)0.0056 (9)0.0042 (14)0.0014 (15)
O140.0107 (13)0.0078 (12)0.0152 (14)0.0017 (10)0.0009 (11)0.0026 (11)
P20.0077 (4)0.0110 (5)0.0107 (4)0.0020 (4)0.0012 (3)0.0015 (4)
O210.032 (2)0.0138 (16)0.0238 (18)0.0055 (15)0.0075 (15)0.0097 (14)
O220.0187 (16)0.0227 (18)0.0158 (16)0.0043 (13)0.0081 (13)0.0005 (14)
O230.0083 (13)0.0147 (15)0.0146 (15)0.0024 (11)0.0001 (10)0.0006 (12)
O240.0075 (12)0.0174 (14)0.0073 (12)0.0037 (11)0.0006 (10)0.0014 (11)
P30.0102 (4)0.0082 (4)0.0090 (4)0.0014 (3)0.0035 (4)0.0002 (3)
O310.0216 (17)0.0185 (16)0.0102 (14)0.0027 (13)0.0001 (12)0.0042 (12)
O320.0230 (17)0.0127 (15)0.0152 (15)0.0051 (13)0.0003 (13)0.0008 (12)
O330.0140 (14)0.0133 (15)0.0187 (15)0.0007 (12)0.0105 (12)0.0022 (12)
O340.0102 (13)0.0164 (15)0.0213 (17)0.0026 (11)0.0038 (11)0.0065 (12)
P40.0090 (4)0.0146 (5)0.0113 (5)0.0012 (4)0.0023 (4)0.0070 (4)
O410.0142 (16)0.044 (3)0.043 (2)0.0165 (17)0.0161 (17)0.036 (2)
O420.041 (2)0.031 (2)0.0138 (18)0.0208 (19)0.0055 (17)0.0077 (15)
O430.0123 (13)0.0217 (17)0.0088 (13)0.0002 (12)0.0021 (11)0.0017 (12)
O440.028 (2)0.0195 (18)0.0151 (16)0.0066 (15)0.0036 (14)0.0102 (13)
P50.0079 (6)0.0051 (6)0.0076 (6)0.0000.0000.0011 (5)
O510.021 (2)0.0100 (19)0.012 (2)0.0000.0000.0024 (16)
O520.015 (2)0.0055 (18)0.0110 (19)0.0000.0000.0003 (15)
O530.0095 (14)0.0115 (15)0.0185 (15)0.0013 (11)0.0040 (11)0.0006 (12)
P60.0053 (6)0.0062 (6)0.0065 (6)0.0000.0000.0004 (5)
O610.0110 (15)0.0175 (17)0.0255 (19)0.0056 (12)0.0036 (13)0.0066 (14)
O620.071 (5)0.006 (2)0.012 (2)0.0000.0000.0005 (18)
O630.019 (2)0.023 (3)0.009 (2)0.0000.0000.0034 (18)
P70.0061 (12)0.0098 (9)0.0075 (8)0.0002 (6)0.0002 (6)0.0024 (7)
O710.027 (3)0.014 (2)0.0083 (19)0.0000.0000.0022 (16)
O72X0.051 (18)0.012 (3)0.047 (5)0.011 (5)0.000 (5)0.012 (3)
O73X0.019 (3)0.049 (5)0.008 (3)0.021 (3)0.001 (2)0.007 (3)
P80.012 (4)0.0146 (9)0.0094 (7)0.0055 (11)0.0032 (9)0.0058 (6)
O810.021 (3)0.049 (4)0.007 (2)0.0000.0000.007 (2)
O82X0.014 (3)0.018 (3)0.007 (3)0.001 (2)0.004 (2)0.006 (2)
O83X0.009 (3)0.011 (3)0.023 (3)0.004 (2)0.007 (2)0.003 (2)
Mg10.0107 (9)0.0119 (10)0.0072 (9)0.0000.0000.0004 (8)
Mg20.0089 (9)0.0069 (9)0.0057 (8)0.0000.0000.0012 (7)
Mg30.0084 (9)0.0100 (9)0.0063 (8)0.0000.0000.0006 (7)
Mg40.0047 (8)0.0212 (12)0.0085 (9)0.0000.0000.0029 (8)
Mg50.0094 (6)0.0081 (6)0.0097 (6)0.0007 (5)0.0006 (5)0.0002 (5)
Mg60.0638 (15)0.0095 (8)0.0119 (8)0.0020 (9)0.0194 (9)0.0014 (6)
Mg70.0232 (9)0.0122 (8)0.0207 (9)0.0036 (6)0.0076 (7)0.0063 (7)
Mg80.0256 (8)0.0089 (7)0.0121 (7)0.0053 (6)0.0074 (6)0.0026 (6)
Mg0.0535 (14)0.0087 (8)0.0140 (8)0.0107 (8)0.0124 (9)0.0020 (7)
Na0.0535 (14)0.0087 (8)0.0140 (8)0.0107 (8)0.0124 (9)0.0020 (7)
Na10.0121 (12)0.0292 (17)0.0172 (14)0.0000.0000.0063 (13)
Na20.0154 (14)0.0356 (19)0.0167 (15)0.0000.0000.0073 (14)
Na30.0152 (15)0.043 (2)0.0125 (14)0.0000.0000.0112 (14)
Na40.0312 (17)0.0170 (14)0.0208 (15)0.0000.0000.0035 (12)
Na50.0243 (17)0.0295 (19)0.052 (2)0.0000.0000.0176 (17)
Na60.047 (5)0.057 (3)0.032 (3)0.009 (3)0.000 (2)0.029 (3)
Geometric parameters (Å, º) top
Nd—O512.379 (5)P8—Mg6vii3.185 (7)
Nd—O32i2.487 (4)P8—Nav3.219 (7)
Nd—O32ii2.487 (4)O81—P8vii1.525 (6)
Nd—O14iii2.499 (3)O81—Mg72.121 (4)
Nd—O142.499 (3)O81—Mg7vii2.121 (4)
Nd—O73Xiv2.513 (7)O81—Na1x2.796 (7)
Nd—O73Xv2.513 (7)O82X—O82Xvii1.091 (13)
Nd—O13iii2.525 (3)O82X—P8vii1.428 (7)
Nd—O132.525 (3)O82X—O83X1.652 (9)
Nd—P1iii3.1834 (12)O82X—Mg3xiii2.037 (6)
Nd—P13.1834 (12)O82X—Mg62.342 (7)
Nd—Na33.673 (3)O82X—Na2xvi2.853 (8)
P1—O111.523 (3)O83X—P8vii1.546 (10)
P1—O121.538 (3)O83X—Nav1.984 (7)
P1—O131.545 (4)O83X—Mgv1.984 (7)
P1—O141.565 (3)O83X—Mg62.052 (7)
P1—Na33.035 (3)O84X—O84Xvii0.885 (17)
P1—Mg83.197 (2)O84X—P8vii1.517 (10)
P1—Na5vi3.296 (3)O84X—Naix2.303 (9)
O11—Mg5vii2.079 (3)O84X—Mgix2.303 (9)
O11—Na5vi2.507 (4)O84X—Mg4viii2.509 (10)
O11—Na32.613 (4)O84X—Na42.745 (10)
O12—Mg3viii2.206 (4)Mg1—O24xviii2.010 (3)
O12—Mg22.224 (3)Mg1—O24vii2.010 (3)
O12—Na4ix2.445 (4)Mg1—O43iv2.010 (4)
O13—Mg6v2.015 (4)Mg1—O43v2.010 (4)
O13—Na5vi2.981 (5)Mg1—P2xviii3.0952 (17)
O14—Mg82.026 (3)Mg1—P2vii3.0952 (17)
O14—Na32.381 (4)Mg1—P7iii3.119 (3)
P2—O211.511 (4)Mg1—Na33.258 (4)
P2—O221.538 (4)Mg1—Nav3.400 (3)
P2—O231.547 (4)Mg1—Mgv3.400 (3)
P2—O241.554 (3)Mg2—O52viii2.015 (5)
P2—Mg52.796 (2)Mg2—O23vii2.070 (4)
P2—Mg7vii2.868 (2)Mg2—O12vii2.224 (3)
P2—Na1x3.027 (2)Mg2—Mg3viii2.984 (3)
P2—Mg1xi3.0952 (17)Mg2—Na4ix3.222 (4)
P2—Na3xi3.174 (2)Mg2—Na1x3.540 (4)
O21—Mg8vii2.066 (4)Mg2—Mg5vii3.610 (2)
O21—Mg7vii2.614 (5)Mg2—Mg53.610 (2)
O21—Na62.727 (7)Mg3—O82Xxxi2.037 (6)
O22—Mg7vii2.062 (4)Mg3—O82Xxxii2.037 (6)
O22—Naix2.293 (4)Mg3—O34i2.040 (3)
O22—Mgix2.293 (4)Mg3—O34ii2.040 (3)
O22—Na1x2.464 (4)Mg3—O12xxiii2.206 (4)
O23—Mg22.070 (4)Mg3—O12xix2.206 (4)
O23—Mg52.191 (4)Mg3—Mg2xix2.984 (3)
O23—Na1x2.520 (4)Mg3—Na2iv3.234 (4)
O24—Mg1xi2.010 (3)Mg3—Na4xxii3.338 (4)
O24—Mg52.192 (4)Mg3—Mg6xxi3.421 (3)
O24—Na3xi2.308 (4)Mg4—O33xxi1.984 (4)
P3—O31xii1.521 (3)Mg4—O33xxii1.984 (4)
P3—O331.538 (3)Mg4—O41xxi1.995 (4)
P3—O341.540 (3)Mg4—O41xxii1.995 (4)
P3—O321.546 (4)Mg4—O72Xiii2.129 (8)
P3—Mg6xiii2.789 (2)Mg4—O84Xxix2.509 (10)
P3—Na2xiv3.260 (2)Mg4—O84Xxxiii2.509 (10)
P3—Na5xii3.269 (3)Mg4—Na1iv3.279 (4)
P3—Na4xv3.451 (2)Mg4—Mg6iii3.368 (3)
O31—P3ii1.521 (3)Mg4—Mg63.368 (3)
O31—Mg82.029 (4)Mg4—Mgxxii3.514 (3)
O31—Na4ix2.638 (4)Mg5—O61xxiv2.004 (4)
O31—Na52.665 (4)Mg5—O11vii2.079 (3)
O32—Mg2.160 (4)Mg5—O53viii2.089 (4)
O32—Ndxii2.487 (4)Mg5—O42ix2.130 (4)
O32—Na2xiv2.775 (5)Mg5—Mg8viii3.104 (2)
O33—Mg4xiii1.984 (4)Mg5—Na3xi3.508 (3)
O33—Mg6xiii2.171 (4)Mg5—Na6xxiv3.612 (5)
O33—Na5xii2.844 (5)Mg5—Na5viii3.786 (4)
O34—Mg3xii2.040 (3)Mg6—O13xxv2.015 (4)
O34—Mg6xiii2.200 (4)Mg6—O44xxii2.058 (4)
O34—Na2xiv2.629 (4)Mg6—O33xxii2.171 (4)
P4—O411.525 (4)Mg6—O34xxii2.200 (4)
P4—O421.528 (4)Mg6—O72Xiii2.56 (2)
P4—O431.540 (4)Mg6—P3xxii2.789 (2)
P4—O441.543 (4)Mg6—P8vii3.185 (7)
P4—Mg2.773 (2)Mg7—O22vii2.062 (4)
P4—Mg7xiii2.780 (2)Mg7—O44xxii2.117 (4)
P4—Na2xiv3.124 (2)Mg7—O42xxii2.332 (5)
O41—Mg4xiii1.995 (4)Mg7—O21vii2.614 (5)
O41—Mg2.289 (6)Mg7—P4xxii2.780 (2)
O41—Na1xvi2.386 (5)Mg7—P2vii2.868 (2)
O42—Mg5xv2.130 (4)Mg7—Mg7vii3.181 (4)
O42—Mg7xiii2.332 (5)Mg7—Na6vii3.481 (6)
O42—Na6xvii2.696 (7)Mg7—Na1x3.525 (4)
O43—Mg1xiv2.010 (4)Mg7—Mgv3.597 (3)
O43—Mg2.133 (4)Mg8—O21vii2.066 (4)
O43—Na2xiv2.465 (4)Mg8—O61vii2.070 (4)
O44—Mg6xiii2.058 (4)Mg8—Mg5xix3.104 (2)
O44—Mg7xiii2.117 (4)Mg8—Na4ix3.544 (3)
O44—Na2xiv2.606 (5)Mg8—Na6vii3.598 (6)
P5—O511.513 (5)Mg—O74Xxxv1.954 (8)
P5—O521.519 (5)Mg—O83Xxxv1.984 (7)
P5—O53iii1.541 (3)Mg—O73Xxxv2.233 (7)
P5—O531.541 (3)Mg—O22xv2.293 (4)
P5—Mg8iii3.004 (2)Mg—O84Xxv2.303 (9)
P5—Mg83.004 (2)Mg—P8xv2.962 (7)
P5—Mg33.042 (3)Mg—P7xxv3.018 (3)
P5—Na6vii3.106 (5)Mg—Mg1xiv3.400 (3)
P5—Na6xviii3.106 (5)Na1—O41xxvi2.386 (5)
O52—Mg31.964 (5)Na1—O41vi2.386 (5)
O52—Mg2xix2.015 (5)Na1—O22xxvii2.464 (4)
O53—Mg82.040 (4)Na1—O22xxviii2.464 (4)
O53—Mg5xix2.089 (4)Na1—O23xxvii2.520 (4)
O53—Na6vii2.380 (6)Na1—O23xxviii2.520 (4)
O53—Na6xviii2.699 (6)Na1—O81xxvii2.796 (7)
P6—O61vii1.524 (4)Na1—P2xxvii3.027 (2)
P6—O611.524 (4)Na1—P2xxviii3.027 (2)
P6—O621.526 (5)Na1—Mg4xiv3.279 (4)
P6—O631.526 (5)Na1—P8xxviii3.384 (4)
P6—Mg82.934 (2)Na1—P8xxvii3.384 (4)
P6—Mg8vii2.934 (2)Na2—O43iv2.465 (4)
P6—Na53.369 (5)Na2—O43v2.465 (4)
O61—Mg5xx2.004 (4)Na2—O44iv2.606 (5)
O61—Mg8vii2.070 (4)Na2—O44v2.606 (5)
O61—Na52.915 (6)Na2—O34iv2.629 (4)
O62—Mg22.011 (6)Na2—O34v2.629 (4)
O62—Na4ix2.548 (6)Na2—O32v2.775 (5)
O62—Mg82.757 (3)Na2—O32iv2.775 (5)
O62—Mg8vii2.757 (3)Na2—O82Xvi2.853 (8)
O63—Mg7vii2.037 (4)Na2—O82Xxxvi2.853 (8)
O63—Mg72.037 (4)Na2—P4iv3.124 (2)
P7—P7iii0.516 (4)Na2—P4v3.124 (2)
P7—O73X1.316 (8)Na3—O24vii2.308 (4)
P7—O72Xiii1.424 (7)Na3—O24xviii2.308 (4)
P7—O72X1.497 (12)Na3—O14iii2.381 (4)
P7—O711.534 (5)Na3—O11iii2.613 (4)
P7—O74X1.540 (7)Na3—P1iii3.035 (3)
P7—O73Xiii1.546 (7)Na3—P2vii3.174 (2)
P7—O74Xiii2.032 (7)Na3—P2xviii3.174 (2)
P7—Mg62.929 (3)Na3—Na5vi3.470 (5)
P7—Nav3.018 (3)Na4—O12xv2.445 (4)
P7—Mgv3.018 (3)Na4—O12xxv2.445 (4)
P7—Mg13.119 (3)Na4—O62xv2.548 (6)
O71—P7iii1.534 (5)Na4—O31xxv2.638 (4)
O71—Mg12.046 (5)Na4—O31xv2.638 (4)
O71—Na6xviii2.387 (7)Na4—O84Xvii2.745 (10)
O71—Na6vii2.387 (7)Na4—Mg2xv3.222 (4)
O72X—O72Xiii0.41 (6)Na4—P8vii3.251 (4)
O72X—P7iii1.424 (7)Na4—Na5xv3.319 (5)
O72X—Mg42.129 (8)Na4—Mg3xiii3.338 (4)
O72X—Mg6iii2.56 (2)Na5—O11xvi2.507 (4)
O73X—O73Xiii1.279 (14)Na5—O11xxiii2.507 (4)
O73X—O74X1.332 (11)Na5—O31vii2.665 (4)
O73X—P7iii1.546 (7)Na5—O33ii2.844 (5)
O73X—Nav2.233 (7)Na5—O33xxix2.844 (5)
O73X—Mgv2.233 (7)Na5—O61vii2.915 (6)
O73X—Ndxiv2.513 (7)Na5—O13xxiii2.981 (5)
O74X—Mg61.941 (8)Na5—O13xvi2.981 (5)
O74X—Nav1.954 (8)Na5—P3ii3.269 (3)
O74X—Mgv1.954 (8)Na5—P3xxix3.269 (3)
O74X—P7iii2.032 (7)Na6—Na6xxx0.649 (11)
P8—P8vii0.304 (16)Na6—O53vii2.380 (6)
P8—O84X1.426 (10)Na6—O71xi2.387 (7)
P8—O82Xvii1.428 (7)Na6—O42xxxi2.696 (7)
P8—O84Xvii1.517 (10)Na6—O53xi2.699 (6)
P8—O811.525 (6)Na6—P5xi3.106 (5)
P8—O82X1.540 (7)Na6—P7vii3.247 (5)
P8—O83Xvii1.546 (10)Na6—P7xi3.298 (5)
P8—O83X1.846 (10)Na6—Mg7vii3.481 (6)
P8—Naix2.962 (7)Na6—Mg8vii3.598 (6)
P8—Mgix2.962 (7)Na6—Mg5xx3.612 (5)
O51—Nd—O32i83.43 (11)O34xxii—Mg6—O72Xiii138.2 (2)
O51—Nd—O32ii83.43 (11)O82X—Mg6—O72Xiii151.8 (3)
O32i—Nd—O32ii94.83 (17)O63—Mg7—O22vii107.8 (2)
O51—Nd—O14iii69.20 (11)O63—Mg7—O44xxii126.5 (2)
O32i—Nd—O14iii87.56 (11)O22vii—Mg7—O44xxii121.83 (17)
O32ii—Nd—O14iii152.10 (10)O63—Mg7—O8178.59 (17)
O51—Nd—O1469.20 (11)O22vii—Mg7—O8184.7 (2)
O32i—Nd—O14152.10 (10)O44xxii—Mg7—O8186.87 (19)
O32ii—Nd—O1487.56 (11)O63—Mg7—O42xxii93.50 (19)
O14iii—Nd—O1477.97 (14)O22vii—Mg7—O42xxii134.79 (17)
O51—Nd—O73Xiv142.9 (2)O44xxii—Mg7—O42xxii66.04 (15)
O32i—Nd—O73Xiv62.54 (18)O81—Mg7—O42xxii139.5 (2)
O32ii—Nd—O73Xiv85.0 (2)O63—Mg7—O21vii83.75 (16)
O14iii—Nd—O73Xiv120.1 (2)O22vii—Mg7—O21vii61.68 (13)
O14—Nd—O73Xiv145.25 (18)O44xxii—Mg7—O21vii135.69 (17)
O51—Nd—O73Xv142.9 (2)O81—Mg7—O21vii134.72 (19)
O32i—Nd—O73Xv85.0 (2)O42xxii—Mg7—O21vii82.42 (14)
O32ii—Nd—O73Xv62.54 (18)O14—Mg8—O3193.14 (15)
O14iii—Nd—O73Xv145.25 (18)O14—Mg8—O53113.75 (15)
O14—Nd—O73Xv120.1 (2)O31—Mg8—O53104.63 (16)
O51—Nd—O13iii125.91 (10)O14—Mg8—O21vii87.71 (16)
O32i—Nd—O13iii86.19 (11)O31—Mg8—O21vii167.17 (18)
O32ii—Nd—O13iii150.44 (11)O53—Mg8—O21vii86.66 (16)
O14iii—Nd—O13iii57.41 (11)O14—Mg8—O61vii165.25 (16)
O14—Nd—O13iii105.15 (11)O31—Mg8—O61vii85.58 (16)
O73Xiv—Nd—O13iii69.2 (2)O53—Mg8—O61vii80.71 (14)
O73Xv—Nd—O13iii88.21 (19)O21vii—Mg8—O61vii90.34 (17)
O51—Nd—O13125.91 (10)O14—Mg8—O62106.35 (15)
O32i—Nd—O13150.44 (11)O31—Mg8—O6286.43 (16)
O32ii—Nd—O1386.19 (11)O53—Mg8—O62137.41 (16)
O14iii—Nd—O13105.15 (11)O21vii—Mg8—O6281.06 (17)
O14—Nd—O1357.41 (11)O61vii—Mg8—O6258.92 (15)
O73Xiv—Nd—O1388.21 (19)O74Xxxv—Mg—O83Xxxv57.2 (3)
O73Xv—Nd—O1369.2 (2)O74Xxxv—Mg—O43114.5 (2)
O13iii—Nd—O1378.96 (13)O83Xxxv—Mg—O43170.6 (3)
O11—P1—O12113.35 (18)O74Xxxv—Mg—O3298.0 (2)
O11—P1—O13110.18 (18)O83Xxxv—Mg—O3297.0 (2)
O12—P1—O13112.99 (18)O43—Mg—O3288.34 (15)
O11—P1—O14108.76 (18)O74Xxxv—Mg—O73Xxxv36.3 (3)
O12—P1—O14109.08 (18)O83Xxxv—Mg—O73Xxxv86.3 (3)
O13—P1—O14101.78 (16)O43—Mg—O73Xxxv88.0 (3)
O21—P2—O22106.5 (2)O32—Mg—O73Xxxv72.4 (2)
O21—P2—O23113.9 (2)O74Xxxv—Mg—O41162.5 (3)
O22—P2—O23110.3 (2)O83Xxxv—Mg—O41119.8 (2)
O21—P2—O24112.1 (2)O43—Mg—O4166.51 (14)
O22—P2—O24111.42 (19)O32—Mg—O4199.53 (16)
O23—P2—O24102.61 (18)O73Xxxv—Mg—O41153.8 (3)
O31xii—P3—O33107.5 (2)O74Xxxv—Mg—O22xv83.3 (2)
O31xii—P3—O34117.7 (2)O83Xxxv—Mg—O22xv91.7 (2)
O33—P3—O34102.28 (19)O43—Mg—O22xv82.45 (14)
O31xii—P3—O32110.1 (2)O32—Mg—O22xv170.34 (17)
O33—P3—O32111.7 (2)O73Xxxv—Mg—O22xv104.3 (2)
O34—P3—O32107.3 (2)O41—Mg—O22xv79.46 (16)
O41—P4—O42112.4 (3)O74Xxxv—Mg—O84Xxv107.8 (3)
O41—P4—O43104.8 (2)O83Xxxv—Mg—O84Xxv50.7 (3)
O42—P4—O43114.2 (2)O43—Mg—O84Xxv137.0 (3)
O41—P4—O44113.7 (2)O32—Mg—O84Xxv93.5 (3)
O42—P4—O44104.7 (2)O73Xxxv—Mg—O84Xxv133.4 (3)
O43—P4—O44107.1 (2)O41—Mg—O84Xxv70.8 (3)
O51—P5—O52112.9 (3)O22xv—Mg—O84Xxv95.2 (3)
O51—P5—O53iii109.44 (18)O41xxvi—Na1—O41vi72.3 (2)
O52—P5—O53iii108.27 (17)O41xxvi—Na1—O22xxvii140.18 (17)
O51—P5—O53109.44 (18)O41vi—Na1—O22xxvii74.28 (14)
O52—P5—O53108.27 (17)O41xxvi—Na1—O22xxviii74.28 (14)
O53iii—P5—O53108.4 (3)O41vi—Na1—O22xxviii140.18 (17)
O61vii—P6—O61109.1 (3)O22xxvii—Na1—O22xxviii123.4 (2)
O61vii—P6—O62106.7 (2)O41xxvi—Na1—O23xxvii145.3 (2)
O61—P6—O62106.7 (2)O41vi—Na1—O23xxvii98.65 (13)
O61vii—P6—O63111.39 (19)O22xxvii—Na1—O23xxvii61.06 (12)
O61—P6—O63111.39 (19)O22xxviii—Na1—O23xxvii121.17 (16)
O62—P6—O63111.2 (3)O41xxvi—Na1—O23xxviii98.65 (14)
O73X—P7—O72Xiii126.7 (7)O41vi—Na1—O23xxviii145.3 (2)
O73X—P7—O72X130.4 (5)O22xxvii—Na1—O23xxviii121.17 (16)
O73X—P7—O71117.0 (4)O22xxviii—Na1—O23xxviii61.06 (12)
O72Xiii—P7—O71115.9 (5)O23xxvii—Na1—O23xxviii69.34 (17)
O72X—P7—O71111.7 (5)O41xxvi—Na1—O81xxvii102.98 (19)
O72Xiii—P7—O74X96.5 (11)O41vi—Na1—O81xxvii102.98 (19)
O72X—P7—O74X111.4 (10)O22xxvii—Na1—O81xxvii64.39 (11)
O71—P7—O74X114.9 (3)O22xxviii—Na1—O81xxvii64.39 (11)
O72Xiii—P7—O73Xiii118.5 (9)O23xxvii—Na1—O81xxvii111.76 (16)
O72X—P7—O73Xiii107.2 (9)O23xxviii—Na1—O81xxvii111.76 (16)
O71—P7—O73Xiii104.3 (3)O43iv—Na2—O43v66.40 (17)
O74X—P7—O73Xiii106.6 (4)O43iv—Na2—O44iv58.49 (12)
O73X—P7—O74Xiii92.9 (4)O43v—Na2—O44iv111.21 (16)
O72Xiii—P7—O74Xiii91.4 (11)O43iv—Na2—O44v111.21 (16)
O72X—P7—O74Xiii76.0 (10)O43v—Na2—O44v58.49 (12)
O71—P7—O74Xiii92.1 (2)O44iv—Na2—O44v107.7 (2)
O74X—P7—O74Xiii144.3 (5)O43iv—Na2—O34iv108.65 (10)
O84X—P8—O82Xvii121.1 (5)O43v—Na2—O34iv165.5 (2)
P8vii—P8—O84Xvii66.9 (4)O44iv—Na2—O34iv74.65 (12)
O82Xvii—P8—O84Xvii130.2 (5)O44v—Na2—O34iv133.75 (17)
O84X—P8—O81117.6 (5)O43iv—Na2—O34v165.5 (2)
O82Xvii—P8—O81116.1 (4)O43v—Na2—O34v108.65 (10)
O84Xvii—P8—O81112.1 (5)O44iv—Na2—O34v133.75 (17)
O84X—P8—O82X128.5 (5)O44v—Na2—O34v74.65 (12)
O84Xvii—P8—O82X108.8 (6)O34iv—Na2—O34v72.59 (16)
O81—P8—O82X109.7 (4)O43iv—Na2—O32v111.67 (17)
O84X—P8—O83Xvii77.2 (5)O43v—Na2—O32v69.32 (12)
O82Xvii—P8—O83Xvii67.4 (4)O44iv—Na2—O32v166.14 (17)
O84Xvii—P8—O83Xvii111.5 (5)O44v—Na2—O32v84.56 (11)
O81—P8—O83Xvii104.7 (4)O34iv—Na2—O32v101.72 (15)
O82X—P8—O83Xvii110.0 (4)O34v—Na2—O32v54.69 (11)
O84X—P8—O83X100.6 (5)O43iv—Na2—O32iv69.32 (12)
O82Xvii—P8—O83X100.3 (4)O43v—Na2—O32iv111.67 (17)
O84Xvii—P8—O83X66.1 (5)O44iv—Na2—O32iv84.56 (11)
O81—P8—O83X91.8 (4)O44v—Na2—O32iv166.14 (17)
O82X—P8—O83X57.6 (4)O34iv—Na2—O32iv54.69 (11)
O83Xvii—P8—O83X162.4 (5)O34v—Na2—O32iv101.72 (15)
O24xviii—Mg1—O24vii86.12 (19)O32v—Na2—O32iv82.55 (18)
O24xviii—Mg1—O43iv87.97 (13)O43iv—Na2—O82Xvi124.47 (17)
O24vii—Mg1—O43iv151.84 (19)O43v—Na2—O82Xvi140.8 (2)
O24xviii—Mg1—O43v151.84 (19)O44iv—Na2—O82Xvi65.98 (16)
O24vii—Mg1—O43v87.97 (13)O44v—Na2—O82Xvi84.37 (18)
O43iv—Mg1—O43v84.4 (2)O34iv—Na2—O82Xvi53.55 (16)
O24xviii—Mg1—O7199.48 (16)O34v—Na2—O82Xvi68.42 (16)
O24vii—Mg1—O7199.48 (16)O32v—Na2—O82Xvi122.98 (17)
O43iv—Mg1—O71108.65 (16)O32iv—Na2—O82Xvi106.98 (16)
O43v—Mg1—O71108.65 (16)O43iv—Na2—O82Xxxvi140.8 (2)
O62—Mg2—O52viii158.0 (2)O43v—Na2—O82Xxxvi124.47 (17)
O62—Mg2—O23101.27 (16)O44iv—Na2—O82Xxxvi84.37 (18)
O52viii—Mg2—O2394.54 (15)O44v—Na2—O82Xxxvi65.98 (16)
O62—Mg2—O23vii101.27 (16)O34iv—Na2—O82Xxxvi68.42 (16)
O52viii—Mg2—O23vii94.54 (15)O34v—Na2—O82Xxxvi53.55 (16)
O23—Mg2—O23vii87.7 (2)O32v—Na2—O82Xxxvi106.98 (16)
O62—Mg2—O1287.15 (16)O32iv—Na2—O82Xxxvi122.98 (17)
O52viii—Mg2—O1275.59 (14)O82Xvi—Na2—O82Xxxvi22.1 (3)
O23—Mg2—O12169.17 (16)O24vii—Na3—O24xviii72.97 (18)
O23vii—Mg2—O1297.46 (13)O24vii—Na3—O14iii171.6 (2)
O62—Mg2—O12vii87.15 (16)O24xviii—Na3—O14iii101.77 (11)
O52viii—Mg2—O12vii75.59 (14)O24vii—Na3—O14101.77 (11)
O23—Mg2—O12vii97.46 (13)O24xviii—Na3—O14171.6 (2)
O23vii—Mg2—O12vii169.17 (16)O14iii—Na3—O1482.65 (18)
O12—Mg2—O12vii75.97 (18)O24vii—Na3—O11iii122.51 (19)
O52—Mg3—O82Xxxi161.1 (2)O24xviii—Na3—O11iii71.46 (12)
O52—Mg3—O82Xxxii161.1 (2)O14iii—Na3—O11iii60.14 (11)
O82Xxxi—Mg3—O82Xxxii31.1 (4)O14—Na3—O11iii116.87 (17)
O52—Mg3—O34i100.35 (15)O24vii—Na3—O1171.46 (12)
O82Xxxi—Mg3—O34i74.8 (2)O24xviii—Na3—O11122.51 (19)
O82Xxxii—Mg3—O34i98.4 (2)O14iii—Na3—O11116.87 (17)
O52—Mg3—O34ii100.35 (15)O14—Na3—O1160.14 (11)
O82Xxxi—Mg3—O34ii98.4 (2)O11iii—Na3—O1191.98 (18)
O82Xxxii—Mg3—O34ii74.8 (2)O12xv—Na4—O12xxv68.10 (16)
O34i—Mg3—O34ii99.4 (2)O12xv—Na4—O62xv71.64 (14)
O52—Mg3—O12xxiii77.01 (14)O12xxv—Na4—O62xv71.64 (14)
O82Xxxi—Mg3—O12xxiii104.0 (2)O12xv—Na4—O31xxv146.90 (16)
O82Xxxii—Mg3—O12xxiii84.9 (2)O12xxv—Na4—O31xxv87.77 (11)
O34i—Mg3—O12xxiii168.63 (15)O62xv—Na4—O31xxv79.58 (13)
O34ii—Mg3—O12xxiii91.93 (13)O12xv—Na4—O31xv87.77 (11)
O52—Mg3—O12xix77.01 (14)O12xxv—Na4—O31xv146.90 (16)
O82Xxxi—Mg3—O12xix84.9 (2)O62xv—Na4—O31xv79.58 (13)
O82Xxxii—Mg3—O12xix104.0 (2)O31xxv—Na4—O31xv103.03 (19)
O34i—Mg3—O12xix91.93 (13)O12xv—Na4—O84X101.0 (2)
O34ii—Mg3—O12xix168.63 (15)O12xxv—Na4—O84X111.8 (2)
O12xxiii—Mg3—O12xix76.70 (17)O62xv—Na4—O84X170.47 (19)
O33xxi—Mg4—O33xxii92.9 (2)O31xxv—Na4—O84X109.1 (2)
O33xxi—Mg4—O41xxi88.36 (17)O31xv—Na4—O84X94.3 (2)
O33xxii—Mg4—O41xxi173.5 (2)O12xv—Na4—O84Xvii111.8 (2)
O33xxi—Mg4—O41xxii173.5 (2)O12xxv—Na4—O84Xvii101.0 (2)
O33xxii—Mg4—O41xxii88.36 (17)O62xv—Na4—O84Xvii170.47 (18)
O41xxi—Mg4—O41xxii89.7 (3)O31xxv—Na4—O84Xvii94.3 (2)
O33xxi—Mg4—O72X85.5 (6)O31xv—Na4—O84Xvii109.1 (2)
O33xxii—Mg4—O72X93.5 (6)O84X—Na4—O84Xvii18.5 (4)
O41xxi—Mg4—O72X93.0 (6)O11xvi—Na5—O11xxiii97.14 (19)
O41xxii—Mg4—O72X100.8 (6)O11xvi—Na5—O31159.2 (2)
O33xxi—Mg4—O72Xiii93.5 (6)O11xxiii—Na5—O3176.89 (11)
O33xxii—Mg4—O72Xiii85.5 (6)O11xvi—Na5—O31vii76.89 (11)
O41xxi—Mg4—O72Xiii100.8 (6)O11xxiii—Na5—O31vii159.2 (2)
O41xxii—Mg4—O72Xiii93.0 (6)O31—Na5—O31vii101.6 (2)
O72X—Mg4—O72Xiii11.1 (15)O11xvi—Na5—O33ii147.69 (19)
O33xxi—Mg4—O84Xxix102.3 (2)O11xxiii—Na5—O33ii95.00 (11)
O33xxii—Mg4—O84Xxix87.6 (2)O31—Na5—O33ii53.08 (11)
O41xxi—Mg4—O84Xxix85.9 (3)O31vii—Na5—O33ii100.52 (15)
O41xxii—Mg4—O84Xxix71.3 (3)O11xvi—Na5—O33xxix95.00 (11)
O72X—Mg4—O84Xxix172.1 (5)O11xxiii—Na5—O33xxix147.69 (19)
O72Xiii—Mg4—O84Xxix163.0 (7)O31—Na5—O33xxix100.52 (15)
O33xxi—Mg4—O84Xxxiii87.6 (2)O31vii—Na5—O33xxix53.08 (11)
O33xxii—Mg4—O84Xxxiii102.3 (2)O33ii—Na5—O33xxix60.72 (15)
O41xxi—Mg4—O84Xxxiii71.3 (3)O11xvi—Na5—O6162.08 (13)
O41xxii—Mg4—O84Xxxiii85.9 (3)O11xxiii—Na5—O6199.82 (18)
O72X—Mg4—O84Xxxiii163.0 (7)O31—Na5—O6198.93 (17)
O72Xiii—Mg4—O84Xxxiii172.1 (5)O31vii—Na5—O6159.67 (13)
O84Xxix—Mg4—O84Xxxiii20.3 (4)O33ii—Na5—O61144.13 (18)
O61xxiv—Mg5—O11vii87.23 (15)O33xxix—Na5—O61112.32 (12)
O61xxiv—Mg5—O53viii81.09 (15)O11xvi—Na5—O61vii99.82 (18)
O11vii—Mg5—O53viii105.84 (15)O11xxiii—Na5—O61vii62.08 (13)
O61xxiv—Mg5—O42ix86.34 (19)O31—Na5—O61vii59.67 (13)
O11vii—Mg5—O42ix166.46 (18)O31vii—Na5—O61vii98.93 (17)
O53viii—Mg5—O42ix84.92 (16)O33ii—Na5—O61vii112.32 (12)
O61xxiv—Mg5—O23174.75 (16)O33xxix—Na5—O61vii144.13 (18)
O11vii—Mg5—O2387.55 (13)O61—Na5—O61vii50.43 (16)
O53viii—Mg5—O23100.94 (14)O11xvi—Na5—O13xxiii102.48 (15)
O42ix—Mg5—O2398.63 (18)O11xxiii—Na5—O13xxiii53.73 (12)
O61xxiv—Mg5—O24111.86 (16)O31—Na5—O13xxiii90.11 (11)
O11vii—Mg5—O2484.91 (13)O31vii—Na5—O13xxiii146.76 (19)
O53viii—Mg5—O24163.94 (15)O33ii—Na5—O13xxiii62.13 (12)
O42ix—Mg5—O2486.44 (15)O33xxix—Na5—O13xxiii94.41 (16)
O23—Mg5—O2467.04 (12)O61—Na5—O13xxiii149.41 (17)
O74X—Mg6—O13xxv89.1 (2)O61vii—Na5—O13xxiii113.70 (11)
O74X—Mg6—O83X56.3 (3)O11xvi—Na5—O13xvi53.73 (12)
O13xxv—Mg6—O83X92.0 (2)O11xxiii—Na5—O13xvi102.48 (15)
O74X—Mg6—O44xxii86.4 (2)O31—Na5—O13xvi146.76 (19)
O13xxv—Mg6—O44xxii174.7 (2)O31vii—Na5—O13xvi90.11 (11)
O83X—Mg6—O44xxii87.8 (2)O33ii—Na5—O13xvi94.41 (16)
O74X—Mg6—O33xxii128.5 (3)O33xxix—Na5—O13xvi62.13 (12)
O13xxv—Mg6—O33xxii91.79 (15)O61—Na5—O13xvi113.70 (11)
O83X—Mg6—O33xxii173.9 (2)O61vii—Na5—O13xvi149.41 (17)
O44xxii—Mg6—O33xxii88.92 (16)O13xxiii—Na5—O13xvi65.17 (14)
O74X—Mg6—O34xxii164.9 (3)Na6xxx—Na6—O53vii112.87 (15)
O13xxv—Mg6—O34xxii88.80 (15)Na6xxx—Na6—O71xi82.19 (13)
O83X—Mg6—O34xxii108.8 (2)O53vii—Na6—O71xi149.5 (3)
O44xxii—Mg6—O34xxii96.32 (17)Na6xxx—Na6—O42xxxi147.02 (18)
O33xxii—Mg6—O34xxii66.49 (13)O53vii—Na6—O42xxxi67.95 (17)
O74X—Mg6—O82X99.5 (3)O71xi—Na6—O42xxxi114.2 (2)
O13xxv—Mg6—O82X98.5 (2)Na6xxx—Na6—O53xi54.33 (13)
O83X—Mg6—O82X43.6 (2)O53vii—Na6—O53xi58.54 (18)
O44xxii—Mg6—O82X85.0 (2)O71xi—Na6—O53xi129.4 (3)
O33xxii—Mg6—O82X131.0 (2)O42xxxi—Na6—O53xi116.5 (2)
O34xxii—Mg6—O82X66.03 (19)Na6xxx—Na6—O21138.10 (16)
O74X—Mg6—O72Xiii57.0 (3)O53vii—Na6—O2166.58 (18)
O13xxv—Mg6—O72Xiii96.6 (4)O71xi—Na6—O2184.4 (2)
O83X—Mg6—O72Xiii112.4 (3)O42xxxi—Na6—O2174.1 (2)
O44xxii—Mg6—O72Xiii78.6 (4)O53xi—Na6—O21109.8 (2)
O33xxii—Mg6—O72Xiii71.9 (2)
Symmetry codes: (i) x, y, z1; (ii) x, y, z1; (iii) x, y, z; (iv) x, y+1, z1/2; (v) x, y+1, z1/2; (vi) x1/2, y1/2, z; (vii) x+1, y, z; (viii) x+1/2, y1/2, z; (ix) x+1, y+1, z1/2; (x) x+1/2, y+1/2, z1/2; (xi) x+1, y, z; (xii) x, y, z+1; (xiii) x+1/2, y+3/2, z+1/2; (xiv) x, y+1, z+1/2; (xv) x+1, y+1, z+1/2; (xvi) x+1/2, y+1/2, z; (xvii) x1/2, y+3/2, z+1/2; (xviii) x1, y, z; (xix) x1/2, y+1/2, z; (xx) x+3/2, y+1/2, z; (xxi) x1/2, y+3/2, z1/2; (xxii) x+1/2, y+3/2, z1/2; (xxiii) x+1/2, y+1/2, z; (xxiv) x+3/2, y1/2, z; (xxv) x, y+1, z+1/2; (xxvi) x+1/2, y1/2, z; (xxvii) x+1/2, y+1/2, z+1/2; (xxviii) x1/2, y+1/2, z+1/2; (xxix) x+1, y, z1; (xxx) x+2, y, z; (xxxi) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaNa7Mg13Nd(PO4)12
Mr1760.84
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)293
a, b, c (Å)10.301 (3), 15.461 (4), 23.384 (6)
V3)3724.2 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.40 × 0.22 × 0.17
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionAnalytical
(Alcock, 1970)
Tmin, Tmax0.716, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
44522, 11948, 8244
Rint0.103
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.107, 1.05
No. of reflections11948
No. of parameters424
No. of restraints1
w = 1/[σ2(Fo2) + (0.0124P)2 + 42.9558P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.37, 2.23
Absolute structureFlack (1983), 5847 Friedel pairs
Absolute structure parameter0.257 (9)

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998).

 

References

First citationAlbrand, K. R., Attig, R., Fenner, J., Jeser, J. P. & Mootz, D. (1974). Mater. Res. Bull. 212, 129–140.  CrossRef Web of Science Google Scholar
First citationAlcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBen Amara, M., Vlasse, M., Olazcuaga, R., Le Flem, G. & Hagenmuller, P. (1983). Acta Cryst. C39, 936–939.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationDonnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003–1015.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJaulmes, S., Elfzkir, A., Quarton, M., Brunet, F. & Chopin, C. (1997). J. Solid State Chem. 129, 341–345.  CrossRef CAS Web of Science Google Scholar
First citationJerbi, H., Hidouri, M., Glorieux, B., Darriet, J., Garcia, A., Jubera, V. & Ben Amara, M. (2010). J. Solid State Chem. 183, 1752–1760.  Web of Science CrossRef CAS Google Scholar
First citationKlevtsova, R. F., Kim, V. G. & Klevtsov, P. N. (1980). Kristallografiya, 25, 1148–1154.  CAS Google Scholar
First citationNgee, H. L., Hatsumori, T., Kazuyoshi, U., Tadashi, I., Toda, K. & Sato, M. (2009). Phys. Proc. 2, 171–183.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinde, K. N., Dhoble, S. J. & Kumar, A. (2011). J. Lumin. 131, 931–937.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds