organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,7-Di­methyl-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodi­thio­ate

aDepartment of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 21 April 2012; accepted 23 April 2012; online 2 May 2012)

In the title compound, C17H19NO2S2, the 2H-chromene ring system is almost planar, with a maximum deviation of 0.044 (2) Å, and the pyrrolidine ring adopts an envelope conformation. The dihedral angle between the 2H-chromene system and the planar part of the pyrrolidine ring is 83.65 (8)°. A weak intra­molecular C—H⋯S hydrogen bond occurs. The crystal structure features C—H⋯O hydrogen bonds and ππ inter­actions, with a centroid–centroid distance of 3.5728 (16) Å.

Related literature

For biological properties of coumarins, see: Adavi et al. (2004[Adavi, H. H., Kusanur, R. A., Kulkarni, M. V. (2004). J. Indian Chem. Soc. 81, 981-986.]); Laurin et al. (1999[Laurin, P., Ferround, D., Schio, L., Klich, M., Hamelin, C. D., Mowais, P., Lassaigne, P., Bonnefoy, A. & Musicki, B. (1999). Bioorg. Med. Chem. Lett. 9, 2875-2877.]); Kulkarni et al. (2006[Kulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795-2818.]). For related structures, see: Kumar et al. (2012[Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878-o879.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104-o1105.]). For synthetic details, see: Shastri et al. (2004[Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416-2422.]); Vasilliev & Polackov (2000[Vasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014-1017.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO2S2

  • Mr = 333.45

  • Monoclinic, P 21 /c

  • a = 13.7023 (4) Å

  • b = 15.9082 (4) Å

  • c = 7.5511 (2) Å

  • β = 103.358 (1)°

  • V = 1601.45 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 12677 measured reflections

  • 2805 independent reflections

  • 2410 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.07

  • 2805 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯S2 0.97 2.51 3.172 (2) 126
C18—H18⋯O4i 0.93 2.52 3.411 (3) 161
C22—H22C⋯S1 0.96 2.81 3.564 (2) 137
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarins are a class of naturally occurring lactones. A number of coumarins have been isolated in recent years, mainly from plant sources and extracts of these have been employed as traditional medicines in different areas of the world. Coumarin derivatives with various thio substituents at the C-4 position have revealed potential as antibacterial (Adavi et al., 2004), DNA gyrase studies (Laurin et al., 1999) and anticancer activity (Kularni et al., 2006).

In our present work, we have been able to link a dithiocarbamate group at the C-4 methylene carbon and it was deemed of considerable interest to study the effect of this group on the total solid state conformation of the molecule. The synthesized compound was screened for antimicrobial, antidiabetic, DNA binding and DNA cleavage studies.In continuation of our interest in the crystal structures of coumarin derivatives (Kumar et al., 2012; Kant et al., 2012), we report here the crystal structure of the title compound.

The asymmetric unit of (5,7-dimethyl-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate is shown in Fig. 1. The 2H-chromene ring system (O3/C12–C20) is essentially planar, with a maximum deviation of 0.044 (2)Å for atom C15.The pyrrolidine ring adopts an envelope conformation with C8 as the flap atom. The dihedral angle between the 2H-chromene ring system (O3/C12–C20) and the planar part of the pyrrolidine ring (N5, C6, C7, C9) is 83.65 (8)°.

In the crystal structure, (Fig. 2), the molecules are connected via weak intramolecular C11—H11B···S2 and C22—H22C···S1 and intermolecular C—H···O hydrogen bonds (Table 1).Furthermore, the crystal structure features a π-π interaction,with a centroid Cg2 (O3/C12–C16) to centroid Cg3 (C13/C14/C17–C20) distance of 3.5728 (16) Å.

Related literature top

For biological properties of coumarins, see: Adavi et al. (2004, 2006); Laurin et al. (1999). For related structures, see: Kumar et al. (2012); Kant et al. (2012). For synthetic details, see: Shastri et al. (2004); Vasilliev & Polackov (2000).

Experimental top

All the chemicals used were of analytical reagent grade and were used directly without further purification.4-Bromomethyl coumarin required for the synthesis of the target molecule was synthesized according to an already reported procedure involving Pechmann cyclization of phenols with 4-bromoethyl acetoacetate (Shastri et al., 2004) and sodium pyrrolidine-1-carbodithioate was synthesized according to the reported procedure (Vasilliev & Polackov, 2000). A mixture of 2.67 g (0.01 mol) of 5,7-dimethyl-4-bromomethyl coumarin and1.69 g (0.01 mol) of sodium pyrrolidine-1-carbodithioate in 30 ml dry alcohol was stirred for 24 h at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the resulting solid was extracted twice with a dichloromethane-H2O mixture.The organic layer was dried over anhydrous CaCl2 and evaporation of the organic solvent gave the title compound.The compound was recrystallized from an ethanol-chloroform mixture. Colour: colourless. Yield 88%, m.p.443 K.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The packing of molecules in the title structure, viewed down the c-axis. Dashed lines indicate intermolecular hydrogen bonds.
(5,7-Dimethyl-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate top
Crystal data top
C17H19NO2S2F(000) = 704
Mr = 333.45Dx = 1.383 Mg m3
Monoclinic, P21/cMelting point: 443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.7023 (4) ÅCell parameters from 2805 reflections
b = 15.9082 (4) Åθ = 1.5–25.0°
c = 7.5511 (2) ŵ = 0.34 mm1
β = 103.358 (1)°T = 293 K
V = 1601.45 (7) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2805 independent reflections
Radiation source: fine-focus sealed tube2410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 25.0°, θmin = 1.5°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 1216
Tmin = 0.770, Tmax = 1.000k = 1718
12677 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.052P)2 + 0.452P]
where P = (Fo2 + 2Fc2)/3
2805 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H19NO2S2V = 1601.45 (7) Å3
Mr = 333.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7023 (4) ŵ = 0.34 mm1
b = 15.9082 (4) ÅT = 293 K
c = 7.5511 (2) Å0.24 × 0.20 × 0.12 mm
β = 103.358 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2805 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
2410 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.024
12677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.33 e Å3
2805 reflectionsΔρmin = 0.26 e Å3
201 parameters
Special details top

Experimental. IR (KBr): 686 cm-1 (C—S), 1226.8 cm-1 (C=S), 1000 cm-1 (C—O), 859 cm-1 (C—N),1153 cm-1 (C—O—C), 1719.7 cm-1 (C=O). GCMS: m/e: 333. 1H NMR (400 MHz, DMSO.D6, \?, p.p.m.): 1.91 (m,2H, C11), 2.02 (m,2H, C1), 2.49 (s,3H, C17), 2.74 (s,3H, C10), 3.66 (t,2H, C2), 4.8 (d,2H, C4), 6.5 (s,1H, C14), 7.03 (s,1H, C15), 7.10 (s,1H, C8). Elemental analysis: C, 61.20; H, 5.70; N, 4.16; O, 9.57; S, 19.19.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65286 (3)0.09638 (3)0.11104 (6)0.04453 (16)
S20.49960 (4)0.17744 (4)0.20084 (7)0.05921 (19)
O30.92005 (10)0.33298 (8)0.23621 (19)0.0473 (3)
O40.81069 (13)0.42553 (9)0.0928 (2)0.0666 (4)
N50.46456 (11)0.11498 (9)0.1028 (2)0.0407 (4)
C60.35762 (14)0.13604 (14)0.0441 (3)0.0529 (5)
H6A0.32430.10020.05560.063*
H6B0.34850.19430.00580.063*
C70.31788 (18)0.12064 (18)0.2114 (4)0.0707 (7)
H7A0.31550.17280.27660.085*
H7B0.25080.09730.17790.085*
C80.38742 (17)0.06053 (18)0.3262 (3)0.0705 (7)
H8A0.36580.00310.29660.085*
H8B0.39040.07030.45410.085*
C90.48806 (15)0.07603 (13)0.2847 (3)0.0501 (5)
H9A0.52820.11350.37400.060*
H9B0.52430.02370.28370.060*
C100.52973 (13)0.13150 (11)0.0029 (2)0.0387 (4)
C110.72925 (14)0.13642 (12)0.0367 (3)0.0451 (4)
H11A0.76570.09040.07570.054*
H11B0.68620.16120.14430.054*
C120.80249 (13)0.20148 (11)0.0595 (2)0.0393 (4)
C130.89901 (13)0.18216 (11)0.1824 (2)0.0373 (4)
C140.95351 (13)0.25130 (11)0.2690 (2)0.0391 (4)
C150.83239 (15)0.35208 (12)0.1143 (3)0.0477 (5)
C160.77386 (14)0.28199 (12)0.0298 (3)0.0455 (4)
H160.71260.29290.05010.055*
C170.94441 (14)0.10202 (11)0.2242 (3)0.0424 (4)
C181.03608 (15)0.09721 (13)0.3483 (3)0.0490 (5)
H181.06540.04460.37420.059*
C191.08660 (14)0.16670 (13)0.4363 (3)0.0473 (5)
C201.04425 (14)0.24450 (13)0.3941 (3)0.0459 (4)
H201.07650.29240.44950.055*
C211.18405 (16)0.15628 (17)0.5764 (3)0.0660 (6)
H21A1.23040.19910.55940.099*
H21B1.21190.10190.56280.099*
H21C1.17190.16110.69620.099*
C220.90076 (17)0.02021 (13)0.1408 (3)0.0652 (6)
H22A0.94520.02510.18930.098*
H22B0.89260.02260.01120.098*
H22C0.83670.01110.16880.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0365 (3)0.0496 (3)0.0446 (3)0.0019 (2)0.00356 (19)0.0083 (2)
S20.0570 (3)0.0720 (4)0.0455 (3)0.0119 (3)0.0052 (2)0.0175 (2)
O30.0530 (8)0.0355 (7)0.0542 (8)0.0048 (6)0.0141 (6)0.0003 (6)
O40.0780 (11)0.0392 (8)0.0832 (11)0.0045 (7)0.0199 (9)0.0115 (7)
N50.0378 (8)0.0393 (8)0.0424 (8)0.0008 (6)0.0040 (6)0.0018 (6)
C60.0391 (10)0.0573 (13)0.0595 (12)0.0071 (9)0.0059 (9)0.0022 (10)
C70.0510 (13)0.0842 (18)0.0813 (17)0.0068 (12)0.0243 (12)0.0095 (14)
C80.0605 (14)0.0930 (18)0.0605 (14)0.0091 (13)0.0189 (11)0.0084 (13)
C90.0501 (11)0.0541 (12)0.0444 (11)0.0031 (9)0.0072 (8)0.0071 (9)
C100.0410 (10)0.0315 (9)0.0402 (9)0.0008 (7)0.0023 (7)0.0030 (7)
C110.0425 (10)0.0512 (12)0.0418 (10)0.0034 (8)0.0104 (8)0.0031 (8)
C120.0392 (9)0.0450 (10)0.0366 (9)0.0011 (8)0.0146 (7)0.0016 (7)
C130.0358 (9)0.0412 (10)0.0383 (9)0.0022 (7)0.0157 (7)0.0002 (7)
C140.0409 (9)0.0394 (10)0.0408 (9)0.0022 (8)0.0172 (7)0.0008 (7)
C150.0536 (12)0.0427 (11)0.0507 (11)0.0021 (9)0.0197 (9)0.0071 (8)
C160.0443 (10)0.0477 (11)0.0451 (10)0.0020 (9)0.0114 (8)0.0080 (8)
C170.0402 (10)0.0392 (10)0.0512 (11)0.0009 (8)0.0177 (8)0.0008 (8)
C180.0436 (11)0.0486 (12)0.0573 (12)0.0076 (9)0.0166 (9)0.0074 (9)
C190.0354 (10)0.0655 (13)0.0432 (10)0.0005 (9)0.0139 (8)0.0035 (9)
C200.0410 (10)0.0539 (12)0.0445 (10)0.0091 (9)0.0135 (8)0.0039 (8)
C210.0441 (12)0.0919 (18)0.0591 (14)0.0032 (12)0.0062 (10)0.0067 (12)
C220.0555 (13)0.0413 (12)0.0949 (17)0.0030 (10)0.0093 (12)0.0052 (11)
Geometric parameters (Å, º) top
S1—C101.7858 (18)C11—H11B0.9700
S1—C111.8128 (19)C12—C161.343 (3)
S2—C101.6667 (18)C12—C131.462 (2)
O3—C151.368 (2)C13—C141.403 (2)
O3—C141.381 (2)C13—C171.422 (2)
O4—C151.207 (2)C14—C201.381 (3)
N5—C101.322 (2)C15—C161.434 (3)
N5—C61.468 (2)C16—H160.9300
N5—C91.473 (2)C17—C181.385 (3)
C6—C71.507 (3)C17—C221.508 (3)
C6—H6A0.9700C18—C191.389 (3)
C6—H6B0.9700C18—H180.9300
C7—C81.481 (3)C19—C201.373 (3)
C7—H7A0.9700C19—C211.509 (3)
C7—H7B0.9700C20—H200.9300
C8—C91.503 (3)C21—H21A0.9600
C8—H8A0.9700C21—H21B0.9600
C8—H8B0.9700C21—H21C0.9600
C9—H9A0.9700C22—H22A0.9600
C9—H9B0.9700C22—H22B0.9600
C11—C121.506 (3)C22—H22C0.9600
C11—H11A0.9700
C10—S1—C11103.15 (9)C16—C12—C11116.00 (17)
C15—O3—C14122.22 (14)C13—C12—C11124.46 (16)
C10—N5—C6122.74 (15)C14—C13—C17116.15 (16)
C10—N5—C9125.80 (15)C14—C13—C12115.91 (16)
C6—N5—C9111.45 (15)C17—C13—C12127.94 (16)
N5—C6—C7103.79 (17)C20—C14—O3113.91 (16)
N5—C6—H6A111.0C20—C14—C13123.74 (17)
C7—C6—H6A111.0O3—C14—C13122.34 (16)
N5—C6—H6B111.0O4—C15—O3117.15 (19)
C7—C6—H6B111.0O4—C15—C16126.7 (2)
H6A—C6—H6B109.0O3—C15—C16116.13 (16)
C8—C7—C6106.72 (19)C12—C16—C15123.74 (18)
C8—C7—H7A110.4C12—C16—H16118.1
C6—C7—H7A110.4C15—C16—H16118.1
C8—C7—H7B110.4C18—C17—C13118.81 (17)
C6—C7—H7B110.4C18—C17—C22116.43 (17)
H7A—C7—H7B108.6C13—C17—C22124.75 (17)
C7—C8—C9105.61 (19)C17—C18—C19123.60 (18)
C7—C8—H8A110.6C17—C18—H18118.2
C9—C8—H8A110.6C19—C18—H18118.2
C7—C8—H8B110.6C20—C19—C18117.98 (17)
C9—C8—H8B110.6C20—C19—C21121.32 (19)
H8A—C8—H8B108.7C18—C19—C21120.68 (19)
N5—C9—C8104.47 (16)C19—C20—C14119.65 (18)
N5—C9—H9A110.9C19—C20—H20120.2
C8—C9—H9A110.9C14—C20—H20120.2
N5—C9—H9B110.9C19—C21—H21A109.5
C8—C9—H9B110.9C19—C21—H21B109.5
H9A—C9—H9B108.9H21A—C21—H21B109.5
N5—C10—S2123.94 (13)C19—C21—H21C109.5
N5—C10—S1111.60 (13)H21A—C21—H21C109.5
S2—C10—S1124.45 (11)H21B—C21—H21C109.5
C12—C11—S1111.07 (12)C17—C22—H22A109.5
C12—C11—H11A109.4C17—C22—H22B109.5
S1—C11—H11A109.4H22A—C22—H22B109.5
C12—C11—H11B109.4C17—C22—H22C109.5
S1—C11—H11B109.4H22A—C22—H22C109.5
H11A—C11—H11B108.0H22B—C22—H22C109.5
C16—C12—C13119.52 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···S20.972.513.172 (2)126
C18—H18···O4i0.932.523.411 (3)161
C22—H22C···S10.962.813.564 (2)137
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19NO2S2
Mr333.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.7023 (4), 15.9082 (4), 7.5511 (2)
β (°) 103.358 (1)
V3)1601.45 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12677, 2805, 2410
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.07
No. of reflections2805
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···S20.972.513.172 (2)126
C18—H18···O4i0.932.523.411 (3)161
C22—H22C···S10.962.813.564 (2)137
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for CCD X-ray facilities, single-crystal X-ray diffractometer, GCMS, IR, CHNS and NMR data. NMM is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. He is also thankful to P C Jabin Science College, Hubli and UGC for allowing him to do research under FIP.

References

First citationAdavi, H. H., Kusanur, R. A., Kulkarni, M. V. (2004). J. Indian Chem. Soc. 81, 981–986.  CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104–o1105.  CSD CrossRef IUCr Journals Google Scholar
First citationKulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795–2818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLaurin, P., Ferround, D., Schio, L., Klich, M., Hamelin, C. D., Mowais, P., Lassaigne, P., Bonnefoy, A. & Musicki, B. (1999). Bioorg. Med. Chem. Lett. 9, 2875–2877.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014–1017.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds