metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ5-pyridine-3,5-di­carboxyl­ato)strontium]

aSchool of Media Communications, Linyi University, Linyi 276000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, People's Republic of China
*Correspondence e-mail: lidan@lyu.edu.cn

(Received 7 May 2012; accepted 22 May 2012; online 31 May 2012)

In the structure of the title compound, [Sr(C7H3NO4)(H2O)2]n, the SrII cation is eight-coordinated in form of a distorted dodeca­hedron by two water O atoms and by five O atoms and one N atom from five pyridine-3,5-dicarboxyl­ate anions. The bridging mode of the anions leads to the formation of a layered network parallel to (100). O—H⋯O hydrogen bonding between the coordinating water mol­ecules and the carboxyl­ate groups of adjacent layers consolidates the crystal packing. Weak C—H⋯O inter­actions are also observed.

Related literature

For related structures with pyridine-3,5-dicarboxyl­ato ligands, see: Aghabozorg et al. (2008[Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376.]); Dang et al. (2010[Dang, D., Gao, H., Bai, Y. & Zhang, G. (2010). J. Chem. Crystallogr. 40, 332-336.]); Du et al. (2009[Du, L., Li, L.-N. & Zhao, Q.-H. (2009). Acta Cryst. E65, m556.]); Lv et al. (2010[Lv, Y., Qi, Y., Sun, L., Luo, F., Che, Y. & Zheng, J. (2010). Eur. J. Inorg. Chem. pp. 5592-5596.]); Wu et al. (2008[Wu, J., Yin, J., Tseng, T. & Lu, K. (2008). Inorg. Chem. Commun. 11, 314-317.]); Yao et al. (2010[Yao, J., Guo, J., Wang, J., Wang, Y., Zhang, L. & Fan, C. (2010). Inorg. Chem. Commun. 13, 1178-1182.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C7H3NO4)(H2O)2]

  • Mr = 288.76

  • Triclinic, [P \overline 1]

  • a = 7.9098 (4) Å

  • b = 8.0028 (4) Å

  • c = 8.0864 (5) Å

  • α = 88.620 (2)°

  • β = 71.270 (2)°

  • γ = 72.030 (2)°

  • V = 459.52 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.88 mm−1

  • T = 293 K

  • 0.30 × 0.17 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.272, Tmax = 0.453

  • 8322 measured reflections

  • 2305 independent reflections

  • 2226 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.046

  • S = 1.08

  • 2305 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.85 2.01 2.8046 (17) 155
O5—H5B⋯O3ii 0.85 2.05 2.8718 (18) 163
O6—H6A⋯O2iii 0.85 1.87 2.7135 (17) 172
O6—H6B⋯O5iv 0.86 2.03 2.848 (2) 160
C1—H1⋯O3ii 0.93 2.37 3.286 (2) 169
Symmetry codes: (i) -x+2, -y, -z; (ii) x, y, z+1; (iii) -x+2, -y+1, -z; (iv) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-3,5-dicarboxylic acid (py-3,5-dc) is an interesting ligand because it can act in a multidentate fashion and also can participate in hydrogen bonding interactions with its N and O acceptors. Some polymeric complexes of this ligand with 3d metals (Dang et al., 2010; Lv et al., 2010; Du et al., 2009) and with mixed 3d-4f metals (Yao et al., 2010; Wu et al., 2008) have been published. A related strontium complex with a chain-structure has been reported by Aghabozorg et al. (2008). Here we report the layered structure of another polymeric strontium complex, [Sr(C7H3NO4)(H2O)2]n, (I).

The coordination number of the cation is eight, with bonds to seven O and one N atoms from five py-3,5-dc anions (Fig. 1). The corresponding geometry is distorted dodecahedral (Fig. 2). The Sr—O distances are in the range of 2.5287 (13)–2.7232 (12) Å, and the Sr—N bond is the longest of the coordination polyhedron with a length of 2.8064 (14) Å. The carboxylate O1 atom links two cations to form a rhombic binuclear Sr2O2 unit. These units are further connected by carboxylate groups and N atoms of symmetry-related ligands to form a two-dimensional network parallel to (100). Atoms O2, O3 and O4 from these ligands are acceptor atoms for hydrogen bonding with coordinating water molecules of adjacent ligands as donor atoms, leading to a three-dimensional set-up of the structure (Table 1 and Fig. 3). Weak C—H···O interactions are also observed.

Related literature top

For related structures with pyridine-3,5-dicarboxylato ligands, see: Aghabozorg et al. (2008); Dang et al. (2010); Du et al. (2009); Lv et al. (2010); Wu et al. (2008); Yao et al. (2010).

Experimental top

A mixture of 3,5-H2pdc (0.0330 g, 0.2 mmol), SrCl2.6H2O (0.0539 g, 0.2 mmol), imidazole (0.0320 g, 0.47 mmol), C2H5OH / H2O = 1: 2 (3 ml) was placed in a Pyrex-tube (8 ml). The tube was heated for 4 days at 393 K under autogenous pressure. Colourless rod-shaped crystals were obtained. Anal. Calc. for C7H7NO6Sr: C, 29.12; N, 4.85; H, 2.44. Found: C, 28.65; N, 4.60; H, 2.35%. IR (KBr, cm-1): 3490 br, 1610 s, 1552 s, 1455 s, 1421 s, 1385 s, 1311 s, 1132 s, 1030 s, 941 s, 827 s, 782 s, 739 s, 651 s, 570 s, 439 s.

Refinement top

All hydrogen atoms were located in difference Fourier maps. The water H-atoms were restrained to bond lengths of O—H = 0.85–0.86 Å and with a common Uiso parameter of 0.028 Å2 for the H atoms. The C-bound H-atoms were included in calculated positions and treated as riding atoms with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level [H-atoms have been omitted for clarity; symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x + 1, -y + 1, -z; (C) x, y + 1, z + 1; (AC) x, y + 1, z.
[Figure 2] Fig. 2. A view of the distorted dodecahedral environment around the SrII atom in (I).
[Figure 3] Fig. 3. A view down the b axis of the crystal packing of compound (I). Hydrogen bonds are shown as dashed lines.
Poly[diaqua(µ5-pyridine-3,5-dicarboxylato)strontium] top
Crystal data top
[Sr(C7H3NO4)(H2O)2]Z = 2
Mr = 288.76F(000) = 284
Triclinic, P1Dx = 2.087 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9098 (4) ÅCell parameters from 3510 reflections
b = 8.0028 (4) Åθ = 2.7–25.3°
c = 8.0864 (5) ŵ = 5.88 mm1
α = 88.620 (2)°T = 293 K
β = 71.270 (2)°Block, colourless
γ = 72.030 (2)°0.30 × 0.17 × 0.16 mm
V = 459.52 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2305 independent reflections
Radiation source: fine-focus sealed tube2226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.272, Tmax = 0.453k = 1010
8322 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.1887P]
where P = (Fo2 + 2Fc2)/3
2305 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Sr(C7H3NO4)(H2O)2]γ = 72.030 (2)°
Mr = 288.76V = 459.52 (4) Å3
Triclinic, P1Z = 2
a = 7.9098 (4) ÅMo Kα radiation
b = 8.0028 (4) ŵ = 5.88 mm1
c = 8.0864 (5) ÅT = 293 K
α = 88.620 (2)°0.30 × 0.17 × 0.16 mm
β = 71.270 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2305 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2226 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.453Rint = 0.022
8322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
2305 reflectionsΔρmin = 0.51 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.685514 (18)0.654700 (16)0.373999 (17)0.01302 (5)
O10.53412 (17)0.40183 (16)0.33347 (15)0.0220 (2)
O30.63315 (17)0.12206 (15)0.40559 (15)0.0206 (2)
O20.7094 (2)0.47815 (16)0.09101 (16)0.0260 (3)
O40.76724 (18)0.16816 (16)0.41598 (16)0.0215 (2)
O50.85222 (17)0.35498 (17)0.47402 (19)0.0288 (3)
O61.03912 (18)0.5746 (2)0.23839 (17)0.0303 (3)
N10.7457 (2)0.11960 (18)0.10565 (18)0.0204 (3)
C70.7063 (2)0.0153 (2)0.34150 (19)0.0143 (3)
C40.7184 (2)0.0071 (2)0.16144 (19)0.0146 (3)
C30.6819 (2)0.1745 (2)0.0860 (2)0.0150 (3)
H30.66070.27250.14980.018*
C20.6775 (2)0.1931 (2)0.0855 (2)0.0148 (3)
C50.7511 (2)0.1354 (2)0.0614 (2)0.0182 (3)
H50.77810.24750.11250.022*
C60.6365 (2)0.3698 (2)0.1760 (2)0.0155 (3)
C10.7093 (2)0.0429 (2)0.1755 (2)0.0189 (3)
H10.70510.05590.29090.023*
H6A1.10930.56590.13270.028*
H5A0.96610.28950.42650.028*
H5B0.79500.27930.48680.028*
H6B1.09030.57040.31760.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01678 (8)0.01181 (8)0.01109 (8)0.00511 (5)0.00483 (5)0.00017 (5)
O10.0290 (6)0.0226 (6)0.0127 (5)0.0120 (5)0.0006 (5)0.0034 (4)
O30.0265 (6)0.0195 (6)0.0153 (5)0.0035 (5)0.0100 (5)0.0024 (4)
O20.0417 (8)0.0208 (6)0.0155 (6)0.0187 (5)0.0006 (5)0.0019 (5)
O40.0266 (6)0.0181 (6)0.0196 (6)0.0042 (5)0.0097 (5)0.0059 (5)
O50.0194 (6)0.0245 (6)0.0418 (8)0.0066 (5)0.0101 (6)0.0104 (6)
O60.0222 (6)0.0457 (8)0.0198 (6)0.0126 (6)0.0007 (5)0.0007 (6)
N10.0317 (8)0.0162 (6)0.0153 (6)0.0076 (5)0.0104 (6)0.0037 (5)
C70.0158 (7)0.0163 (7)0.0110 (7)0.0058 (5)0.0040 (5)0.0006 (5)
C40.0177 (7)0.0141 (7)0.0120 (7)0.0048 (5)0.0052 (5)0.0009 (5)
C30.0202 (7)0.0128 (7)0.0131 (7)0.0065 (5)0.0056 (5)0.0013 (5)
C20.0195 (7)0.0147 (7)0.0117 (7)0.0077 (5)0.0044 (5)0.0016 (5)
C50.0268 (8)0.0127 (7)0.0161 (7)0.0060 (6)0.0084 (6)0.0004 (6)
C60.0201 (7)0.0156 (7)0.0125 (7)0.0070 (6)0.0063 (6)0.0014 (6)
C10.0273 (8)0.0196 (8)0.0121 (7)0.0093 (6)0.0079 (6)0.0016 (6)
Geometric parameters (Å, º) top
Sr1—O62.5287 (13)O5—H5A0.8542
Sr1—O3i2.5377 (12)O5—H5B0.8477
Sr1—O1ii2.5715 (12)O6—H6A0.8468
Sr1—O4iii2.5881 (12)O6—H6B0.8563
Sr1—O52.6050 (13)N1—C11.339 (2)
Sr1—O22.6423 (12)N1—C51.345 (2)
Sr1—O12.7232 (12)N1—Sr1vi2.8065 (14)
Sr1—N1iv2.8064 (14)C7—C41.508 (2)
Sr1—C63.0051 (15)C4—C51.390 (2)
Sr1—H6B2.9429C4—C31.391 (2)
O1—C61.2520 (19)C3—C21.387 (2)
O1—Sr1ii2.5715 (12)C3—H30.9300
O3—C71.2590 (19)C2—C11.388 (2)
O3—Sr1i2.5377 (12)C2—C61.502 (2)
O2—C61.258 (2)C5—H50.9300
O4—C71.2554 (19)C1—H10.9300
O4—Sr1v2.5881 (12)
O6—Sr1—O3i146.80 (4)O1ii—Sr1—H6B119.9
O6—Sr1—O1ii133.77 (4)O4iii—Sr1—H6B65.0
O3i—Sr1—O1ii75.71 (4)O5—Sr1—H6B63.0
O6—Sr1—O4iii77.95 (4)O2—Sr1—H6B98.6
O3i—Sr1—O4iii95.67 (4)O1—Sr1—H6B121.6
O1ii—Sr1—O4iii81.28 (4)N1iv—Sr1—H6B85.2
O6—Sr1—O569.37 (4)C6—Sr1—H6B107.7
O3i—Sr1—O5143.83 (4)Sr1ii—Sr1—H6B128.1
O1ii—Sr1—O570.70 (4)C6—O1—Sr1ii156.53 (11)
O4iii—Sr1—O592.21 (4)C6—O1—Sr190.40 (9)
O6—Sr1—O284.52 (4)Sr1ii—O1—Sr1112.09 (4)
O3i—Sr1—O295.32 (4)C7—O3—Sr1i140.72 (10)
O1ii—Sr1—O2116.27 (4)C6—O2—Sr194.03 (9)
O4iii—Sr1—O2161.21 (4)C7—O4—Sr1v137.91 (10)
O5—Sr1—O287.86 (4)Sr1—O5—H5A127.0
O6—Sr1—O1115.98 (4)Sr1—O5—H5B115.1
O3i—Sr1—O186.90 (4)H5A—O5—H5B100.7
O1ii—Sr1—O167.91 (4)Sr1—O6—H6A131.4
O4iii—Sr1—O1147.46 (4)Sr1—O6—H6B110.7
O5—Sr1—O168.48 (4)H6A—O6—H6B117.3
O2—Sr1—O148.48 (4)C1—N1—C5117.16 (14)
O6—Sr1—N1iv74.58 (5)C1—N1—Sr1vi109.60 (10)
O3i—Sr1—N1iv73.32 (4)C5—N1—Sr1vi130.26 (11)
O1ii—Sr1—N1iv147.89 (4)O4—C7—O3124.65 (14)
O4iii—Sr1—N1iv93.47 (4)O4—C7—C4118.35 (14)
O5—Sr1—N1iv141.38 (4)O3—C7—C4117.00 (13)
O2—Sr1—N1iv75.20 (4)C5—C4—C3118.26 (14)
O1—Sr1—N1iv118.12 (4)C5—C4—C7121.27 (14)
O6—Sr1—C697.37 (4)C3—C4—C7120.27 (13)
O3i—Sr1—C695.75 (4)C2—C3—C4119.12 (14)
O1ii—Sr1—C692.37 (4)C2—C3—H3120.4
O4iii—Sr1—C6165.14 (4)C4—C3—H3120.4
O5—Sr1—C672.98 (4)C3—C2—C1118.28 (14)
O2—Sr1—C624.68 (4)C3—C2—C6122.02 (14)
O1—Sr1—C624.62 (4)C1—C2—C6119.69 (13)
N1iv—Sr1—C698.90 (4)N1—C5—C4123.41 (14)
O6—Sr1—Sr1ii132.57 (3)N1—C5—H5118.3
O3i—Sr1—Sr1ii79.75 (3)C4—C5—H5118.3
O1ii—Sr1—Sr1ii35.06 (3)O1—C6—O2122.85 (14)
O4iii—Sr1—Sr1ii115.72 (3)O1—C6—C2118.69 (14)
O5—Sr1—Sr1ii65.11 (3)O2—C6—C2118.45 (14)
O2—Sr1—Sr1ii81.27 (3)O1—C6—Sr164.98 (8)
O1—Sr1—Sr1ii32.85 (2)O2—C6—Sr161.29 (8)
N1iv—Sr1—Sr1ii142.01 (3)C2—C6—Sr1159.61 (11)
C6—Sr1—Sr1ii57.36 (3)N1—C1—C2123.75 (14)
O6—Sr1—H6B15.8N1—C1—H1118.1
O3i—Sr1—H6B150.4C2—C1—H1118.1
O6—Sr1—O1—C643.90 (11)Sr1—O1—C6—O221.19 (17)
O3i—Sr1—O1—C6111.03 (10)Sr1ii—O1—C6—C26.4 (4)
O1ii—Sr1—O1—C6173.14 (12)Sr1—O1—C6—C2157.48 (13)
O4iii—Sr1—O1—C6153.28 (9)Sr1ii—O1—C6—Sr1163.9 (3)
O5—Sr1—O1—C696.05 (10)Sr1—O2—C6—O121.92 (17)
O2—Sr1—O1—C611.13 (9)Sr1—O2—C6—C2156.75 (12)
N1iv—Sr1—O1—C641.81 (11)C3—C2—C6—O1139.97 (16)
Sr1ii—Sr1—O1—C6173.14 (12)C1—C2—C6—O139.0 (2)
O6—Sr1—O1—Sr1ii129.25 (5)C3—C2—C6—O241.3 (2)
O3i—Sr1—O1—Sr1ii75.83 (5)C1—C2—C6—O2139.73 (16)
O1ii—Sr1—O1—Sr1ii0.0C3—C2—C6—Sr1125.0 (3)
O4iii—Sr1—O1—Sr1ii19.86 (10)C1—C2—C6—Sr156.1 (4)
O5—Sr1—O1—Sr1ii77.09 (5)O6—Sr1—C6—O1141.06 (10)
O2—Sr1—O1—Sr1ii175.73 (8)O3i—Sr1—C6—O169.51 (10)
N1iv—Sr1—O1—Sr1ii145.05 (5)O1ii—Sr1—C6—O16.36 (11)
C6—Sr1—O1—Sr1ii173.14 (12)O4iii—Sr1—C6—O170.52 (19)
O6—Sr1—O2—C6121.16 (11)O5—Sr1—C6—O175.34 (10)
O3i—Sr1—O2—C692.19 (10)O2—Sr1—C6—O1159.75 (16)
O1ii—Sr1—O2—C615.52 (11)N1iv—Sr1—C6—O1143.48 (9)
O4iii—Sr1—O2—C6142.24 (12)Sr1ii—Sr1—C6—O14.41 (8)
O5—Sr1—O2—C651.69 (10)O6—Sr1—C6—O259.19 (11)
O1—Sr1—O2—C611.10 (9)O3i—Sr1—C6—O290.24 (10)
N1iv—Sr1—O2—C6163.36 (11)O1ii—Sr1—C6—O2166.11 (10)
Sr1ii—Sr1—O2—C613.45 (10)O4iii—Sr1—C6—O2129.73 (16)
Sr1v—O4—C7—O333.4 (3)O5—Sr1—C6—O2124.91 (11)
Sr1v—O4—C7—C4145.77 (12)O1—Sr1—C6—O2159.75 (16)
Sr1i—O3—C7—O4105.41 (18)N1iv—Sr1—C6—O216.27 (11)
Sr1i—O3—C7—C473.8 (2)Sr1ii—Sr1—C6—O2164.16 (11)
O4—C7—C4—C515.8 (2)O6—Sr1—C6—C235.7 (3)
O3—C7—C4—C5163.49 (15)O3i—Sr1—C6—C2174.9 (3)
O4—C7—C4—C3169.42 (14)O1ii—Sr1—C6—C299.0 (3)
O3—C7—C4—C311.3 (2)O4iii—Sr1—C6—C234.8 (4)
C5—C4—C3—C20.7 (2)O5—Sr1—C6—C230.0 (3)
C7—C4—C3—C2174.30 (14)O2—Sr1—C6—C294.9 (3)
C4—C3—C2—C10.2 (2)O1—Sr1—C6—C2105.4 (3)
C4—C3—C2—C6179.19 (14)N1iv—Sr1—C6—C2111.2 (3)
C1—N1—C5—C41.0 (3)Sr1ii—Sr1—C6—C2100.9 (3)
Sr1vi—N1—C5—C4157.24 (12)C5—N1—C1—C20.0 (3)
C3—C4—C5—N11.3 (2)Sr1vi—N1—C1—C2162.51 (13)
C7—C4—C5—N1173.61 (15)C3—C2—C1—N10.6 (2)
Sr1ii—O1—C6—O2174.94 (19)C6—C2—C1—N1179.60 (15)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y1, z1; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4vii0.852.012.8046 (17)155
O5—H5B···O3viii0.852.052.8718 (18)163
O6—H6A···O2ix0.851.872.7135 (17)172
O6—H6B···O5x0.862.032.848 (2)160
C1—H1···O3viii0.932.373.286 (2)169
Symmetry codes: (vii) x+2, y, z; (viii) x, y, z+1; (ix) x+2, y+1, z; (x) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sr(C7H3NO4)(H2O)2]
Mr288.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9098 (4), 8.0028 (4), 8.0864 (5)
α, β, γ (°)88.620 (2), 71.270 (2), 72.030 (2)
V3)459.52 (4)
Z2
Radiation typeMo Kα
µ (mm1)5.88
Crystal size (mm)0.30 × 0.17 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.272, 0.453
No. of measured, independent and
observed [I > 2σ(I)] reflections
8322, 2305, 2226
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.046, 1.08
No. of reflections2305
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.51

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.852.012.8046 (17)155.2
O5—H5B···O3ii0.852.052.8718 (18)163.0
O6—H6A···O2iii0.851.872.7135 (17)171.7
O6—H6B···O5iv0.862.032.848 (2)160.3
C1—H1···O3ii0.932.373.286 (2)168.9
Symmetry codes: (i) x+2, y, z; (ii) x, y, z+1; (iii) x+2, y+1, z; (iv) x+2, y+1, z+1.
 

Acknowledgements

Financial support from the Science Foundation of Linyi University (grant BS201005) is greatly acknowledged.

References

First citationAghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDang, D., Gao, H., Bai, Y. & Zhang, G. (2010). J. Chem. Crystallogr. 40, 332–336.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, L., Li, L.-N. & Zhao, Q.-H. (2009). Acta Cryst. E65, m556.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLv, Y., Qi, Y., Sun, L., Luo, F., Che, Y. & Zheng, J. (2010). Eur. J. Inorg. Chem. pp. 5592–5596.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Yin, J., Tseng, T. & Lu, K. (2008). Inorg. Chem. Commun. 11, 314–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, J., Guo, J., Wang, J., Wang, Y., Zhang, L. & Fan, C. (2010). Inorg. Chem. Commun. 13, 1178–1182.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds