inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A novel monoclinic phase of impurity-doped CaGa2S4 as a phosphor with high emission intensity

aDepartment of Physics,College of Humanities and Sciences, Nihon University, 3-25-40 Sakura-josui, Setagaya-ku, Tokyo 156-8550, Japan, and bDepartment of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, 1-14-6 Kudan-kita, Chiyoda-ku, Tokyo 102-0073, Japan
*Correspondence e-mail: akihiro_k_s_z_b@yahoo.co.jp

(Received 13 March 2012; accepted 28 April 2012; online 12 May 2012)

In the solid-state synthesis of impurity-doped CaGa2S4, calcium tetra­thio­digallate(III), a novel phosphor material (denominated as the X-phase), with monoclinic symmetry in the space group P21/a, has been discovered. Its emission intensity is higher than that of the known ortho­rhom­bic polymorph of CaGa2S4 crystallizing in the space group Fddd. The asymmetric unit of the monoclinic phase consists of two Ca, four Ga and eight S sites. Each of the Ca and Ga atoms is surrounded by seven and four sulfide ions, respectively, thereby sharing each of the sulfur sites with the nearest neighbours. In contrast, the corresponding sites in the ortho­rhom­bic phase are surrounded by eight and four S atoms, respectively. The photoluminescence peaks from Mn2+ and Ce3+ in the doped X-phase, both of which are supposed to replace Ca2+ ions, have been observed to shift towards the high energy side in comparison with those in the ortho­rhom­bic phase. This suggests that the crystal field around the Mn2+ and Ce3+ ions in the X-phase is weaker than that in the ortho­rhom­bic phase.

Related literature

For the crystal structure of the ortho­rhom­bic form of CaGa2S4, see: Eisenmann et al. (1983[Eisenmann, B., Jakowski, M., Klee, W. & Schäfer, H. (1983). Rev. Chim. Minéral., 20, 225-263.]). For the emission properties of CaGa2S4, see: Peters & Baglio (1972[Peters, T. E. & Baglio, J. A. (1972). J. Electrochem. Soc. 119, 230-236.]); Georgobiani et al. (1995[Georgobiani, A. N., Tagiev, B. G., Tagiev, O. B. & Izzatov, B. M. (1995). Inorg. Mater. 31, 16-19.]); Bessière et al. (2004[Bessière, A., Dorenbos, P., van Eijk, C. W. E., Yamagishi, E., Hidaka, C. & Takizawa, T. (2004). J. Electrochem. Soc. 151, H254-H260.]); Takizawa & Hidaka (2008[Takizawa, T. & Hidaka, C. (2008). J. Phys. Chem. Solids, 69, 347-352.]). For synthetic details, see: Boitier et al. (2009[Boitier, F., Hidaka, C. & Takizawa, T. (2009). J. Lumin. 129, 554-562.]); Obonai et al. (2009[Obonai, T., Hidaka, C. & Takizawa, T. (2009). Phys. Status Solidi A, 206, 1026-1029.]). For the Mn2+ emission properties in various compounds, see: Barthou et al. (1994[Barthou, C., Benoit, J., Benalloul, P. & Morell, A. (1994). J. Electrochem. Soc. 141, 524-528.]); Provenzano & White (1991[Provenzano, P. L. & White, W. B. (1991). Chem. Phys. Lett. 185, 117-119.]); Wang et al. (2003[Wang, X. J., Jia, D. & Yen, W. M. (2003). J. Lumin. 102-103, 34-37.]). For crystallographic background, see: Carruthers & Watkin (1979[Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.]).

Experimental

Crystal data
  • CaGa2S4

  • Mr = 307.76

  • Monoclinic, P 21 /a

  • a = 6.841 (3) Å

  • b = 27.069 (9) Å

  • c = 7.231 (3) Å

  • β = 109.413 (5)°

  • V = 1262.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.52 mm−1

  • T = 270 K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (REQABS; Jacobson, 1998[Jacobson, R. (1998). REQABS. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.417, Tmax = 0.591

  • 8869 measured reflections

  • 2869 independent

  • 256 reflections with F2 > 2σ(F2)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.050

  • S = 1.21

  • 2869 reflections

  • 127 parameters

  • Δρmax = 2.64 e Å−3

  • Δρmin = −3.10 e Å−3

Data collection: CrystalClear (Rigaku/MSC and Rigaku, 2006[Rigaku/MSC and Rigaku (2006). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2006[Rigaku/MSC and Rigaku (2006). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: VESTA 3 (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC and Rigaku, 2006[Rigaku/MSC and Rigaku (2006). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

The alkaline earth thiodigallates MGa2S4 (M = Ca, Sr, Ba) have been studied as candidates for phosphor host materials because of their various emissions when doped with a rare earth element (Peters & Baglio, 1972; Georgobiani et al., 1995; Bessière et al., 2004; Takizawa & Hidaka, 2008). Especially, CaGa2S4 doped with Ce3+ and Eu2+ shows strong blue and green emissions. This compound normally belongs to the orthorhombic system, crystallizing in space group Fddd (Eisenmann et al., 1983). However, in the synthesis of CaGa2S4 using solid state reactions, a novel phosphor (we call it the X-phase) has unexpectedly appeared. In this paper, the crystal structure of the X-phase investigated by powder and single-crystal X-ray diffraction (XRD) measurements is reported.

Powder XRD patterns of the X-phase are shown in Fig. 1. This phase happened to be generated when doped with one of the impurities such as Mn, Ge, Sn, La, Ce, Nd, Sm, Dy, intentionally incorporated as an activator of fluorescence or phosphorescence. Thus it is expected that the X-phase is strongly related with the dopant. However, detailed conditions how to prepare the X-phase from a directed preparation route have not been clarified yet. From the analysis of the single-crystal XRD data, the chemical formula of the compound in the X-phase was shown to be CaGa2S4. The simulation of the powder XRD pattern corresponds well to the experimental pattern as shown in Fig. 1. Hence we can conclude that the X-phase is a newly found polymorph of CaGa2S4.

The unit cell of the X-phase is shown in Figs. 2 and 3; the asymmetric unit consists of two Ca sites, four Ga sites and seven S sites. Figs. 4 and 5 show the environment of the cation sites in the unit cell. In the X-phase, each Ca site is surrounded by seven sulfur atoms forming a distorted enneahedron. Each of the involved sulfur atoms is shared by the adjacent one or two Ca sites and by two Ga sites. The Ca—S distances range from 2.8261 (10) to 3.0823 (13) Å. Each Ga site is tetrahedrally surrounded by sulfur atoms which are also shared by adjacent two Ca sites and two Ga sites. The Ga—S distances and the S—Ga—S angles range from 2.2254 (11) to 2.3116 (11) Å and from 93.54 (3) to 124.12 (3) °, respectively. In the orthorhombic phase, each of the three Ca sites and the two Ga sites is in an eightfold and fourfold coordination environment, respectively, by sulfur atoms. Each of the sulfur atoms of these sites is shared by adjacent two Ca sites and two Ga sites. The Ca—S distances in this polymorph range from 2.970 to 3.130 Å. The Ga—S distances and the S—Ga—S angles range from 2.240 to 2.318 Å and from 96.6 to 125°. It should be noted that the coordination number of the Ca sites in the X-phase is reduced by one compared to that of the orthorhombic phase, while the Ga sites are tetrahedrally surrounded in both phases. Nevertheless, the framework built up from the GaS4 tetrahedra and their connection modes (corner and edge-sharing) is quite different in the two phases.

The intensities of photoluminescence from Mn2+ and Ce3+ in the X-phase were about four and eight times higher than those in the orthorhombic phase. These emission peaks shifted toward the high energy side in comparison with those in the orthorhombic phase. Mn2+ and Ce3+ ions are known to be very sensitive with respect to the crystal field (Peters & Baglio, 1972; Provenzano & White, 1991; Barthou et al., 1994; Wang et al., 2003). Thus the observed shifts of the emission peaks are assumed to be caused by a weakened crystal field originating from the decrease in the coordination number of the Ca sites in the X-phase.

Related literature top

For the crystal structure of the orthorhombic form of CaGa2S4, see: Eisenmann et al. (1983). For the emission properties of CaGa2S4, see: Peters & Baglio (1972); Georgobiani et al. (1995); Bessière et al. (2004); Takizawa & Hidaka (2008). For synthetic details, see: Boitier et al. (2009); Obonai et al. (2009). For the Mn2+ emission properties in various compounds, see: Barthou et al. (1994); Provenzano & White (1991); Wang et al. (2003). For crystallographic background, see: Carruthers & Watkin (1979).

Experimental top

A mixture of CaS (4 N) and Ga2S3 (6 N) was used as a starting material added with a small amount of a rare earth element (REE) or a transition metal (TM) as an activator. It was weighed to 0.5 g in total according to the formula Ca1-xMxGa2S4 (M = REE or TM) (Boitier et al., 2009; Obonai et al., 2009). The mixture was carefully stirred to be homogenized under Ar atmosphere, and then sealed in a silica glass capsule under vacuum of 10 -4 Pa, where the inner surface of the capsule was coated with a carbon film to prevent the reaction between the starting materials and the container. It was sintered at 1411 K for 1 h. The X-phase samples were sometimes and unexpectedly synthesized and the detailed condition how and when the X-phase emerges has not been clarified yet.

Refinement top

Freeing of the site occupation factors for the metal and the sulfur atoms revealed no noticeable incorporation of the dopant metals or of vacancies at the S positions. The highest difference peak of 2.64 e Å-3 is located 1.40 Å from the Ga4 atom; the deepest hole (-3.11 e Å-3) is 1.39 Å from the Ga4 atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC and Rigaku, 2006); cell refinement: CrystalClear (Rigaku/MSC and Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: VESTA 3 (Momma & Izumi, 2011); software used to prepare material for publication: CrystalStructure (Rigaku/MSC and Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. Experimental and siumlated X-ray powder diffraction patterns of the X-phase of CaGa2S4 together with the known orthorhombic form for comparison.
[Figure 2] Fig. 2. The unit cell of the X-phase of CaGa2S4 viewed along [100].
[Figure 3] Fig. 3. The unit cell of the X-phase of CaGa2S4 viewed along [001].
[Figure 4] Fig. 4. The environment of the cation sites in the X-phase: Ca sites.
[Figure 5] Fig. 5. The environment of the cation sites in the X-phase: Ga sites.
calcium tetrathiodigallate(III) top
Crystal data top
CaGa2S4F(000) = 1168.00
Mr = 307.76Dx = 3.237 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yabCell parameters from 3521 reflections
a = 6.841 (3) Åθ = 3.2–27.5°
b = 27.069 (9) ŵ = 10.52 mm1
c = 7.231 (3) ÅT = 270 K
β = 109.413 (5)°Block, colorless
V = 1262.9 (8) Å30.10 × 0.10 × 0.05 mm
Z = 8
Data collection top
Rigaku Saturn724+
diffractometer
2869 independent reflections
Graphite monochromator256 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.047
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQABS; Jacobson, 1998)
h = 86
Tmin = 0.417, Tmax = 0.591k = 3526
8869 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038Secondary atom site location: difference Fourier map
wR(F2) = 0.050 Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979) 6334.0000 8721.6900 0.0000
S = 1.21(Δ/σ)max < 0.001
2869 reflectionsΔρmax = 2.64 e Å3
127 parametersΔρmin = 3.10 e Å3
Crystal data top
CaGa2S4V = 1262.9 (8) Å3
Mr = 307.76Z = 8
Monoclinic, P21/aMo Kα radiation
a = 6.841 (3) ŵ = 10.52 mm1
b = 27.069 (9) ÅT = 270 K
c = 7.231 (3) Å0.10 × 0.10 × 0.05 mm
β = 109.413 (5)°
Data collection top
Rigaku Saturn724+
diffractometer
2869 independent reflections
Absorption correction: multi-scan
(REQABS; Jacobson, 1998)
256 reflections with F2 > 2σ(F2)
Tmin = 0.417, Tmax = 0.591Rint = 0.047
8869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038127 parameters
wR(F2) = 0.050Δρmax = 2.64 e Å3
S = 1.21Δρmin = 3.10 e Å3
2869 reflections
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.41763 (6)0.234320 (10)0.54983 (6)0.01027 (10)
Ga20.63163 (6)0.150170 (10)0.29040 (6)0.01047 (10)
Ga30.05236 (6)0.052250 (10)0.27118 (6)0.01054 (10)
Ga40.23350 (6)0.064220 (10)0.01510 (6)0.01095 (10)
Ca10.44242 (12)0.07086 (3)0.32662 (11)0.0133 (2)
Ca20.09658 (12)0.19323 (3)0.04330 (11)0.0145 (2)
S10.08531 (14)0.09720 (3)0.01062 (13)0.0114 (2)
S20.13487 (14)0.09906 (4)0.49207 (13)0.0125 (2)
S30.24485 (13)0.25319 (4)0.75754 (13)0.0128 (2)
S40.37219 (14)0.15701 (3)0.42780 (13)0.0115 (2)
S50.28330 (14)0.02921 (3)0.31401 (13)0.0112 (2)
S60.30654 (14)0.27904 (3)0.26168 (13)0.0114 (2)
S70.26440 (15)0.01372 (4)0.21648 (14)0.0157 (2)
S80.42875 (14)0.13001 (3)0.02150 (13)0.0118 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.0099 (2)0.0137 (2)0.0084 (2)0.00054 (16)0.00453 (16)0.00112 (16)
Ga20.0109 (2)0.0120 (2)0.0094 (2)0.00015 (16)0.00450 (16)0.00010 (16)
Ga30.0111 (2)0.0126 (2)0.0100 (2)0.00015 (16)0.00645 (16)0.00067 (16)
Ga40.0114 (2)0.0141 (2)0.0091 (2)0.00123 (17)0.00581 (16)0.00087 (16)
Ca10.0127 (4)0.0164 (4)0.0114 (3)0.0016 (3)0.0049 (3)0.0007 (3)
Ca20.0146 (4)0.0145 (4)0.0140 (4)0.0003 (3)0.0044 (3)0.0005 (3)
S10.0106 (4)0.0161 (4)0.0078 (4)0.0007 (3)0.0037 (3)0.0016 (3)
S20.0153 (4)0.0151 (5)0.0084 (4)0.0037 (3)0.0056 (3)0.0004 (3)
S30.0074 (4)0.0234 (5)0.0088 (4)0.0017 (3)0.0043 (3)0.0004 (3)
S40.0134 (4)0.0118 (4)0.0114 (4)0.0002 (3)0.0069 (3)0.0008 (3)
S50.0118 (4)0.0151 (4)0.0070 (4)0.0024 (3)0.0035 (3)0.0015 (3)
S60.0135 (5)0.0130 (4)0.0094 (4)0.0015 (3)0.0062 (3)0.0006 (3)
S70.0197 (5)0.0167 (5)0.0168 (5)0.0072 (3)0.0142 (4)0.0073 (3)
S80.0124 (4)0.0145 (4)0.0093 (4)0.0029 (3)0.0049 (3)0.0019 (3)
Geometric parameters (Å, º) top
Ga1—S32.2569 (11)Ga4—S82.2936 (9)
Ga1—S3i2.2685 (8)Ca1—S12.8261 (10)
Ga1—S42.2522 (8)Ca1—S2iv2.9260 (14)
Ga1—S62.3090 (9)Ca1—S4v2.9500 (11)
Ga2—S2ii2.2458 (9)Ca1—S5v2.8814 (10)
Ga2—S42.3116 (11)Ca1—S5iii2.9095 (11)
Ga2—S6i2.3048 (9)Ca1—S7vi2.8480 (14)
Ga2—S82.2868 (8)Ca1—S8vii3.0823 (13)
Ga3—S12.3190 (10)Ca2—S12.8522 (11)
Ga3—S22.2526 (11)Ca2—S3iv3.0538 (13)
Ga3—S52.2989 (10)Ca2—S3viii2.9762 (10)
Ga3—S72.2513 (10)Ca2—S42.9599 (10)
Ga4—S12.3062 (10)Ca2—S62.9059 (11)
Ga4—S52.2795 (10)Ca2—S6ix3.0127 (14)
Ga4—S7iii2.2254 (11)Ca2—S83.0033 (13)
S5···S7x3.4654 (14)S7···S5x3.4654 (14)
S3—Ga1—S3i98.37 (3)S3iv—Ca2—S6ix130.31 (3)
S3—Ga1—S4115.87 (4)S3iv—Ca2—S876.03 (3)
S3—Ga1—S6113.19 (3)S3viii—Ca2—S4158.30 (4)
S3i—Ga1—S4112.04 (3)S3viii—Ca2—S697.31 (3)
S3i—Ga1—S6118.40 (3)S3viii—Ca2—S6ix73.81 (3)
S4—Ga1—S699.93 (3)S3viii—Ca2—S8130.42 (3)
S2ii—Ga2—S4104.61 (3)S4—Ca2—S673.08 (2)
S2ii—Ga2—S6i106.99 (3)S4—Ca2—S6ix85.13 (3)
S2ii—Ga2—S8124.12 (3)S4—Ca2—S871.28 (3)
S4—Ga2—S6i117.90 (3)S6—Ca2—S6ix78.97 (3)
S4—Ga2—S898.16 (3)S6—Ca2—S8106.10 (3)
S6i—Ga2—S8105.82 (3)S6ix—Ca2—S8152.63 (3)
S1—Ga3—S2110.72 (3)Ga3—S1—Ga485.00 (3)
S1—Ga3—S593.54 (3)Ga3—S1—Ca1112.55 (3)
S1—Ga3—S7113.14 (3)Ga3—S1—Ca2116.58 (3)
S2—Ga3—S5122.11 (3)Ga4—S1—Ca1120.51 (4)
S2—Ga3—S7105.79 (4)Ga4—S1—Ca289.07 (3)
S5—Ga3—S7111.40 (3)Ca1—S1—Ca2124.13 (3)
S1—Ga4—S594.40 (3)Ga2vii—S2—Ga3100.25 (3)
S1—Ga4—S7iii120.06 (3)Ga2vii—S2—Ca1xi89.39 (3)
S1—Ga4—S8105.16 (3)Ga3—S2—Ca1xi123.91 (4)
S5—Ga4—S7iii115.87 (3)Ga1—S3—Ga1ix102.30 (3)
S5—Ga4—S8121.53 (3)Ga1—S3—Ca2xi134.04 (4)
S7iii—Ga4—S8100.69 (4)Ga1—S3—Ca2xii95.21 (3)
S1—Ca1—S2iv74.89 (3)Ga1ix—S3—Ca2xi92.90 (3)
S1—Ca1—S4v111.74 (3)Ga1ix—S3—Ca2xii141.19 (4)
S1—Ca1—S5v163.07 (4)Ca2xi—S3—Ca2xii99.38 (3)
S1—Ca1—S5iii89.75 (3)Ga1—S4—Ga2102.54 (3)
S1—Ca1—S7vi114.26 (3)Ga1—S4—Ca1xiii121.53 (3)
S1—Ca1—S8vii70.50 (3)Ga1—S4—Ca291.27 (3)
S2iv—Ca1—S4v75.72 (3)Ga2—S4—Ca1xiii87.56 (3)
S2iv—Ca1—S5v92.74 (3)Ga2—S4—Ca287.89 (3)
S2iv—Ca1—S5iii86.54 (3)Ca1xiii—S4—Ca2147.08 (3)
S2iv—Ca1—S7vi160.92 (4)Ga3—S5—Ga486.08 (3)
S2iv—Ca1—S8vii127.19 (3)Ga3—S5—Ca1xiii109.71 (4)
S4v—Ca1—S5v75.27 (2)Ga3—S5—Ca1iii127.11 (3)
S4v—Ca1—S5iii146.76 (4)Ga4—S5—Ca1xiii122.66 (3)
S4v—Ca1—S7vi113.32 (3)Ga4—S5—Ca1iii110.69 (4)
S4v—Ca1—S8vii81.50 (3)Ca1xiii—S5—Ca1iii102.20 (3)
S5v—Ca1—S5iii77.80 (3)Ga1—S6—Ga2ix112.31 (4)
S5v—Ca1—S7vi74.43 (3)Ga1—S6—Ca291.50 (3)
S5v—Ca1—S8vii126.39 (3)Ga1—S6—Ca2i121.80 (3)
S5iii—Ca1—S7vi77.09 (3)Ga2ix—S6—Ca2122.40 (3)
S5iii—Ca1—S8vii130.86 (3)Ga2ix—S6—Ca2i106.99 (3)
S7vi—Ca1—S8vii71.73 (3)Ca2—S6—Ca2i101.95 (3)
S1—Ca2—S3iv128.30 (3)Ga3—S7—Ga4iii113.74 (5)
S1—Ca2—S3viii97.70 (3)Ga3—S7—Ca1vi148.67 (5)
S1—Ca2—S486.52 (3)Ga4iii—S7—Ca1vi97.39 (4)
S1—Ca2—S6156.52 (4)Ga2—S8—Ga4104.91 (4)
S1—Ca2—S6ix88.01 (3)Ga2—S8—Ca1ii127.28 (3)
S1—Ca2—S877.16 (3)Ga2—S8—Ca287.30 (3)
S3iv—Ca2—S3viii69.21 (3)Ga4—S8—Ca1ii89.73 (3)
S3iv—Ca2—S4124.09 (3)Ga4—S8—Ca285.67 (3)
S3iv—Ca2—S674.18 (3)Ca1ii—S8—Ca2144.97 (3)
S3—Ga1—S3i—Ga1i153.70 (4)S5v—Ca1—S2iv—Ga3iv38.96 (4)
S3—Ga1—S3i—Ca2xii17.36 (4)S2iv—Ca1—S5iii—Ga3iii33.05 (5)
S3i—Ga1—S3—Ga1ix163.03 (4)S2iv—Ca1—S5iii—Ga4iii134.24 (3)
S3i—Ga1—S3—Ca2xi90.54 (5)S5iii—Ca1—S2iv—Ga3iv38.63 (4)
S3i—Ga1—S3—Ca2xii17.88 (4)S2iv—Ca1—S7vi—Ga3vi17.88 (16)
S3—Ga1—S4—Ga2167.10 (3)S7vi—Ca1—S2iv—Ga3iv7.90 (13)
S3—Ga1—S4—Ca2104.78 (3)S2iv—Ca1—S8vii—Ga2vii64.03 (6)
S3—Ga1—S4—Ca1xiii72.20 (5)S2iv—Ca1—S8vii—Ga4vii172.68 (3)
S4—Ga1—S3—Ga1ix77.44 (4)S2iv—Ca1—S8vii—Ca2vii105.26 (6)
S4—Ga1—S3—Ca2xi28.99 (5)S8vii—Ca1—S2iv—Ga3iv179.61 (3)
S4—Ga1—S3—Ca2xii137.40 (3)S4v—Ca1—S5v—Ga3v62.52 (4)
S3—Ga1—S6—Ca2106.34 (3)S4v—Ca1—S5v—Ga4v35.72 (5)
S3—Ga1—S6—Ga2ix19.83 (5)S5v—Ca1—S4v—Ga1v170.74 (5)
S3—Ga1—S6—Ca2i148.59 (4)S5v—Ca1—S4v—Ga2v86.03 (3)
S6—Ga1—S3—Ga1ix37.16 (5)S5v—Ca1—S4v—Ca2v3.70 (8)
S6—Ga1—S3—Ca2xi143.58 (4)S4v—Ca1—S5iii—Ga3iii90.16 (7)
S6—Ga1—S3—Ca2xii108.00 (3)S4v—Ca1—S5iii—Ga4iii168.64 (6)
S3i—Ga1—S4—Ga255.34 (4)S5iii—Ca1—S4v—Ga1v152.37 (6)
S3i—Ga1—S4—Ca2143.46 (3)S5iii—Ca1—S4v—Ga2v49.14 (7)
S3i—Ga1—S4—Ca1xiii39.56 (6)S5iii—Ca1—S4v—Ca2v33.19 (13)
S4—Ga1—S3i—Ga1i83.93 (5)S4v—Ca1—S7vi—Ga3vi97.24 (8)
S4—Ga1—S3i—Ca2xii139.73 (3)S7vi—Ca1—S4v—Ga1v105.29 (5)
S3i—Ga1—S6—Ca2139.35 (4)S7vi—Ca1—S4v—Ga2v151.48 (3)
S3i—Ga1—S6—Ga2ix94.47 (5)S7vi—Ca1—S4v—Ca2v69.15 (9)
S3i—Ga1—S6—Ca2i34.28 (5)S4v—Ca1—S8vii—Ga2vii128.79 (4)
S6—Ga1—S3i—Ga1i31.56 (5)S4v—Ca1—S8vii—Ga4vii122.55 (3)
S6—Ga1—S3i—Ca2xii104.78 (4)S4v—Ca1—S8vii—Ca2vii40.50 (7)
S4—Ga1—S6—Ca217.50 (4)S8vii—Ca1—S4v—Ga1v39.47 (5)
S4—Ga1—S6—Ga2ix143.67 (4)S8vii—Ca1—S4v—Ga2v142.70 (3)
S4—Ga1—S6—Ca2i87.57 (4)S8vii—Ca1—S4v—Ca2v134.97 (8)
S6—Ga1—S4—Ga270.95 (3)S5v—Ca1—S5iii—Ga3iii126.60 (5)
S6—Ga1—S4—Ca217.17 (4)S5v—Ca1—S5iii—Ga4iii132.21 (4)
S6—Ga1—S4—Ca1xiii165.85 (4)S5iii—Ca1—S5v—Ga3v137.15 (4)
S2ii—Ga2—S4—Ga1107.72 (3)S5iii—Ca1—S5v—Ga4v124.60 (5)
S2ii—Ga2—S4—Ca2161.45 (3)S5v—Ca1—S7vi—Ga3vi31.29 (8)
S2ii—Ga2—S4—Ca1xiii14.07 (3)S7vi—Ca1—S5v—Ga3v57.35 (4)
S4—Ga2—S2ii—Ga3ii138.58 (3)S7vi—Ca1—S5v—Ga4v155.60 (5)
S2ii—Ga2—S6i—Ga1i68.55 (5)S5v—Ca1—S8vii—Ga2vii166.65 (4)
S2ii—Ga2—S6i—Ca2i175.65 (4)S5v—Ca1—S8vii—Ga4vii58.00 (4)
S6i—Ga2—S2ii—Ga3ii95.60 (4)S5v—Ca1—S8vii—Ca2vii24.06 (9)
S2ii—Ga2—S8—Ga461.50 (6)S8vii—Ca1—S5v—Ga3v4.92 (6)
S2ii—Ga2—S8—Ca2146.29 (4)S8vii—Ca1—S5v—Ga4v103.16 (5)
S2ii—Ga2—S8—Ca1ii39.84 (7)S5iii—Ca1—S7vi—Ga3vi49.43 (8)
S8—Ga2—S2ii—Ga3ii27.86 (6)S7vi—Ca1—S5iii—Ga3iii156.82 (5)
S4—Ga2—S6i—Ga1i48.85 (4)S7vi—Ca1—S5iii—Ga4iii55.63 (3)
S4—Ga2—S6i—Ca2i58.25 (5)S5iii—Ca1—S8vii—Ga2vii59.76 (6)
S6i—Ga2—S4—Ga110.94 (4)S5iii—Ca1—S8vii—Ga4vii48.89 (4)
S6i—Ga2—S4—Ca279.88 (3)S5iii—Ca1—S8vii—Ca2vii130.95 (6)
S6i—Ga2—S4—Ca1xiii132.73 (3)S8vii—Ca1—S5iii—Ga3iii105.41 (6)
S4—Ga2—S8—Ga452.39 (4)S8vii—Ca1—S5iii—Ga4iii4.21 (6)
S4—Ga2—S8—Ca232.40 (3)S7vi—Ca1—S8vii—Ga2vii113.12 (4)
S4—Ga2—S8—Ca1ii153.73 (4)S7vi—Ca1—S8vii—Ga4vii4.47 (2)
S8—Ga2—S4—Ga1123.75 (3)S7vi—Ca1—S8vii—Ca2vii77.59 (6)
S8—Ga2—S4—Ca232.92 (3)S8vii—Ca1—S7vi—Ga3vi169.08 (8)
S8—Ga2—S4—Ca1xiii114.47 (2)S1—Ca2—S3iv—Ga1iv40.82 (6)
S6i—Ga2—S8—Ga4174.53 (3)S3iv—Ca2—S1—Ga3155.55 (4)
S6i—Ga2—S8—Ca289.74 (3)S3iv—Ca2—S1—Ga471.61 (4)
S6i—Ga2—S8—Ca1ii84.13 (5)S3iv—Ca2—S1—Ca155.44 (7)
S8—Ga2—S6i—Ga1i157.33 (3)S1—Ca2—S3viii—Ga1viii114.19 (4)
S8—Ga2—S6i—Ca2i50.23 (5)S1—Ca2—S3viii—Ca2ix109.55 (4)
S1—Ga3—S2—Ga2vii30.00 (4)S3viii—Ca2—S1—Ga3134.92 (4)
S1—Ga3—S2—Ca1xi126.23 (4)S3viii—Ca2—S1—Ga4141.13 (3)
S2—Ga3—S1—Ga4133.76 (3)S3viii—Ca2—S1—Ca114.08 (6)
S2—Ga3—S1—Ca1105.20 (4)S1—Ca2—S4—Ga1154.26 (4)
S2—Ga3—S1—Ca247.31 (5)S1—Ca2—S4—Ga2103.24 (3)
S1—Ga3—S5—Ga47.49 (3)S1—Ca2—S4—Ca1xiii21.00 (9)
S1—Ga3—S5—Ca1xiii115.89 (3)S4—Ca2—S1—Ga323.68 (4)
S1—Ga3—S5—Ca1iii120.58 (4)S4—Ca2—S1—Ga460.26 (3)
S5—Ga3—S1—Ga47.41 (3)S4—Ca2—S1—Ca1172.69 (5)
S5—Ga3—S1—Ca1128.44 (4)S1—Ca2—S6—Ga117.08 (11)
S5—Ga3—S1—Ca279.04 (4)S1—Ca2—S6—Ga2ix100.72 (10)
S1—Ga3—S7—Ga4iii54.29 (5)S1—Ca2—S6—Ca2i140.07 (9)
S1—Ga3—S7—Ca1vi132.51 (7)S6—Ca2—S1—Ga35.63 (13)
S7—Ga3—S1—Ga4107.68 (3)S6—Ca2—S1—Ga489.57 (10)
S7—Ga3—S1—Ca113.35 (5)S6—Ca2—S1—Ca1143.38 (8)
S7—Ga3—S1—Ca2165.87 (4)S1—Ca2—S6ix—Ga1ix136.61 (3)
S2—Ga3—S5—Ga4124.70 (4)S1—Ca2—S6ix—Ca2ix124.02 (3)
S2—Ga3—S5—Ca1xiii1.32 (5)S6ix—Ca2—S1—Ga361.56 (4)
S2—Ga3—S5—Ca1iii122.21 (5)S6ix—Ca2—S1—Ga4145.50 (3)
S5—Ga3—S2—Ga2vii138.38 (3)S6ix—Ca2—S1—Ca187.45 (5)
S5—Ga3—S2—Ca1xi125.39 (4)S1—Ca2—S8—Ga2116.60 (3)
S2—Ga3—S7—Ga4iii175.67 (3)S1—Ca2—S8—Ga411.41 (2)
S2—Ga3—S7—Ca1vi11.14 (9)S1—Ca2—S8—Ca1ii71.92 (6)
S7—Ga3—S2—Ga2vii92.93 (4)S8—Ca2—S1—Ga395.26 (4)
S7—Ga3—S2—Ca1xi3.30 (5)S8—Ca2—S1—Ga411.32 (2)
S5—Ga3—S7—Ga4iii49.58 (5)S8—Ca2—S1—Ca1115.73 (5)
S5—Ga3—S7—Ca1vi123.62 (8)S3iv—Ca2—S3viii—Ga1viii13.97 (3)
S7—Ga3—S5—Ga4109.08 (3)S3iv—Ca2—S3viii—Ca2ix122.30 (3)
S7—Ga3—S5—Ca1xiii127.55 (4)S3viii—Ca2—S3iv—Ga1iv124.07 (5)
S7—Ga3—S5—Ca1iii4.01 (6)S3iv—Ca2—S4—Ga170.62 (5)
S1—Ga4—S5—Ga37.54 (3)S3iv—Ca2—S4—Ga231.88 (4)
S1—Ga4—S5—Ca1xiii103.42 (4)S3iv—Ca2—S4—Ca1xiii114.12 (8)
S1—Ga4—S5—Ca1iii135.89 (3)S4—Ca2—S3iv—Ga1iv75.36 (6)
S5—Ga4—S1—Ga37.48 (3)S3iv—Ca2—S6—Ga1147.66 (3)
S5—Ga4—S1—Ca1120.76 (4)S3iv—Ca2—S6—Ga2ix94.54 (4)
S5—Ga4—S1—Ca2109.31 (3)S3iv—Ca2—S6—Ca2i24.67 (3)
S1—Ga4—S7iii—Ga3iii55.77 (5)S6—Ca2—S3iv—Ga1iv131.51 (4)
S7iii—Ga4—S1—Ga3115.90 (4)S3iv—Ca2—S6ix—Ga1ix81.77 (5)
S7iii—Ga4—S1—Ca12.62 (6)S3iv—Ca2—S6ix—Ca2ix17.60 (5)
S7iii—Ga4—S1—Ca2127.31 (4)S6ix—Ca2—S3iv—Ga1iv168.56 (4)
S1—Ga4—S8—Ga2100.35 (4)S3iv—Ca2—S8—Ga2108.02 (3)
S1—Ga4—S8—Ca214.31 (3)S3iv—Ca2—S8—Ga4146.80 (3)
S1—Ga4—S8—Ca1ii130.93 (3)S3iv—Ca2—S8—Ca1ii63.47 (6)
S8—Ga4—S1—Ga3131.83 (3)S8—Ca2—S3iv—Ga1iv19.95 (4)
S8—Ga4—S1—Ca1114.88 (4)S3viii—Ca2—S4—Ga152.14 (11)
S8—Ga4—S1—Ca215.04 (3)S3viii—Ca2—S4—Ga2154.64 (10)
S5—Ga4—S7iii—Ga3iii56.51 (5)S3viii—Ca2—S4—Ca1xiii123.12 (10)
S7iii—Ga4—S5—Ga3119.03 (3)S4—Ca2—S3viii—Ga1viii145.80 (9)
S7iii—Ga4—S5—Ca1xiii130.02 (4)S4—Ca2—S3viii—Ca2ix9.54 (12)
S7iii—Ga4—S5—Ca1iii9.33 (5)S3viii—Ca2—S6—Ga1146.44 (3)
S5—Ga4—S8—Ga24.69 (5)S3viii—Ca2—S6—Ga2ix28.64 (5)
S5—Ga4—S8—Ca290.73 (4)S3viii—Ca2—S6—Ca2i90.57 (3)
S5—Ga4—S8—Ca1ii124.03 (3)S6—Ca2—S3viii—Ga1viii83.93 (4)
S8—Ga4—S5—Ga3118.33 (3)S6—Ca2—S3viii—Ca2ix52.34 (4)
S8—Ga4—S5—Ca1xiii7.37 (6)S3viii—Ca2—S6ix—Ga1ix124.78 (4)
S8—Ga4—S5—Ca1iii113.32 (4)S3viii—Ca2—S6ix—Ca2ix25.41 (3)
S7iii—Ga4—S8—Ga2134.25 (3)S6ix—Ca2—S3viii—Ga1viii160.16 (3)
S7iii—Ga4—S8—Ca2139.71 (3)S6ix—Ca2—S3viii—Ca2ix23.89 (3)
S7iii—Ga4—S8—Ca1ii5.53 (3)S3viii—Ca2—S8—Ga2154.19 (4)
S8—Ga4—S7iii—Ga3iii170.40 (3)S3viii—Ca2—S8—Ga4100.62 (4)
S1—Ca1—S2iv—Ga3iv129.31 (4)S3viii—Ca2—S8—Ca1ii17.29 (9)
S2iv—Ca1—S1—Ga3148.00 (4)S8—Ca2—S3viii—Ga1viii34.53 (5)
S2iv—Ca1—S1—Ga450.23 (4)S8—Ca2—S3viii—Ca2ix170.80 (4)
S2iv—Ca1—S1—Ca261.91 (5)S4—Ca2—S6—Ga113.63 (3)
S1—Ca1—S4v—Ga1v25.51 (7)S4—Ca2—S6—Ga2ix131.43 (5)
S1—Ca1—S4v—Ga2v77.72 (4)S4—Ca2—S6—Ca2i109.36 (3)
S1—Ca1—S4v—Ca2v160.05 (7)S6—Ca2—S4—Ga113.98 (3)
S4v—Ca1—S1—Ga3144.50 (4)S6—Ca2—S4—Ga288.53 (3)
S4v—Ca1—S1—Ga4117.73 (4)S6—Ca2—S4—Ca1xiii170.76 (8)
S4v—Ca1—S1—Ca25.59 (7)S4—Ca2—S6ix—Ga1ix49.94 (4)
S1—Ca1—S5v—Ga3v179.34 (12)S4—Ca2—S6ix—Ca2ix149.31 (3)
S1—Ca1—S5v—Ga4v81.09 (14)S6ix—Ca2—S4—Ga165.96 (3)
S5v—Ca1—S1—Ga3103.81 (14)S6ix—Ca2—S4—Ga2168.46 (3)
S5v—Ca1—S1—Ga46.04 (16)S6ix—Ca2—S4—Ca1xiii109.30 (8)
S5v—Ca1—S1—Ca2106.10 (13)S4—Ca2—S8—Ga225.94 (2)
S1—Ca1—S5iii—Ga3iii41.83 (5)S4—Ca2—S8—Ga479.25 (3)
S1—Ca1—S5iii—Ga4iii59.36 (4)S4—Ca2—S8—Ca1ii162.58 (6)
S5iii—Ca1—S1—Ga361.51 (4)S8—Ca2—S4—Ga1128.13 (3)
S5iii—Ca1—S1—Ga436.26 (5)S8—Ca2—S4—Ga225.63 (2)
S5iii—Ca1—S1—Ca2148.40 (5)S8—Ca2—S4—Ca1xiii56.61 (8)
S1—Ca1—S7vi—Ga3vi133.22 (7)S6—Ca2—S6ix—Ga1ix23.74 (4)
S7vi—Ca1—S1—Ga314.18 (5)S6—Ca2—S6ix—Ca2ix75.63 (3)
S7vi—Ca1—S1—Ga4111.95 (5)S6ix—Ca2—S6—Ga174.59 (3)
S7vi—Ca1—S1—Ca2135.91 (5)S6ix—Ca2—S6—Ga2ix43.21 (4)
S1—Ca1—S8vii—Ga2vii12.04 (4)S6ix—Ca2—S6—Ca2i162.43 (3)
S1—Ca1—S8vii—Ga4vii120.69 (3)S6—Ca2—S8—Ga239.37 (3)
S1—Ca1—S8vii—Ca2vii157.25 (6)S6—Ca2—S8—Ga4144.56 (3)
S8vii—Ca1—S1—Ga372.56 (4)S6—Ca2—S8—Ca1ii132.12 (6)
S8vii—Ca1—S1—Ga4170.33 (4)S8—Ca2—S6—Ga177.71 (4)
S8vii—Ca1—S1—Ca277.53 (5)S8—Ca2—S6—Ga2ix164.48 (4)
S2iv—Ca1—S4v—Ga1v92.49 (5)S8—Ca2—S6—Ca2i45.27 (3)
S2iv—Ca1—S4v—Ga2v10.73 (2)S6ix—Ca2—S8—Ga257.78 (7)
S2iv—Ca1—S4v—Ca2v93.07 (8)S6ix—Ca2—S8—Ga447.41 (7)
S4v—Ca1—S2iv—Ga3iv113.01 (4)S6ix—Ca2—S8—Ca1ii130.74 (7)
S2iv—Ca1—S5v—Ga3v136.98 (3)S8—Ca2—S6ix—Ga1ix80.03 (8)
S2iv—Ca1—S5v—Ga4v38.74 (5)S8—Ca2—S6ix—Ca2ix179.40 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x, y, z; (iv) x, y, z1; (v) x1, y, z1; (vi) x1, y, z; (vii) x1, y, z; (viii) x1/2, y+1/2, z1; (ix) x1/2, y+1/2, z; (x) x, y, z+1; (xi) x, y, z+1; (xii) x+1/2, y+1/2, z+1; (xiii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaCaGa2S4
Mr307.76
Crystal system, space groupMonoclinic, P21/a
Temperature (K)270
a, b, c (Å)6.841 (3), 27.069 (9), 7.231 (3)
β (°) 109.413 (5)
V3)1262.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)10.52
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(REQABS; Jacobson, 1998)
Tmin, Tmax0.417, 0.591
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
8869, 2869, 256
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.050, 1.21
No. of reflections2869
No. of parameters127
No. of restraints?
Δρmax, Δρmin (e Å3)2.64, 3.10

Computer programs: CrystalClear (Rigaku/MSC and Rigaku, 2006), CrystalStructure (Rigaku/MSC and Rigaku, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), VESTA 3 (Momma & Izumi, 2011).

 

Acknowledgements

The authors would like to express their sincere thanks to Professor A. Kobayashi and Dr B. Zhou for their help with single-crystal X-ray diffraction measurements. This work was partly supported by the grant for private universities for 2009–2013 from the Ministry of Education, Sports, Science, Culture and Technology, Japan.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarthou, C., Benoit, J., Benalloul, P. & Morell, A. (1994). J. Electrochem. Soc. 141, 524–528.  CrossRef CAS Web of Science Google Scholar
First citationBessière, A., Dorenbos, P., van Eijk, C. W. E., Yamagishi, E., Hidaka, C. & Takizawa, T. (2004). J. Electrochem. Soc. 151, H254–H260.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoitier, F., Hidaka, C. & Takizawa, T. (2009). J. Lumin. 129, 554–562.  Web of Science CrossRef CAS Google Scholar
First citationCarruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698–699.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEisenmann, B., Jakowski, M., Klee, W. & Schäfer, H. (1983). Rev. Chim. Minéral., 20, 225–263.  Google Scholar
First citationGeorgobiani, A. N., Tagiev, B. G., Tagiev, O. B. & Izzatov, B. M. (1995). Inorg. Mater. 31, 16–19.  CAS Google Scholar
First citationJacobson, R. (1998). REQABS. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationObonai, T., Hidaka, C. & Takizawa, T. (2009). Phys. Status Solidi A, 206, 1026–1029.  Web of Science CrossRef CAS Google Scholar
First citationPeters, T. E. & Baglio, J. A. (1972). J. Electrochem. Soc. 119, 230–236.  CrossRef CAS Web of Science Google Scholar
First citationProvenzano, P. L. & White, W. B. (1991). Chem. Phys. Lett. 185, 117–119.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC and Rigaku (2006). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationTakizawa, T. & Hidaka, C. (2008). J. Phys. Chem. Solids, 69, 347–352.  Web of Science CrossRef CAS Google Scholar
First citationWang, X. J., Jia, D. & Yen, W. M. (2003). J. Lumin. 102–103, 34–37.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds