metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[cadmium-μ-[1,3-bis­­(imidazol-1-yl)propane]-di-μ-chlorido]

aJinhua Radio and Television University, Jinhua, Zhejiang 321022, People's Republic of China, and bJinhua Professional–Technical College, Jinhua, Zhejiang 321007, People's Republic of China
*Correspondence e-mail: jh_ll@126.com

(Received 20 April 2012; accepted 9 May 2012; online 16 May 2012)

The title complex, [CdCl2(C9H12N4)]n, is characterized by the formation of a zigzag chain structure parallel to [001]. In the chain, the Cd2+ cation is coordinated by four bridging Cl ligands in equatorial positions and two N atoms from symmetry-related and likewise bridging 1,3-bis­(imidazol-1-yl)propane ligands in axial positions, forming a distorted CdCl4N2 octa­hedron.

Related literature

For related structures, see: Carlucci et al. (1997[Carlucci, L., Ciani, G., Gudenberg, D. W. V. & Proserpio, D. M. (1997). Inorg. Chem. 36, 3812-3813.]); Wang et al. (2011[Wang, X. J., Zhan, C. H., Feng, Y. L., Lan, Y. Z., Yin, J. L. & Cheng, J. W. (2011). CrystEngComm, 13, 684-689.]); Yang et al. (2010[Yang, G. P., Wang, Y. Y., Liu, P., Fu, A. Y., Zhang, Y. N., Jin, J. C. & Shi, Q. Z. (2010). Cryst. Growth Des. 10, 1443-1450.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C9H12N4)]

  • Mr = 359.54

  • Orthorhombic, P 21 21 21

  • a = 15.1617 (16) Å

  • b = 9.9810 (11) Å

  • c = 7.8022 (8) Å

  • V = 1180.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 296 K

  • 0.31 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.585, Tmax = 0.761

  • 18692 measured reflections

  • 2707 independent reflections

  • 2645 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.013

  • wR(F2) = 0.037

  • S = 1.00

  • 2707 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1109 Friedel pairs

  • Flack parameter: 0.294 (18)

Table 1
Selected bond lengths (Å)

Cd—N2 2.2836 (12)
Cd—N1i 2.2911 (13)
Cd—Cl1 2.6370 (4)
Cd—Cl2 2.6800 (4)
Cd—Cl1ii 2.7010 (4)
Cd—Cl2i 2.7409 (5)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, complexes based on the 1,3-bi-4-pyridylpropane (bpp) ligand, such as [Ni2(C10H8O4S2)2(bpp)2(H2O)]n (Wang et al., 2011), [Ag(C8H9O4)(bpp)]n (Yang et al., 2010), [Ag(bpp)]nn(CF3SO3) (Carlucci et al., 1997), have been reported. However, complexes with 1,3-bis(imidazol-1'-yl)propane (bip) as ligand are scarce. Herein, we report the synthesis and structure of a new complex, [Cd(bip)Cl2]n (I).

A perspective view of the molecular entities of compound (I) is presented in Fig.1. The asymmetric unit consists of one Cd2+ ion, one 1,3-bis(imidazol-1'-yl)propane ligand, and two chlorine atoms. The Cd2+ ion is six-coordinate and has a slightly distorted octahedral coordination environment, defined by four chlorine atoms and two nitrogen atoms from two symmetry-related 1,3-bis(imidazol-1'-yl)propane ligands. As shown in Fig. 2, the adjacent Cd(II) ions are bridged by one 1,3-bis(imidazol-1'-yl)propane ligand and two chlorine atoms to generate a zigzag-chain structure running along [001].

It should be noted that there are no remarkable hydrogen bonding interactions in the crystal.

Related literature top

For related structures, see: Carlucci et al. (1997); Wang et al. (2011); Yang et al. (2010).

Experimental top

A mixture of 1,3-bis(imidazol-1'-yl)propane (0.088 g, 0.5 mmol), CdCl2.2.5H2O (0.342 g, 1.5 mmol), and Na2CO3 (0.060 g, 0.5 mmol) in H2O (16 ml)/C2H5OH (2 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 433 K for 72 h, then cooled to room temperature over 3 days. Colourless crystals suitable for X-ray analysis were obtained.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93 Å and aliphatic C—H 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The used intensity data originates from an inversion-twinned crystal.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability elevl.
[Figure 2] Fig. 2. A view of the one-dimensional chain structure of (I).
catena-Poly[cadmium-µ-[1,3-bis(imidazol-1-yl)propane]-di-µ-chlorido] top
Crystal data top
[CdCl2(C9H12N4)]F(000) = 704
Mr = 359.54Dx = 2.023 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9933 reflections
a = 15.1617 (16) Åθ = 2.4–27.5°
b = 9.9810 (11) ŵ = 2.28 mm1
c = 7.8022 (8) ÅT = 296 K
V = 1180.7 (2) Å3Block, colourless
Z = 40.31 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2707 independent reflections
Radiation source: fine-focus sealed tube2645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.585, Tmax = 0.761k = 1212
18692 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.013H-atom parameters constrained
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.024P)2 + 0.1705P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
2707 reflectionsΔρmax = 0.20 e Å3
146 parametersΔρmin = 0.47 e Å3
0 restraintsAbsolute structure: Flack (1983), 1109 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.294 (18)
Crystal data top
[CdCl2(C9H12N4)]V = 1180.7 (2) Å3
Mr = 359.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 15.1617 (16) ŵ = 2.28 mm1
b = 9.9810 (11) ÅT = 296 K
c = 7.8022 (8) Å0.31 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2645 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.761Rint = 0.021
18692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.013H-atom parameters constrained
wR(F2) = 0.037Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.47 e Å3
2707 reflectionsAbsolute structure: Flack (1983), 1109 Friedel pairs
146 parametersAbsolute structure parameter: 0.294 (18)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.743239 (6)0.998451 (13)0.383812 (14)0.02486 (4)
Cl10.77859 (3)1.17683 (4)0.14414 (5)0.02759 (8)
Cl20.76493 (3)1.18680 (4)0.62497 (5)0.02915 (8)
N10.90723 (8)0.98124 (13)0.87595 (17)0.0275 (3)
N20.88887 (8)0.94055 (13)0.39339 (19)0.0275 (3)
N31.03373 (9)0.95040 (13)0.40284 (19)0.0272 (3)
N41.04570 (8)1.01445 (15)0.80238 (17)0.0283 (3)
C10.96006 (11)0.89687 (17)0.9691 (2)0.0325 (4)
H1B0.94010.83581.05040.039*
C20.96144 (10)1.05139 (16)0.7788 (2)0.0278 (3)
H2A0.94351.11820.70340.033*
C31.04561 (12)0.91557 (17)0.9251 (2)0.0348 (4)
H3A1.09440.87070.96910.042*
C41.12411 (11)1.07572 (18)0.7238 (2)0.0360 (4)
H4A1.16761.09050.81290.043*
H4B1.10761.16270.67870.043*
C51.16718 (9)0.99572 (18)0.5806 (2)0.0339 (3)
H5B1.16870.90230.61480.041*
H5A1.22781.02560.56920.041*
C61.12330 (9)1.00460 (18)0.4051 (2)0.0325 (3)
H6A1.12151.09770.36960.039*
H6B1.15890.95610.32250.039*
C71.01061 (11)0.81997 (16)0.4383 (2)0.0321 (3)
H7A1.04850.74910.46220.039*
C80.92134 (11)0.81612 (16)0.4312 (2)0.0317 (3)
H8A0.88720.74010.44940.038*
C90.95856 (10)1.01840 (16)0.3763 (2)0.0282 (3)
H9A0.95601.10910.34920.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01757 (6)0.03157 (7)0.02543 (7)0.00113 (4)0.00088 (3)0.00122 (5)
Cl10.02733 (19)0.02735 (16)0.02807 (19)0.00186 (15)0.00135 (14)0.00086 (14)
Cl20.02980 (16)0.02852 (17)0.02914 (19)0.00164 (16)0.00014 (17)0.00060 (15)
N10.0205 (6)0.0341 (6)0.0280 (7)0.0008 (5)0.0000 (5)0.0041 (7)
N20.0214 (6)0.0324 (6)0.0287 (7)0.0032 (5)0.0016 (6)0.0004 (6)
N30.0210 (6)0.0315 (6)0.0289 (7)0.0002 (5)0.0016 (6)0.0026 (6)
N40.0197 (6)0.0333 (7)0.0318 (7)0.0011 (6)0.0018 (5)0.0040 (6)
C10.0314 (9)0.0337 (8)0.0323 (9)0.0030 (7)0.0015 (7)0.0042 (7)
C20.0222 (7)0.0335 (8)0.0278 (8)0.0012 (6)0.0009 (6)0.0016 (6)
C30.0269 (8)0.0385 (9)0.0391 (10)0.0065 (7)0.0032 (7)0.0002 (8)
C40.0226 (8)0.0414 (9)0.0439 (10)0.0091 (7)0.0029 (7)0.0063 (8)
C50.0174 (6)0.0446 (9)0.0396 (8)0.0008 (7)0.0019 (6)0.0008 (9)
C60.0217 (7)0.0387 (8)0.0370 (8)0.0024 (7)0.0029 (6)0.0043 (9)
C70.0265 (8)0.0308 (8)0.0390 (9)0.0062 (7)0.0018 (7)0.0044 (7)
C80.0262 (8)0.0321 (7)0.0369 (9)0.0003 (7)0.0009 (6)0.0025 (7)
C90.0235 (7)0.0312 (7)0.0301 (8)0.0025 (6)0.0012 (6)0.0023 (8)
Geometric parameters (Å, º) top
Cd—N22.2836 (12)N4—C41.471 (2)
Cd—N1i2.2911 (13)C1—C31.355 (2)
Cd—Cl12.6370 (4)C1—H1B0.9300
Cd—Cl22.6800 (4)C2—H2A0.9300
Cd—Cl1ii2.7010 (4)C3—H3A0.9300
Cd—Cl2i2.7409 (5)C4—C51.521 (2)
Cl1—Cdi2.7010 (4)C4—H4A0.9700
Cl2—Cdii2.7409 (5)C4—H4B0.9700
N1—C21.319 (2)C5—C61.525 (2)
N1—C11.371 (2)C5—H5B0.9700
N1—Cdii2.2911 (13)C5—H5A0.9700
N2—C91.318 (2)C6—H6A0.9700
N2—C81.368 (2)C6—H6B0.9700
N3—C91.3425 (19)C7—C81.355 (2)
N3—C71.376 (2)C7—H7A0.9300
N3—C61.4618 (19)C8—H8A0.9300
N4—C21.3423 (19)C9—H9A0.9300
N4—C31.375 (2)
N2—Cd—N1i170.41 (4)N1—C2—H2A124.2
N2—Cd—Cl189.86 (4)N4—C2—H2A124.2
N1i—Cd—Cl197.10 (3)C1—C3—N4106.03 (14)
N2—Cd—Cl292.06 (4)C1—C3—H3A127.0
N1i—Cd—Cl294.53 (3)N4—C3—H3A127.0
Cl1—Cd—Cl289.962 (15)N4—C4—C5115.79 (14)
N2—Cd—Cl1ii85.98 (4)N4—C4—H4A108.3
N1i—Cd—Cl1ii87.45 (3)C5—C4—H4A108.3
Cl1—Cd—Cl1ii174.530 (8)N4—C4—H4B108.3
Cl2—Cd—Cl1ii86.642 (15)C5—C4—H4B108.3
N2—Cd—Cl2i84.09 (4)H4A—C4—H4B107.4
N1i—Cd—Cl2i89.71 (3)C4—C5—C6116.23 (14)
Cl1—Cd—Cl2i86.682 (15)C4—C5—H5B108.2
Cl2—Cd—Cl2i174.893 (8)C6—C5—H5B108.2
Cl1ii—Cd—Cl2i96.408 (14)C4—C5—H5A108.2
Cd—Cl1—Cdi94.075 (14)C6—C5—H5A108.2
Cd—Cl2—Cdii92.210 (15)H5B—C5—H5A107.4
C2—N1—C1105.45 (14)N3—C6—C5113.23 (13)
C2—N1—Cdii126.08 (10)N3—C6—H6A108.9
C1—N1—Cdii128.47 (11)C5—C6—H6A108.9
C9—N2—C8105.57 (13)N3—C6—H6B108.9
C9—N2—Cd128.50 (11)C5—C6—H6B108.9
C8—N2—Cd125.78 (10)H6A—C6—H6B107.7
C9—N3—C7107.04 (13)C8—C7—N3105.85 (14)
C9—N3—C6127.11 (13)C8—C7—H7A127.1
C7—N3—C6125.75 (14)N3—C7—H7A127.1
C2—N4—C3106.95 (13)C7—C8—N2110.02 (15)
C2—N4—C4126.73 (15)C7—C8—H8A125.0
C3—N4—C4126.12 (14)N2—C8—H8A125.0
C3—C1—N1109.92 (15)N2—C9—N3111.52 (14)
C3—C1—H1B125.0N2—C9—H9A124.2
N1—C1—H1B125.0N3—C9—H9A124.2
N1—C2—N4111.63 (15)
N2—Cd—Cl1—Cdi88.81 (4)C3—N4—C2—N11.12 (19)
N1i—Cd—Cl1—Cdi84.57 (3)C4—N4—C2—N1176.17 (14)
Cl2—Cd—Cl1—Cdi179.129 (15)N1—C1—C3—N40.3 (2)
Cl2i—Cd—Cl1—Cdi4.723 (13)C2—N4—C3—C10.47 (18)
N2—Cd—Cl2—Cdii81.21 (4)C4—N4—C3—C1175.56 (16)
N1i—Cd—Cl2—Cdii91.81 (3)C2—N4—C4—C5105.45 (19)
Cl1—Cd—Cl2—Cdii171.071 (13)C3—N4—C4—C580.4 (2)
Cl1ii—Cd—Cl2—Cdii4.639 (13)N4—C4—C5—C679.6 (2)
Cl1—Cd—N2—C936.26 (14)C9—N3—C6—C5114.19 (19)
Cl2—Cd—N2—C953.70 (14)C7—N3—C6—C561.6 (2)
Cl1ii—Cd—N2—C9140.18 (14)C4—C5—C6—N363.3 (2)
Cl2i—Cd—N2—C9122.94 (14)C9—N3—C7—C80.01 (19)
Cl1—Cd—N2—C8148.84 (13)C6—N3—C7—C8176.46 (15)
Cl2—Cd—N2—C8121.21 (13)N3—C7—C8—N20.34 (19)
Cl1ii—Cd—N2—C834.72 (13)C9—N2—C8—C70.57 (19)
Cl2i—Cd—N2—C862.16 (13)Cd—N2—C8—C7175.29 (11)
C2—N1—C1—C30.95 (19)C8—N2—C9—N30.58 (19)
Cdii—N1—C1—C3179.52 (12)Cd—N2—C9—N3175.12 (11)
C1—N1—C2—N41.27 (18)C7—N3—C9—N20.4 (2)
Cdii—N1—C2—N4179.18 (10)C6—N3—C9—N2176.03 (14)
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C9H12N4)]
Mr359.54
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)15.1617 (16), 9.9810 (11), 7.8022 (8)
V3)1180.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.31 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.585, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
18692, 2707, 2645
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.037, 1.00
No. of reflections2707
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.47
Absolute structureFlack (1983), 1109 Friedel pairs
Absolute structure parameter0.294 (18)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd—N22.2836 (12)Cd—Cl22.6800 (4)
Cd—N1i2.2911 (13)Cd—Cl1ii2.7010 (4)
Cd—Cl12.6370 (4)Cd—Cl2i2.7409 (5)
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+3/2, y+2, z+1/2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Gudenberg, D. W. V. & Proserpio, D. M. (1997). Inorg. Chem. 36, 3812–3813.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. J., Zhan, C. H., Feng, Y. L., Lan, Y. Z., Yin, J. L. & Cheng, J. W. (2011). CrystEngComm, 13, 684–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, G. P., Wang, Y. Y., Liu, P., Fu, A. Y., Zhang, Y. N., Jin, J. C. & Shi, Q. Z. (2010). Cryst. Growth Des. 10, 1443–1450.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds