organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,2′′,2′′′-(1,4-Phenyl­enedi­nitrilo)­tetra­acetic acid dihydrate

aInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, bEducation Institute of Taiyuan University, Taiyuan, Shanxi 030001, People's Republic of China, cDepartment of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China, and dCollege of Chemistry, Liaoning University, Shengyang 110036, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn, chhge@lnu.edu.cn

(Received 24 April 2012; accepted 27 April 2012; online 5 May 2012)

In the title compound, C14H16N2O8·2H2O, the complete organic molecule is generated by crystallographic inversion symmetry. The dihedral angles between the aniline ring and the acetic acid groups are almost identical, viz. 82.61 (7) and 80.33 (7)°. In the crystal, O—H⋯O hydrogen bonds link the organic mol­ecules and water mol­ecules, forming zigzag chains the c axis. An intra­molecular O—H⋯O hydrogen bond is also observed.

Related literature

For the crystal structures of metal complexes of the title compound, see: González et al. (1997[González, C. A., Hernandez-Padilla, M., Dominguez, S., Mederos, A., Brito, F. & Arrieta, J. M. (1997). Polyhedron, 16, 2925-2940.]); Hao, Li, Chen & Zhang (2006[Hao, Z.-F., Li, H.-F., Chen, Y.-W. & Zhang, Y.-F. (2006). Acta Cryst. E62, m1346-m1347.]); Hao, Li, Chen, Zhang et al. (2006[Hao, Z. F., Li, H. F., Chen, Y. W., Zhang, Y. F., Yu, J. & Yu, L. (2006). Chin. J. Inorg. Chem. 22, 1090-1093.][Hao, Z.-F., Li, H.-F., Chen, Y.-W. & Zhang, Y.-F. (2006). Acta Cryst. E62, m1346-m1347.]); Zhang et al. (2007[Zhang, X.-D., Ge, C.-H., Yu, F., Liu, Q.-T. & Zhu, M.-L. (2007). Acta Cryst. C63, m519-m521.]). For synthetic details, see: Zhang et al. (2007[Zhang, X.-D., Ge, C.-H., Yu, F., Liu, Q.-T. & Zhu, M.-L. (2007). Acta Cryst. C63, m519-m521.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O8·2H2O

  • Mr = 376.32

  • Triclinic, [P \overline 1]

  • a = 5.1446 (12) Å

  • b = 8.4165 (19) Å

  • c = 9.953 (2) Å

  • α = 76.656 (4)°

  • β = 88.177 (4)°

  • γ = 85.715 (4)°

  • V = 418.12 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.975

  • 2170 measured reflections

  • 1458 independent reflections

  • 1136 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.04

  • 1458 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O2i 0.86 2.13 2.819 (3) 137
O5—H5A⋯O2ii 0.92 2.25 3.035 (3) 143
O4—H4⋯O5 0.82 1.78 2.597 (3) 171
O1—H1⋯O3 0.82 1.86 2.653 (2) 164
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXL97; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent research, the 2,2',2'',2'''-(1,4-phenylenebis(azanetriyl))tetraacetic acid ligand (H4dbta) formed metal complexes.(González et al., 1997; Hao,Li, Chen, Zhang et al., 2006; Hao, Li, Chen, & Zhang, 2006; Zhang, et al., 2007). We expected to synthesize zinc complexes by the reaction of H4dbta with zinc chloride in water. However, colorless crystals of the title compound were obtained by evaporation of the solvent.

The crystal structure of the title compound, C14H16N2O8.2H2O, is centrosymmetric. The structure of the complete organic molecule and on independent water molecule are shown in Fig. 1. The dihedral angle between the plane C1/C2/C3/N1 and the plane C4/C5/O1/O2 is 82.61 (7)°, that between the plane C1/C2/C3/N1 and the plane C6/C7/O3/O4 is 80.33 (7)°.

O—H···O hydrogen bonds link the organic molecules and water molecules, forming zigzag chains (Fig. 2) An intramolecular O—H···O hydrogen bond is also observed (Fig. 1 and Table 1).

Related literature top

For the crystal structures of metal complexes of the title compound, see: González et al. (1997); Hao, Li, Chen & Zhang (2006); Hao, Li, Chen, Zhang et al. (2006); Zhang et al. (2007). For synthetic details, see: Zhang et al. (2007).

Experimental top

All reagents were of analytical grade and used without further purification. 2,2',2'',2'''-(1,4-Phenylenebis(azanetriyl))tetraacetic acid(H4dbta) was synthesized by a previously reported method (Zhang et al., 2007). H4dbta (0.17 g,0.5 mmol) and ZnCl2 (0.136 g, 1.0 mmol) were mixed in 15 mL of water. The pH value of the solution was adjusted to 1.0 by HCl. The clear solution was allowed to stand at 323 K for 8 h. It was then filtered and the filtrate was kept at 277 K , allowing slow evaporation. After several weeks, purple single crystals of the title compound were obtained. Yield: 28%.

Selected IR(KBr, cm-1): 3455(s), 1723(s), 1656(s), 1527(s), 1446(m),1367(s), 1320(m), 1252(m), 1230(m), 1190(m), 972(m), 888(m), 806(m),736(m). The infrared spectra of the title compound near 3455 cm-1 for O—H stretching frequency showed that water of solvation existed in the crystal structure. The strong band at 1723 cm-1 corresponds to the C=O stretching frequency of the carboxyl group.

Refinement top

H atoms attached to C and O (carboxyl) were placed in geometrically idealized positions with Csp2—H = 0.93 Å, Csp3—H = 0.97 Å and refined in the riding model approximation; Uiso(H) = xUeq(C,O), where x = 1.5 for O—H and 1.2 for C—H.

The water H atoms were located in difference Fourier maps (O—H = 0.92 and 0.86 Å) and refined, as riding, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the organic molecule and one independent water molecule, showing displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed lines represent hydrogen bonds. Symmetry code: i) 1 -x, -y, 1 - z.
[Figure 2] Fig. 2. The packing of the crystal structure, showing the zigzag chains and a wave-like layer formed by O—H···O hydrogen bonds (dotted lines). H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
2,2',2'',2'''-(1,4-Phenylenedinitrilo)tetraacetic acid dihydrate top
Crystal data top
C14H16N2O8·2H2OZ = 1
Mr = 376.32F(000) = 198
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1446 (12) ÅCell parameters from 694 reflections
b = 8.4165 (19) Åθ = 2.5–25.4°
c = 9.953 (2) ŵ = 0.13 mm1
α = 76.656 (4)°T = 298 K
β = 88.177 (4)°Block, purple
γ = 85.715 (4)°0.20 × 0.20 × 0.20 mm
V = 418.12 (16) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1458 independent reflections
Radiation source: fine-focus sealed tube1136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 56
Tmin = 0.975, Tmax = 0.975k = 99
2170 measured reflectionsl = 711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.147P]
where P = (Fo2 + 2Fc2)/3
1458 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H16N2O8·2H2Oγ = 85.715 (4)°
Mr = 376.32V = 418.12 (16) Å3
Triclinic, P1Z = 1
a = 5.1446 (12) ÅMo Kα radiation
b = 8.4165 (19) ŵ = 0.13 mm1
c = 9.953 (2) ÅT = 298 K
α = 76.656 (4)°0.20 × 0.20 × 0.20 mm
β = 88.177 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1458 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1136 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.975Rint = 0.014
2170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
1458 reflectionsΔρmin = 0.21 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2990 (4)0.0540 (2)0.58341 (19)0.0294 (5)
C20.4610 (4)0.1632 (2)0.5005 (2)0.0326 (5)
H20.43700.27400.49980.039*
C30.3429 (4)0.1104 (3)0.5810 (2)0.0322 (5)
H30.23840.18660.63530.039*
C40.0514 (4)0.0116 (3)0.7566 (2)0.0357 (5)
H4A0.12290.07930.70210.043*
H4B0.19690.04620.79340.043*
C50.0940 (4)0.1225 (3)0.8765 (2)0.0361 (5)
C60.0618 (4)0.2780 (3)0.6670 (2)0.0389 (5)
H6A0.10360.29760.71210.047*
H6B0.05410.34190.57250.047*
C70.2789 (5)0.3343 (3)0.7411 (2)0.0383 (5)
N10.1002 (3)0.1069 (2)0.66661 (17)0.0324 (4)
O10.2911 (3)0.0650 (2)0.92636 (16)0.0483 (5)
H10.31270.02790.88140.072*
O20.0295 (4)0.2586 (2)0.92856 (18)0.0547 (5)
O30.4170 (3)0.2397 (2)0.82357 (17)0.0483 (5)
O40.3047 (4)0.4915 (2)0.7071 (2)0.0627 (6)
H40.41990.51410.75320.094*
O50.6861 (4)0.5278 (3)0.8597 (2)0.0822 (7)
H5A0.69920.45180.94300.123*
H5B0.71210.62340.87270.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0321 (11)0.0326 (11)0.0241 (10)0.0036 (9)0.0052 (8)0.0065 (8)
C20.0418 (13)0.0264 (11)0.0300 (11)0.0033 (9)0.0028 (9)0.0069 (8)
C30.0368 (12)0.0321 (11)0.0280 (11)0.0099 (9)0.0011 (9)0.0052 (8)
C40.0328 (12)0.0411 (13)0.0347 (12)0.0073 (10)0.0016 (9)0.0110 (10)
C50.0380 (13)0.0375 (13)0.0341 (12)0.0078 (10)0.0018 (9)0.0097 (9)
C60.0370 (13)0.0352 (12)0.0437 (13)0.0019 (10)0.0030 (10)0.0088 (10)
C70.0406 (13)0.0338 (12)0.0429 (13)0.0051 (10)0.0081 (10)0.0139 (10)
N10.0328 (10)0.0331 (10)0.0321 (9)0.0034 (7)0.0001 (7)0.0092 (7)
O10.0570 (11)0.0431 (10)0.0418 (9)0.0155 (8)0.0174 (8)0.0026 (7)
O20.0653 (12)0.0403 (10)0.0558 (11)0.0186 (9)0.0060 (9)0.0004 (8)
O30.0539 (11)0.0426 (10)0.0487 (10)0.0109 (8)0.0130 (8)0.0069 (8)
O40.0733 (15)0.0322 (10)0.0833 (15)0.0093 (9)0.0134 (11)0.0115 (9)
O50.0968 (17)0.0633 (14)0.0892 (16)0.0345 (12)0.0230 (13)0.0107 (11)
Geometric parameters (Å, º) top
C1—C31.391 (3)C5—O11.313 (3)
C1—C21.393 (3)C6—N11.440 (3)
C1—N11.406 (3)C6—C71.519 (3)
C2—C3i1.385 (3)C6—H6A0.9700
C2—H20.9300C6—H6B0.9700
C3—C2i1.385 (3)C7—O31.210 (3)
C3—H30.9300C7—O41.304 (3)
C4—N11.437 (3)O1—H10.8200
C4—C51.514 (3)O4—H40.8200
C4—H4A0.9700O5—H5A0.9236
C4—H4B0.9700O5—H5B0.8646
C5—O21.209 (3)
C3—C1—C2117.08 (19)O1—C5—C4117.95 (19)
C3—C1—N1121.21 (19)N1—C6—C7111.98 (18)
C2—C1—N1121.71 (18)N1—C6—H6A109.2
C3i—C2—C1121.50 (19)C7—C6—H6A109.2
C3i—C2—H2119.3N1—C6—H6B109.2
C1—C2—H2119.3C7—C6—H6B109.2
C2i—C3—C1121.4 (2)H6A—C6—H6B107.9
C2i—C3—H3119.3O3—C7—O4123.3 (2)
C1—C3—H3119.3O3—C7—C6122.2 (2)
N1—C4—C5115.57 (18)O4—C7—C6114.4 (2)
N1—C4—H4A108.4C1—N1—C4119.59 (17)
C5—C4—H4A108.4C1—N1—C6119.60 (17)
N1—C4—H4B108.4C4—N1—C6120.69 (17)
C5—C4—H4B108.4C5—O1—H1109.5
H4A—C4—H4B107.5C7—O4—H4109.5
O2—C5—O1120.0 (2)H5A—O5—H5B109.1
O2—C5—C4122.0 (2)
C3—C1—C2—C3i0.1 (3)C3—C1—N1—C43.5 (3)
N1—C1—C2—C3i179.81 (18)C2—C1—N1—C4176.25 (18)
C2—C1—C3—C2i0.1 (3)C3—C1—N1—C6179.58 (18)
N1—C1—C3—C2i179.81 (18)C2—C1—N1—C60.1 (3)
N1—C4—C5—O2152.7 (2)C5—C4—N1—C168.0 (2)
N1—C4—C5—O129.3 (3)C5—C4—N1—C6108.1 (2)
N1—C6—C7—O320.9 (3)C7—C6—N1—C171.6 (2)
N1—C6—C7—O4158.3 (2)C7—C6—N1—C4104.5 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2ii0.862.132.819 (3)137
O5—H5A···O2iii0.922.253.035 (3)143
O4—H4···O50.821.782.597 (3)171
O1—H1···O30.821.862.653 (2)164
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H16N2O8·2H2O
Mr376.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.1446 (12), 8.4165 (19), 9.953 (2)
α, β, γ (°)76.656 (4), 88.177 (4), 85.715 (4)
V3)418.12 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.975, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
2170, 1458, 1136
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.04
No. of reflections1458
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2i0.862.132.819 (3)136.8
O5—H5A···O2ii0.922.253.035 (3)143.1
O4—H4···O50.821.782.597 (3)170.5
O1—H1···O30.821.862.653 (2)163.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 21171109), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20111401110002) and the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 2010011011–2).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGonzález, C. A., Hernandez-Padilla, M., Dominguez, S., Mederos, A., Brito, F. & Arrieta, J. M. (1997). Polyhedron, 16, 2925–2940.  Google Scholar
First citationHao, Z.-F., Li, H.-F., Chen, Y.-W. & Zhang, Y.-F. (2006). Acta Cryst. E62, m1346–m1347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Z. F., Li, H. F., Chen, Y. W., Zhang, Y. F., Yu, J. & Yu, L. (2006). Chin. J. Inorg. Chem. 22, 1090–1093.  CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-D., Ge, C.-H., Yu, F., Liu, Q.-T. & Zhu, M.-L. (2007). Acta Cryst. C63, m519–m521.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds