organic compounds
(5,7-Dimethyl-2-oxo-2H-chromen-4-yl)methyl diethyldithiocarbamate
aDepartment of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com
In the title compound, C17H21NO2S2, the coumarin ring system is nearly planar, with a maximum deviation of 0.080 (2) Å from the mean plane. An intramolecular C—H⋯S hydrogen bond occurs. The features C—H⋯S hydrogen bonds and weak π–π interactions with a centroid–centroid distance of 3.679 (1) Å.
Related literature
For biological applications of et al. (1998); Nawrot-Modraka et al. (2006); Basanagouda et al. (2009); Kalkhambkar et al. (2007); El-Shorbagi (2000); Ronconi et al. (2006); Cvek & Dvorak (2007). For a related structure, see: Kumar et al. (2012). For the synthesis of the title compound, see: Shastri et al. (2004).
and dithiocarbamates, see: SmithExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812019757/wn2474sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812019757/wn2474Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812019757/wn2474Isup3.cml
All the chemicals were of analytical reagent grade and were used directly without further purification. 4-Bromomethyl coumarin required for the synthesis of the target molecule was synthesized according to an already reported procedure involving Pechmann
of with 4-bromoethyl acetoacetate (Shastri et al., 2004) and sodium diethyldithiocarbamate purchased from Sigma- Aldrich.A mixture of 2.6 g (0.01 mol) of 5,7-dimethyl-4-bromomethylcoumarin and 1.71 g (0.01 mol) of sodium diethyldithiocarbamate in 30 ml dry alcohol was stirred for 24 h at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the resulting solid was extracted twice with a dichloromethane-H2O mixture. The organic layer was dried over anhydrous CaCl2 and evaporation of the organic solvent gave the title compound. The compound was recrystallized from an ethanol-chloroform mixture. Colour: Colourless. Yield: 91%. M.P.: 409 K.
All H atoms were positioned geometrically [Csp2—H = 0.93 Å, C(methylene)—H = 0.97 Å and C(methyl)—H = 0.96 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for other H.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C17H21NO2S2 | F(000) = 712 |
Mr = 335.47 | Dx = 1.295 Mg m−3 |
Monoclinic, P21/n | Melting point: 409 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8570 (2) Å | Cell parameters from 3033 reflections |
b = 23.7745 (5) Å | θ = 1.7–25.0° |
c = 9.7684 (2) Å | µ = 0.32 mm−1 |
β = 109.483 (1)° | T = 293 K |
V = 1720.22 (7) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.20 × 0.12 mm |
Bruker SMART CCD area-detector diffractometer | 3033 independent reflections |
Radiation source: fine-focus sealed tube | 2803 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω and ϕ scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) | h = −9→9 |
Tmin = 0.770, Tmax = 1.000 | k = −26→28 |
14939 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0643P)2 + 1.5942P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.003 |
3033 reflections | Δρmax = 0.90 e Å−3 |
204 parameters | Δρmin = −0.73 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0052 (14) |
C17H21NO2S2 | V = 1720.22 (7) Å3 |
Mr = 335.47 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.8570 (2) Å | µ = 0.32 mm−1 |
b = 23.7745 (5) Å | T = 293 K |
c = 9.7684 (2) Å | 0.24 × 0.20 × 0.12 mm |
β = 109.483 (1)° |
Bruker SMART CCD area-detector diffractometer | 3033 independent reflections |
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) | 2803 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 1.000 | Rint = 0.020 |
14939 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.90 e Å−3 |
3033 reflections | Δρmin = −0.73 e Å−3 |
204 parameters |
Experimental. IR (KBr) 670 c m-1 (C—S), 1204 c m-1 (C=S), 1047 c m-1 (C—O), 823 c m-1 (C—N),1279 c m-1 (C—O—C), 1716 c m-1 (C=O).GCMS data m/e = 335. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.58 (d Ethylene-6H, CH3), 2.46 (s,3H, CH3), 2.71 (s,3H, CH3), 3.88 (s,2H, Ethylene-CH2), 4.21 (s,2H, Ethylene-CH2), 4.50 (s 2H, Methylene-CH2), 6.53 (s,1H, Ar—H), 6.92 (s,1H, Ar—H), 7.03 (s,1H, Ar—H). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.15831 (9) | 0.15127 (3) | 0.66095 (6) | 0.0434 (2) | |
S2 | 0.25909 (15) | 0.14818 (4) | 0.38884 (10) | 0.0773 (3) | |
O3 | 0.77521 (19) | 0.04484 (8) | 0.88072 (17) | 0.0414 (4) | |
O4 | 0.8065 (3) | 0.01657 (10) | 0.6765 (2) | 0.0610 (6) | |
N5 | 0.1516 (4) | 0.23806 (10) | 0.4975 (3) | 0.0583 (6) | |
C6 | 0.7641 (3) | 0.06546 (11) | 1.1089 (2) | 0.0395 (5) | |
H6 | 0.8887 | 0.0606 | 1.1437 | 0.047* | |
C7 | 0.6727 (3) | 0.07803 (10) | 1.2025 (2) | 0.0401 (5) | |
C8 | 0.4863 (3) | 0.08315 (10) | 1.1453 (2) | 0.0378 (5) | |
H8 | 0.4236 | 0.0902 | 1.2091 | 0.045* | |
C9 | 0.3886 (3) | 0.07847 (9) | 0.9997 (2) | 0.0329 (5) | |
C10 | 0.4826 (3) | 0.06808 (9) | 0.9000 (2) | 0.0294 (5) | |
C11 | 0.6692 (3) | 0.06000 (9) | 0.9621 (2) | 0.0327 (5) | |
C12 | 0.4095 (3) | 0.06440 (9) | 0.7418 (2) | 0.0312 (5) | |
C13 | 0.5170 (3) | 0.04836 (10) | 0.6673 (2) | 0.0380 (5) | |
H13 | 0.4675 | 0.0459 | 0.5668 | 0.046* | |
C14 | 0.7056 (3) | 0.03479 (11) | 0.7350 (3) | 0.0405 (5) | |
C15 | 0.7704 (4) | 0.08551 (15) | 1.3626 (3) | 0.0628 (8) | |
H15A | 0.7936 | 0.0493 | 1.4088 | 0.094* | |
H15B | 0.6971 | 0.1074 | 1.4042 | 0.094* | |
H15C | 0.8827 | 0.1046 | 1.3770 | 0.094* | |
C16 | 0.1861 (3) | 0.08263 (12) | 0.9590 (3) | 0.0465 (6) | |
H16A | 0.1543 | 0.0847 | 1.0456 | 0.070* | |
H16B | 0.1310 | 0.0500 | 0.9041 | 0.070* | |
H16C | 0.1442 | 0.1158 | 0.9016 | 0.070* | |
C17 | 0.2169 (3) | 0.07796 (10) | 0.6516 (2) | 0.0369 (5) | |
H17A | 0.1363 | 0.0548 | 0.6844 | 0.044* | |
H17B | 0.1982 | 0.0683 | 0.5512 | 0.044* | |
C18 | 0.1913 (4) | 0.18349 (11) | 0.5078 (3) | 0.0480 (6) | |
C19 | 0.1622 (6) | 0.27172 (15) | 0.3738 (4) | 0.0795 (11) | |
H19A | 0.1363 | 0.2478 | 0.2887 | 0.095* | |
H19B | 0.0718 | 0.3012 | 0.3524 | 0.095* | |
C20 | 0.0865 (5) | 0.26865 (13) | 0.6014 (4) | 0.0666 (9) | |
H20A | 0.1272 | 0.3074 | 0.6075 | 0.080* | |
H20B | 0.1384 | 0.2519 | 0.6968 | 0.080* | |
C21 | −0.1163 (5) | 0.26762 (16) | 0.5582 (4) | 0.0793 (10) | |
H21A | −0.1682 | 0.2849 | 0.4647 | 0.119* | |
H21B | −0.1529 | 0.2879 | 0.6286 | 0.119* | |
H21C | −0.1570 | 0.2294 | 0.5538 | 0.119* | |
C22 | 0.3417 (7) | 0.29714 (19) | 0.4049 (7) | 0.1145 (17) | |
H22A | 0.3700 | 0.3194 | 0.4917 | 0.172* | |
H22B | 0.3420 | 0.3206 | 0.3251 | 0.172* | |
H22C | 0.4303 | 0.2680 | 0.4184 | 0.172* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0513 (4) | 0.0436 (4) | 0.0340 (3) | 0.0154 (3) | 0.0127 (3) | 0.0011 (2) |
S2 | 0.1254 (8) | 0.0562 (5) | 0.0777 (6) | 0.0240 (5) | 0.0703 (6) | 0.0081 (4) |
O3 | 0.0260 (8) | 0.0627 (11) | 0.0369 (9) | 0.0014 (7) | 0.0124 (6) | 0.0009 (8) |
O4 | 0.0491 (11) | 0.0906 (16) | 0.0508 (11) | 0.0181 (10) | 0.0267 (9) | −0.0012 (10) |
N5 | 0.0738 (16) | 0.0432 (13) | 0.0683 (16) | 0.0112 (11) | 0.0373 (13) | 0.0056 (11) |
C6 | 0.0270 (11) | 0.0512 (14) | 0.0360 (12) | −0.0054 (10) | 0.0046 (9) | 0.0016 (10) |
C7 | 0.0441 (13) | 0.0425 (13) | 0.0300 (11) | −0.0084 (10) | 0.0074 (10) | −0.0005 (9) |
C8 | 0.0424 (13) | 0.0403 (13) | 0.0351 (12) | −0.0017 (10) | 0.0188 (10) | −0.0017 (9) |
C9 | 0.0311 (11) | 0.0325 (11) | 0.0361 (12) | 0.0004 (9) | 0.0126 (9) | 0.0013 (9) |
C10 | 0.0270 (10) | 0.0287 (10) | 0.0318 (11) | −0.0028 (8) | 0.0090 (9) | 0.0004 (8) |
C11 | 0.0279 (11) | 0.0383 (12) | 0.0331 (11) | −0.0031 (9) | 0.0117 (9) | 0.0024 (9) |
C12 | 0.0303 (11) | 0.0283 (10) | 0.0320 (11) | −0.0002 (8) | 0.0065 (9) | 0.0002 (8) |
C13 | 0.0389 (12) | 0.0439 (13) | 0.0294 (11) | 0.0050 (10) | 0.0091 (9) | 0.0002 (9) |
C14 | 0.0389 (12) | 0.0498 (14) | 0.0366 (12) | 0.0040 (11) | 0.0177 (10) | 0.0036 (10) |
C15 | 0.0609 (18) | 0.087 (2) | 0.0334 (14) | −0.0135 (16) | 0.0061 (12) | −0.0067 (14) |
C16 | 0.0348 (13) | 0.0618 (16) | 0.0475 (14) | 0.0073 (11) | 0.0199 (11) | 0.0059 (12) |
C17 | 0.0332 (12) | 0.0381 (12) | 0.0338 (12) | 0.0033 (9) | 0.0035 (9) | −0.0026 (9) |
C18 | 0.0528 (15) | 0.0451 (14) | 0.0500 (15) | 0.0078 (11) | 0.0224 (12) | 0.0020 (11) |
C19 | 0.104 (3) | 0.0531 (18) | 0.101 (3) | 0.0124 (18) | 0.060 (2) | 0.0154 (18) |
C20 | 0.097 (2) | 0.0421 (15) | 0.069 (2) | 0.0145 (15) | 0.0382 (18) | −0.0025 (14) |
C21 | 0.094 (3) | 0.072 (2) | 0.086 (2) | 0.0324 (19) | 0.049 (2) | 0.0158 (19) |
C22 | 0.132 (4) | 0.079 (3) | 0.165 (5) | −0.026 (3) | 0.093 (4) | −0.017 (3) |
S1—C18 | 1.775 (3) | C13—C14 | 1.443 (3) |
S1—C17 | 1.813 (2) | C13—H13 | 0.9300 |
S2—C18 | 1.659 (3) | C15—H15A | 0.9600 |
O3—C14 | 1.365 (3) | C15—H15B | 0.9600 |
O3—C11 | 1.377 (3) | C15—H15C | 0.9600 |
O4—C14 | 1.202 (3) | C16—H16A | 0.9600 |
N5—C18 | 1.330 (4) | C16—H16B | 0.9600 |
N5—C20 | 1.472 (4) | C16—H16C | 0.9600 |
N5—C19 | 1.474 (4) | C17—H17A | 0.9700 |
C6—C7 | 1.371 (3) | C17—H17B | 0.9700 |
C6—C11 | 1.384 (3) | C19—C22 | 1.469 (6) |
C6—H6 | 0.9300 | C19—H19A | 0.9700 |
C7—C8 | 1.388 (3) | C19—H19B | 0.9700 |
C7—C15 | 1.505 (3) | C20—C21 | 1.506 (5) |
C8—C9 | 1.377 (3) | C20—H20A | 0.9700 |
C8—H8 | 0.9300 | C20—H20B | 0.9700 |
C9—C10 | 1.426 (3) | C21—H21A | 0.9600 |
C9—C16 | 1.510 (3) | C21—H21B | 0.9600 |
C10—C11 | 1.400 (3) | C21—H21C | 0.9600 |
C10—C12 | 1.461 (3) | C22—H22A | 0.9600 |
C12—C13 | 1.341 (3) | C22—H22B | 0.9600 |
C12—C17 | 1.510 (3) | C22—H22C | 0.9600 |
C18—S1—C17 | 105.17 (12) | C9—C16—H16B | 109.5 |
C14—O3—C11 | 122.57 (17) | H16A—C16—H16B | 109.5 |
C18—N5—C20 | 123.8 (2) | C9—C16—H16C | 109.5 |
C18—N5—C19 | 121.0 (2) | H16A—C16—H16C | 109.5 |
C20—N5—C19 | 115.1 (2) | H16B—C16—H16C | 109.5 |
C7—C6—C11 | 119.4 (2) | C12—C17—S1 | 113.43 (15) |
C7—C6—H6 | 120.3 | C12—C17—H17A | 108.9 |
C11—C6—H6 | 120.3 | S1—C17—H17A | 108.9 |
C6—C7—C8 | 117.8 (2) | C12—C17—H17B | 108.9 |
C6—C7—C15 | 121.3 (2) | S1—C17—H17B | 108.9 |
C8—C7—C15 | 120.8 (2) | H17A—C17—H17B | 107.7 |
C9—C8—C7 | 124.0 (2) | N5—C18—S2 | 124.2 (2) |
C9—C8—H8 | 118.0 | N5—C18—S1 | 112.87 (19) |
C7—C8—H8 | 118.0 | S2—C18—S1 | 122.90 (16) |
C8—C9—C10 | 118.8 (2) | C22—C19—N5 | 111.5 (4) |
C8—C9—C16 | 116.2 (2) | C22—C19—H19A | 109.3 |
C10—C9—C16 | 124.9 (2) | N5—C19—H19A | 109.3 |
C11—C10—C9 | 115.73 (19) | C22—C19—H19B | 109.3 |
C11—C10—C12 | 115.79 (19) | N5—C19—H19B | 109.3 |
C9—C10—C12 | 128.48 (19) | H19A—C19—H19B | 108.0 |
O3—C11—C6 | 113.68 (19) | N5—C20—C21 | 112.2 (3) |
O3—C11—C10 | 122.26 (19) | N5—C20—H20A | 109.2 |
C6—C11—C10 | 124.0 (2) | C21—C20—H20A | 109.2 |
C13—C12—C10 | 119.62 (19) | N5—C20—H20B | 109.2 |
C13—C12—C17 | 115.74 (19) | C21—C20—H20B | 109.2 |
C10—C12—C17 | 124.64 (19) | H20A—C20—H20B | 107.9 |
C12—C13—C14 | 123.5 (2) | C20—C21—H21A | 109.5 |
C12—C13—H13 | 118.3 | C20—C21—H21B | 109.5 |
C14—C13—H13 | 118.3 | H21A—C21—H21B | 109.5 |
O4—C14—O3 | 117.4 (2) | C20—C21—H21C | 109.5 |
O4—C14—C13 | 127.0 (2) | H21A—C21—H21C | 109.5 |
O3—C14—C13 | 115.58 (19) | H21B—C21—H21C | 109.5 |
C7—C15—H15A | 109.5 | C19—C22—H22A | 109.5 |
C7—C15—H15B | 109.5 | C19—C22—H22B | 109.5 |
H15A—C15—H15B | 109.5 | H22A—C22—H22B | 109.5 |
C7—C15—H15C | 109.5 | C19—C22—H22C | 109.5 |
H15A—C15—H15C | 109.5 | H22A—C22—H22C | 109.5 |
H15B—C15—H15C | 109.5 | H22B—C22—H22C | 109.5 |
C9—C16—H16A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···S2i | 0.93 | 2.86 | 3.751 (2) | 161 |
C16—H16C···S1 | 0.96 | 2.53 | 3.282 (3) | 135 |
Symmetry code: (i) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H21NO2S2 |
Mr | 335.47 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.8570 (2), 23.7745 (5), 9.7684 (2) |
β (°) | 109.483 (1) |
V (Å3) | 1720.22 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.24 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | ψ scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.770, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14939, 3033, 2803 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.135, 1.04 |
No. of reflections | 3033 |
No. of parameters | 204 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.90, −0.73 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···S2i | 0.93 | 2.86 | 3.751 (2) | 161 |
C16—H16C···S1 | 0.96 | 2.53 | 3.282 (3) | 135 |
Symmetry code: (i) x, y, z+1. |
Acknowledgements
The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.
References
Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495. CSD CrossRef CAS Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cvek, B. & Dvorak, Z. T. (2007). Curr. Pharm. Des. 13, 3155–3167. Web of Science CrossRef PubMed CAS Google Scholar
El-Shorbagi, A. N. (2000). Arch. Pharm. 33, 281–284. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kalkhambkar, R. G., Kulkarni, G. M. & Lee, C.-S. (2007). X-ray Struct. Anal. Online, 23, 31–32. CrossRef Google Scholar
Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879. CSD CrossRef CAS IUCr Journals Google Scholar
Nawrot-Modraka, J., Nawrot, E. & Graczik, J. (2006). Eur. J. Med. Chem. 41, 1301–1309. Web of Science PubMed Google Scholar
Ronconi, L., Marzano, C., Zanello, P., Corsini, M., Miolo, G., Macca, C., Trevisan, A. & Fregona, D. (2006). J. Med. Chem. 49, 1648–1657. Web of Science CrossRef PubMed CAS Google Scholar
Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422. Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, R. H., Jorgen, W. H., Tirado, R. J. & Lamb, M. L. (1998). J. Med. Chem. 41, 5272–5286. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarins constitute a class of compounds which are found widely in nature and possess diverse biological activities. Over recent decades, medicinal chemists have paid great attention to the isolation, screening and structural modifications of new coumarins. They have been found to exhibit a wide range of applications in cancer, the HIV drug development arena (Smith et al., 1998), anti-tumor, anti-bacterial and cytotoxic activity (Nawrot-Modraka et al., 2006). In 4-substituted coumarins, the groups attached at the C-4 methylene carbon been shown to influence their solid state conformations, as observed in 4-aryloxymethyl (Basanagouda et al., 2009) and 4-arylaminomethyl coumarins (Kalkhambkar et al., 2007).
Dithiocarbamates have shown wide applications as pesticides,fungicides in agriculture (El-Shorbagi, 2000), potent anticancer agents (Ronconi et al., 2006), organic intermediates, rubber additives, additives of polluted water and vulcanizing agents (Cvek & Dvorak, 2007).
In view of the above observations,we proposed that 4-substituted coumarins bearing the dithiocarbamate (DTC)group should display some interesting biological activity and the title compound was screened for fungicidal, bacterial and DNA cleavage properties.The crystal structure of a coumarin derivative linked to the DTC group has been reported (Kumar et al., 2012).
The title compound is one of a series of dithiocarbamate coumarins with potential as possible anti-microbial agents. For these reasons, in continuation of our interest in the crystal structures of coumarin derivatives, we report here its crystal structure.
The asymmetric unit of 5,7-dimethyl-2-oxo-2H-chromen-4-yl)methyl diethyldithiocarbamate is shown in Fig. 1.The coumarin ring system (O3/C6–C14) is nearly planar, with a maximum deviation from the mean plane of 0.080 (2) Å for atom C12.
In the crystal structure (Fig. 2), the molecules are connected via weak intramolecular C8—H8···S2 and intermolecular C16—H16C···S1 hydrogen bonds (Table 1). Furthermore, the crystal structure features π-π stacking interactions between the pyran ring (O3/C10–C14; centroid Cg1) and the benzene ring (C6–C11; centroid Cg2), with a Cg1···Cg2 distance of 3.679 (1) Å.