organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1582-o1583

17βH-Periplogenin, a cardiac aglycone from the root bark of Periploca sepium Bunge

aNational Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, ChangChun 130024, People's Republic of China, bInstitute of Genetics and Cytology, Northeast Normal University, ChangChun 130024, People's Republic of China, and cResearch Center of Agriculture and Medicine Gene, Engineering of Ministry of Education, Northeast Normal University, ChangChun 130024, People's Republic of China
*Correspondence e-mail: wuy705@126.com, liyuxin486@126.com

(Received 13 April 2012; accepted 25 April 2012; online 2 May 2012)

The title compound {systematic name: 4-[(3S,5S,8R,9S,10R,13R,14S,17S)-3,5,14-trihy­droxy-10,13-dimethyl­hexa­deca­hydro-1H-cyclo­penta­[a]phenanthren-17-yl]furan-2(5H)-one}, C23H34O5, was isolated from the roots of Periploca sepium Bunge, a famous Chinese traditional herbal medicine. The three six-membered rings adopt chair conformations, the cyclo­pentane ring displays an approximate envelope conformation (with the C atom bearing the methyl substituent at the flap) and the five-membered lactone ring adopts an essentially planar [maximum deviation of 0.004 (8) Å] conformation. In the crystal, mol­ecules are linked into helical chains along [010] by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. Two intra­molecular O—H⋯O hydrogen bonds are also present.

Related literature

For the botanical and medicinal background to Periploca sepium Bunge, see: Li & Liu (2004[Li, S. W. & Liu, L. P. (2004). Acta Bot. Boreali-Occidentalia Sin. 24, 275-280.]); Yang et al. (2006[Yang, C. H., Wang, Y. Y., Zhou, Z. F. & Zhang, G. C. (2006). For. Res. 19, 231-234.]). For the previous preparation and chemical structure determination of the title compound, see: Furuya et al. (1988[Furuya, T., Kawaguchi, K. & Hirotani, M. (1988). Phytochemistry, 27, 2129-2133.]); Kawaguchi et al. (1998[Kawaguchi, K., Koike, S., Hirotani, M., Fujihara, M., Furuya, T., Iwata, R. & Morimoto, K. (1998). Phytochemistry, 47, 1261-1265.]).

[Scheme 1]

Experimental

Crystal data
  • C23H34O5

  • Mr = 390.50

  • Monoclinic, P 21

  • a = 7.434 (3) Å

  • b = 10.554 (4) Å

  • c = 13.537 (5) Å

  • β = 103.118 (5)°

  • V = 1034.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.02 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.998

  • 5262 measured reflections

  • 1927 independent reflections

  • 1097 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.126

  • S = 1.01

  • 1927 reflections

  • 254 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯O2 0.82 2.06 2.778 (5) 147
O2—H2C⋯O1 0.82 2.05 2.778 (5) 147
O3—H3B⋯O2i 0.82 2.16 2.977 (5) 175
C11—H11A⋯O5ii 0.97 2.57 3.393 (7) 143
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Periploca sepium Bunge (Asclepiadaceae) is native and widespread in the Loess hilly regions of northwest China (Li and Liu, 2004; Yang et al., 2006). Its root bark, which is officially listed in the Chinese Pharmacopoeia under the name Cortex Periploca (Xiangjiapi in Chinese), has been frequently used to treat rheumatism and strengthen tendons and bones. The title compound, 17βH-periplogenin, which has been previously obtained as a biotransformation product of digitoxigenin (Furuya et al., 1988; Kawaguchi et al., 1998), was isolated from the root bark of Periploca sepium Bunge in our recent investigation. To the best of our knowledge, this is its first isolation from plant material. The isolated compound was identified by NMR spectra, which were compared with the previous report (Furuya et al., 1988).

The crystal structure of 17βH-periplogenin has not yet been reported. In view of this, the crystal structure determination of the title compound was carried out and the results are presented here.

As shown in Fig. 1, the molecule consists of three six-membered rings (A, B and C), one cyclopentane ring (D) and one five-membered lactone ring. Rings A:B, B:C and C:D are cis-, trans- and cis- fused, respectively. The three six-membered rings adopt chair conformations, the cyclopentane ring displays an approximate envelope conformation with C13 as the flap atom, and the five-membered lactone ring adopts a planar conformation.

In the crystal structure, molecules are linked into helical chains along [010] through O3—H3B···O2 hydrogen bonds and C11—H11A···O5 weak interactions (Fig. 2 and Table 1). Two intramolecular O—H···O hydrogen bonds are also present (Table 1).

Related literature top

For the botanical and medicinal background to Periploca sepium Bunge, see: Li & Liu (2004); Yang et al. (2006). For the previous preparation and chemical structure determination of the title compound, see: Furuya et al. (1988); Kawaguchi et al. (1998).

Experimental top

The air-dried and powdered roots of Periploca sepium Bunge (2.0 kg) were extracted with 70% EtOH (3×10 l, 3×2.0 h, 85 °C) under reflux conditions to give a crude extract, which was suspended in H2O and successively partitioned with CHCl3, EtOAc and n-butanol. A part of the CHCl3 fraction (50.0 g) was subjected to CC [SiO2, 200–300 mesh, CHCl3/MeOH (100:0, 95:5, 90:10, 80:20, 70:30, 60:40, 50:50 and 0:100(v/v)] to yield 8 fractions: Fr.1–8. Fr.3 was resubjected to CC (SiO2, 200–300 mesh, gradient of CHCl3/MeOH) and was further chromatographed on Sephadex LH-20 (CHCl3/MeOH, 1:1) to give 6 subfractions: SFr. 1–6. SFr. 4 (0.9 g) was then subjected to reverse phase preparative HPLC [Waters preparative HPLC system; XTERRA PREP MS C18 column, 5 µm, 19 mm × 150 mm; sample loading 30 - 60 mg/injection; the column was eluted with CH3OH/H2O system (52:48) at a flow rate of 16 ml/min] to provide the title compound (tR = 4.81 min, 26 mg). 1H and 13C NMR spectroscopic data of this compound were recorded on a Bruker-AV-400 spectrometer, using CD3OD as solvent and Me4Si as internal standard. The stereochemistry was established by the X-ray diffraction experiment.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged. Initially all H-atoms were located in a difference Fourier map and at the last stage these H-atoms were geometrically treated.

The H-atoms were positioned geometrically (O—H = 0.82, C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl C and O and x = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing [010] chains. Hydrogen bonds are shown as dashed lines.
4-[(3S,5S,8R,9S,10R,13R,14S,17S)-3,5,14-trihydroxy-10,13-dimethyl-hexadecahydro-1H- cyclopenta[a]phenanthren-17-yl]furan-2(5H)-one top
Crystal data top
C23H34O5F(000) = 424
Mr = 390.50Dx = 1.254 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5262 reflections
a = 7.434 (3) Åθ = 1.5–25.0°
b = 10.554 (4) ŵ = 0.09 mm1
c = 13.537 (5) ÅT = 296 K
β = 103.118 (5)°Block, colourless
V = 1034.4 (6) Å30.26 × 0.24 × 0.02 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
1927 independent reflections
Radiation source: fine-focus sealed tube1097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.978, Tmax = 0.998k = 1212
5262 measured reflectionsl = 169
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0536P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1927 reflectionsΔρmax = 0.17 e Å3
254 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C23H34O5V = 1034.4 (6) Å3
Mr = 390.50Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.434 (3) ŵ = 0.09 mm1
b = 10.554 (4) ÅT = 296 K
c = 13.537 (5) Å0.26 × 0.24 × 0.02 mm
β = 103.118 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1927 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1097 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.998Rint = 0.077
5262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
1927 reflectionsΔρmin = 0.18 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3269 (8)0.6136 (5)0.1758 (4)0.0561 (17)
H1A0.20760.59980.19160.067*
H1B0.31120.67770.12310.067*
C20.4616 (9)0.6639 (6)0.2708 (4)0.0639 (19)
H2A0.41560.74370.29080.077*
H2B0.46810.60420.32600.077*
C30.6508 (9)0.6834 (5)0.2527 (4)0.0555 (16)
H3A0.73500.70470.31740.067*
C40.7198 (7)0.5641 (5)0.2117 (4)0.0471 (15)
H4A0.74230.50040.26470.057*
H4B0.83680.58240.19440.057*
C50.5873 (7)0.5090 (5)0.1180 (4)0.0386 (13)
C60.6653 (7)0.3883 (5)0.0839 (4)0.0433 (14)
H6A0.79140.40360.07850.052*
H6B0.59370.36550.01700.052*
C70.6629 (7)0.2779 (5)0.1564 (4)0.0414 (14)
H7A0.74620.29590.22120.050*
H7B0.70580.20170.12900.050*
C80.4684 (7)0.2562 (5)0.1723 (4)0.0361 (13)
H8A0.39010.23760.10530.043*
C90.3906 (7)0.3778 (5)0.2096 (4)0.0373 (13)
H9A0.47240.40130.27450.045*
C100.3898 (7)0.4900 (5)0.1345 (4)0.0389 (13)
C110.1987 (7)0.3499 (5)0.2297 (4)0.0469 (15)
H11A0.15270.42520.25700.056*
H11B0.11360.32890.16630.056*
C120.2059 (7)0.2412 (5)0.3039 (4)0.0447 (15)
H12A0.08420.22900.31710.054*
H12B0.28990.26300.36750.054*
C130.2699 (7)0.1166 (5)0.2639 (3)0.0408 (14)
C140.4603 (7)0.1395 (5)0.2376 (4)0.0390 (13)
C150.5971 (7)0.1384 (5)0.3422 (4)0.0485 (15)
H15A0.71280.09960.33710.058*
H15B0.62190.22430.36730.058*
C160.5062 (7)0.0614 (7)0.4146 (4)0.069 (2)
H16A0.58270.01050.44210.082*
H16B0.48760.11380.47030.082*
C170.3218 (7)0.0170 (6)0.3500 (4)0.0486 (15)
H17A0.34480.06300.31820.058*
C180.1250 (8)0.0656 (6)0.1759 (4)0.0617 (18)
H18A0.09450.12930.12410.093*
H18B0.01630.04310.19900.093*
H18C0.17230.00800.14870.093*
C190.2521 (7)0.4643 (6)0.0324 (4)0.0511 (16)
H19A0.25420.53390.01290.077*
H19B0.12990.45510.04380.077*
H19C0.28660.38780.00300.077*
C200.1787 (7)0.0093 (6)0.4098 (4)0.0473 (15)
C220.1329 (8)0.0576 (7)0.4823 (4)0.0612 (18)
H22A0.18680.13400.50740.073*
C230.0140 (9)0.0056 (7)0.5170 (5)0.0648 (19)
C210.0617 (10)0.1253 (7)0.3915 (6)0.091 (2)
H21A0.01090.12790.32220.110*
H21B0.13660.20140.40480.110*
O50.0980 (6)0.0251 (6)0.5800 (3)0.0923 (17)
O10.6546 (6)0.7847 (4)0.1820 (3)0.0702 (13)
H1C0.63490.75600.12420.105*
O20.5832 (5)0.5977 (3)0.0338 (2)0.0470 (10)
H2C0.60380.66970.05630.071*
O30.5070 (5)0.0290 (3)0.1852 (3)0.0538 (11)
H3B0.48510.04310.12410.081*
O40.0578 (6)0.1125 (5)0.4641 (4)0.0856 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (4)0.052 (4)0.067 (4)0.022 (3)0.028 (3)0.015 (4)
C20.109 (6)0.034 (3)0.056 (4)0.007 (3)0.034 (4)0.007 (3)
C30.085 (5)0.038 (3)0.043 (4)0.013 (3)0.013 (3)0.004 (3)
C40.053 (4)0.042 (4)0.043 (3)0.011 (3)0.005 (3)0.006 (3)
C50.051 (3)0.034 (3)0.035 (3)0.004 (3)0.016 (3)0.005 (3)
C60.041 (3)0.051 (4)0.042 (4)0.002 (3)0.019 (3)0.006 (3)
C70.044 (3)0.044 (3)0.039 (3)0.008 (3)0.014 (3)0.012 (3)
C80.042 (3)0.039 (3)0.029 (3)0.001 (3)0.011 (2)0.002 (3)
C90.039 (3)0.038 (3)0.036 (3)0.009 (3)0.011 (2)0.001 (3)
C100.045 (3)0.038 (3)0.033 (3)0.013 (3)0.008 (2)0.002 (3)
C110.052 (4)0.039 (3)0.058 (4)0.008 (3)0.030 (3)0.005 (3)
C120.047 (4)0.048 (4)0.043 (3)0.000 (3)0.020 (3)0.005 (3)
C130.045 (3)0.049 (4)0.028 (3)0.000 (3)0.006 (3)0.003 (3)
C140.048 (3)0.037 (3)0.038 (3)0.005 (3)0.022 (3)0.001 (3)
C150.042 (3)0.058 (4)0.045 (3)0.005 (3)0.011 (3)0.008 (3)
C160.043 (4)0.099 (5)0.062 (4)0.004 (4)0.008 (3)0.031 (4)
C170.046 (3)0.056 (4)0.046 (3)0.000 (3)0.014 (3)0.010 (3)
C180.066 (4)0.070 (4)0.046 (3)0.020 (4)0.007 (3)0.004 (3)
C190.043 (3)0.067 (4)0.040 (3)0.001 (3)0.003 (3)0.017 (3)
C200.041 (3)0.053 (4)0.047 (4)0.001 (3)0.011 (3)0.012 (3)
C220.059 (4)0.084 (5)0.045 (3)0.020 (4)0.021 (3)0.004 (4)
C230.053 (4)0.089 (6)0.054 (4)0.007 (4)0.017 (3)0.013 (5)
C210.106 (6)0.074 (5)0.111 (6)0.025 (5)0.060 (5)0.006 (5)
O50.071 (3)0.150 (5)0.060 (3)0.008 (3)0.025 (2)0.018 (4)
O10.116 (4)0.046 (2)0.052 (3)0.013 (2)0.025 (3)0.002 (2)
O20.063 (2)0.043 (2)0.037 (2)0.0012 (19)0.0163 (18)0.0047 (19)
O30.083 (3)0.038 (2)0.051 (2)0.014 (2)0.036 (2)0.003 (2)
O40.088 (4)0.072 (3)0.107 (4)0.024 (3)0.044 (3)0.006 (3)
Geometric parameters (Å, º) top
C1—C101.533 (7)C12—H12A0.9700
C1—C21.534 (8)C12—H12B0.9700
C1—H1A0.9700C13—C181.512 (7)
C1—H1B0.9700C13—C171.552 (7)
C2—C31.496 (8)C13—C141.555 (6)
C2—H2A0.9700C14—O31.448 (6)
C2—H2B0.9700C14—C151.545 (7)
C3—O11.440 (6)C15—C161.542 (7)
C3—C41.512 (8)C15—H15A0.9700
C3—H3A0.9800C15—H15B0.9700
C4—C51.532 (7)C16—C171.523 (7)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C5—O21.469 (6)C17—C201.502 (7)
C5—C61.515 (7)C17—H17A0.9800
C5—C101.548 (7)C18—H18A0.9600
C6—C71.527 (7)C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700C19—H19A0.9600
C7—C81.527 (7)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700C20—C221.315 (7)
C8—C141.525 (7)C20—C211.490 (8)
C8—C91.539 (6)C22—C231.447 (8)
C8—H8A0.9800C22—H22A0.9300
C9—C111.540 (6)C23—O51.210 (7)
C9—C101.560 (6)C23—O41.335 (8)
C9—H9A0.9800C21—O41.474 (8)
C10—C191.546 (7)C21—H21A0.9700
C11—C121.517 (7)C21—H21B0.9700
C11—H11A0.9700O1—H1C0.8200
C11—H11B0.9700O2—H2C0.8200
C12—C131.538 (7)O3—H3B0.8200
C10—C1—C2113.9 (4)C11—C12—H12A109.1
C10—C1—H1A108.8C13—C12—H12A109.1
C2—C1—H1A108.8C11—C12—H12B109.1
C10—C1—H1B108.8C13—C12—H12B109.1
C2—C1—H1B108.8H12A—C12—H12B107.9
H1A—C1—H1B107.7C18—C13—C12111.1 (5)
C3—C2—C1111.7 (5)C18—C13—C17111.2 (4)
C3—C2—H2A109.3C12—C13—C17111.1 (4)
C1—C2—H2A109.3C18—C13—C14113.4 (4)
C3—C2—H2B109.3C12—C13—C14108.6 (4)
C1—C2—H2B109.3C17—C13—C14101.1 (4)
H2A—C2—H2B107.9O3—C14—C8108.7 (3)
O1—C3—C2111.8 (5)O3—C14—C15105.2 (4)
O1—C3—C4108.3 (4)C8—C14—C15115.7 (4)
C2—C3—C4110.8 (5)O3—C14—C13108.6 (4)
O1—C3—H3A108.6C8—C14—C13114.5 (4)
C2—C3—H3A108.6C15—C14—C13103.5 (4)
C4—C3—H3A108.6C16—C15—C14107.1 (4)
C3—C4—C5114.3 (5)C16—C15—H15A110.3
C3—C4—H4A108.7C14—C15—H15A110.3
C5—C4—H4A108.7C16—C15—H15B110.3
C3—C4—H4B108.7C14—C15—H15B110.3
C5—C4—H4B108.7H15A—C15—H15B108.5
H4A—C4—H4B107.6C17—C16—C15105.3 (4)
O2—C5—C6103.9 (4)C17—C16—H16A110.7
O2—C5—C4107.2 (4)C15—C16—H16A110.7
C6—C5—C4110.6 (4)C17—C16—H16B110.7
O2—C5—C10110.0 (4)C15—C16—H16B110.7
C6—C5—C10112.1 (4)H16A—C16—H16B108.8
C4—C5—C10112.5 (4)C20—C17—C16113.7 (4)
C5—C6—C7112.6 (4)C20—C17—C13116.4 (4)
C5—C6—H6A109.1C16—C17—C13105.1 (4)
C7—C6—H6A109.1C20—C17—H17A107.0
C5—C6—H6B109.1C16—C17—H17A107.0
C7—C6—H6B109.1C13—C17—H17A107.0
H6A—C6—H6B107.8C13—C18—H18A109.5
C6—C7—C8110.8 (4)C13—C18—H18B109.5
C6—C7—H7A109.5H18A—C18—H18B109.5
C8—C7—H7A109.5C13—C18—H18C109.5
C6—C7—H7B109.5H18A—C18—H18C109.5
C8—C7—H7B109.5H18B—C18—H18C109.5
H7A—C7—H7B108.1C10—C19—H19A109.5
C14—C8—C7111.5 (4)C10—C19—H19B109.5
C14—C8—C9114.6 (4)H19A—C19—H19B109.5
C7—C8—C9111.1 (4)C10—C19—H19C109.5
C14—C8—H8A106.4H19A—C19—H19C109.5
C7—C8—H8A106.4H19B—C19—H19C109.5
C9—C8—H8A106.4C22—C20—C21109.0 (5)
C8—C9—C11109.3 (4)C22—C20—C17129.6 (6)
C8—C9—C10111.4 (4)C21—C20—C17121.3 (6)
C11—C9—C10113.2 (4)C20—C22—C23109.7 (6)
C8—C9—H9A107.5C20—C22—H22A125.2
C11—C9—H9A107.5C23—C22—H22A125.2
C10—C9—H9A107.5O5—C23—O4120.1 (7)
C1—C10—C19106.3 (4)O5—C23—C22130.8 (8)
C1—C10—C5108.6 (4)O4—C23—C22109.0 (6)
C19—C10—C5110.6 (4)O4—C21—C20103.3 (6)
C1—C10—C9111.4 (4)O4—C21—H21A111.1
C19—C10—C9110.7 (4)C20—C21—H21A111.1
C5—C10—C9109.2 (4)O4—C21—H21B111.1
C12—C11—C9111.5 (4)C20—C21—H21B111.1
C12—C11—H11A109.3H21A—C21—H21B109.1
C9—C11—H11A109.3C3—O1—H1C109.5
C12—C11—H11B109.3C5—O2—H2C109.5
C9—C11—H11B109.3C14—O3—H3B109.5
H11A—C11—H11B108.0C23—O4—C21108.9 (5)
C11—C12—C13112.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O20.822.062.778 (5)147
O2—H2C···O10.822.052.778 (5)147
O3—H3B···O2i0.822.162.977 (5)175
C11—H11A···O5ii0.972.573.393 (7)143
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC23H34O5
Mr390.50
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.434 (3), 10.554 (4), 13.537 (5)
β (°) 103.118 (5)
V3)1034.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.24 × 0.02
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
5262, 1927, 1097
Rint0.077
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.126, 1.01
No. of reflections1927
No. of parameters254
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O20.822.062.778 (5)146.8
O2—H2C···O10.822.052.778 (5)147.0
O3—H3B···O2i0.822.162.977 (5)174.5
C11—H11A···O5ii0.972.573.393 (7)143
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y+1/2, z+1.
 

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 31170324 and 31070318), the Fundamental Research Funds for the Central Universities, grants from the Jilin Province Science & Technology Committee, China (Nos. 20100911, 20102203, 20110938 and 20110711), as well as the Scientific and Technical Project of the Administration of Traditional Chinese Medicine of Jilin Province (No. 2010pt069).

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFuruya, T., Kawaguchi, K. & Hirotani, M. (1988). Phytochemistry, 27, 2129–2133.  CrossRef CAS Google Scholar
First citationKawaguchi, K., Koike, S., Hirotani, M., Fujihara, M., Furuya, T., Iwata, R. & Morimoto, K. (1998). Phytochemistry, 47, 1261–1265.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, S. W. & Liu, L. P. (2004). Acta Bot. Boreali-Occidentalia Sin. 24, 275–280.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C. H., Wang, Y. Y., Zhou, Z. F. & Zhang, G. C. (2006). For. Res. 19, 231–234.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1582-o1583
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds