metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-tri­fluoro­methyl-1H-benzimidazol-3-ium) tetra­chloridomercurate dihydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 20 April 2012; accepted 26 April 2012; online 2 May 2012)

In the title compound, (C8H6F3N2)2[HgCl4]·2H2O, the HgII cation is coordinated by four Cl anions in a distorted tetra­hedral geometry. In the crystal, the 2-trifluoro­methyl-1H-benzimidazolium cations link to the [HgCl4]2− complex anions and lattice water mol­ecules via N—H⋯Cl and N—H⋯O hydrogen bonds, and the lattice water mol­ecules further link to the Hg complex anion and the organic cations via O—H⋯Cl and O—H⋯F hydrogen bonding. One of the trifluoro­methyl groups is disordered over two orientations in a 0.59 (4):0.41 (4) ratio.

Related literature

For background to ferroelectric complexes, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42-43.]). Zhang et al. (2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300-7302.], 2012[Zhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163-1195.]). For related structures, see: Liu (2011a[Liu, M.-L. (2011a). Acta Cryst. E67, o2821.],b[Liu, M.-L. (2011b). Acta Cryst. E67, o3473.], 2012a[Liu, M.-L. (2012a). Acta Cryst. E68, o342.],b[Liu, M.-L. (2012b). Acta Cryst. E68, o1012.],c[Liu, M.-L. (2012c). Acta Cryst. E68, o1076.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H6F3N2)2[HgCl4]·2H2O

  • Mr = 752.72

  • Triclinic, [P \overline 1]

  • a = 9.2485 (18) Å

  • b = 10.029 (2) Å

  • c = 14.754 (3) Å

  • α = 79.40 (3)°

  • β = 75.79 (3)°

  • γ = 67.74 (3)°

  • V = 1221.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.81 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.095, Tmax = 0.152

  • 12786 measured reflections

  • 5564 independent reflections

  • 4040 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.119

  • S = 1.08

  • 5564 reflections

  • 326 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.86 2.23 3.081 (6) 170
N2—H2A⋯O1ii 0.86 1.80 2.656 (8) 174
N3—H3A⋯O2 0.86 1.76 2.608 (9) 166
N4—H4A⋯Cl1 0.86 2.21 3.069 (6) 175
O1—H1C⋯F3iii 0.85 2.25 2.994 (18) 146
O1—H1B⋯Cl2iv 0.85 2.55 3.279 (6) 144
O2—H2B⋯F5v 0.85 2.41 3.224 (13) 160
O2—H2D⋯Cl3vi 0.85 2.50 3.339 (10) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z; (iv) x, y-1, z+1; (v) -x+1, -y, -z+1; (vi) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular-ionic compounds containing inorganic and organic ions due to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Fu et al, 2011; Ye et al. 2009; Zhang et al. 2009; Zhang et al. 2012; Zhang et al. 2010). In our laboratory, the title compound has been synthesized to investigate to its potentialferroelectric properties. However, it was found that the dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

The title compound,(C8H6F3N2)2+.HgCl42-.2H2O, has an asymmetric unit that consists of two 2-trifluoromethyl-1H-benzimidazol cations, one tetrachloridomercuriate anion and two water molecules (Fig 1). The atoms of the benzimidazole ring are nearly coplanar and the triflouromethyl group lies out of this plane. The mercury cation is coordinated by six Cl- anions in distorted tetrahedral geometry.the average Hg—Cl bond distances range from 2.364 (2) Å to 2.564 (2) Å, the Cl—Hg—Cl angles range from 102.24 (8)°to 120.36 (9)°. In the crystal structure, the 2-trifluoromethyl-1H-benzimidazolecations are linked to adjacent tetrachloridomercuriate anions and watermolecules by N—H···O, N—H···Cl and O—H···Cl hydrogen bonds to form one dimensional chains parallel to ac plane (Fig 2). One of the trifluoromethyl is disordered.

Related literature top

For background to ferroelectric complexes, see: Fu et al. (2011); Ye et al. (2009). Zhang et al. (2009, 2010, 2012). For related structures, see: Liu (2011a,b, 2012a,b,c).

Experimental top

0.144 g (1 mmol) of 2-trifluoromethyl-1H-benzimidazol was firstly dissolved in 30 ml of ethanol which was added hydrochloric acid, to which 0.271 g (1 mmol) of mercuric chloride was added to give a solution at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 5 days in air.

Refinement top

H atoms were placed in calculated positions (O—H = 0.85 Å; N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N,O)] and allowed to ride. The trifluoromethyl group is disordered over two sites. The site occupancies were refined and restraints were applied to the thermal parameters.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the title compound with view along the b axis. For the sake of clarity only the major component of the disordered trifluoromethyl group is shown.
Bis(2-trifluoromethyl-1H-benzimidazol-3-ium) tetrachloridomercurate dihydrate top
Crystal data top
(C8H6F3N2)2[HgCl4]·2H2OZ = 2
Mr = 752.72F(000) = 716
Triclinic, P1Dx = 2.047 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2485 (18) ÅCell parameters from 4366 reflections
b = 10.029 (2) Åθ = 3.0–26.0°
c = 14.754 (3) ŵ = 6.81 mm1
α = 79.40 (3)°T = 293 K
β = 75.79 (3)°Block, colourless
γ = 67.74 (3)°0.36 × 0.32 × 0.28 mm
V = 1221.4 (4) Å3
Data collection top
Rigaku SCXmini
diffractometer
5564 independent reflections
Radiation source: fine-focus sealed tube4040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1212
Tmin = 0.095, Tmax = 0.152k = 1312
12786 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.355P]
where P = (Fo2 + 2Fc2)/3
5564 reflections(Δ/σ)max = 0.022
326 parametersΔρmax = 0.57 e Å3
9 restraintsΔρmin = 1.28 e Å3
Crystal data top
(C8H6F3N2)2[HgCl4]·2H2Oγ = 67.74 (3)°
Mr = 752.72V = 1221.4 (4) Å3
Triclinic, P1Z = 2
a = 9.2485 (18) ÅMo Kα radiation
b = 10.029 (2) ŵ = 6.81 mm1
c = 14.754 (3) ÅT = 293 K
α = 79.40 (3)°0.36 × 0.32 × 0.28 mm
β = 75.79 (3)°
Data collection top
Rigaku SCXmini
diffractometer
5564 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4040 reflections with I > 2σ(I)
Tmin = 0.095, Tmax = 0.152Rint = 0.061
12786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0539 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.08Δρmax = 0.57 e Å3
5564 reflectionsΔρmin = 1.28 e Å3
326 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.7017 (13)0.721 (2)0.7840 (6)0.093 (6)0.59 (4)
F20.499 (3)0.677 (2)0.8538 (16)0.123 (10)0.59 (4)
F30.535 (3)0.8571 (9)0.8821 (10)0.112 (9)0.59 (4)
F1'0.656 (4)0.652 (3)0.7911 (14)0.137 (16)0.41 (4)
F3'0.639 (4)0.841 (2)0.843 (3)0.16 (2)0.41 (4)
F2'0.4537 (9)0.751 (3)0.8841 (12)0.102 (11)0.41 (4)
N10.7197 (6)0.4910 (6)0.9609 (4)0.0463 (14)
H1A0.69640.43710.93190.056*
N20.7409 (6)0.6807 (6)0.9988 (4)0.0446 (13)
H2A0.73280.76920.99780.053*
C10.6080 (8)0.7210 (7)0.8664 (5)0.064 (2)
C20.6894 (8)0.6313 (8)0.9408 (5)0.0446 (16)
C30.7956 (7)0.4460 (7)1.0370 (5)0.0392 (15)
C40.8554 (9)0.3110 (8)1.0833 (5)0.0522 (18)
H40.84790.22941.06620.063*
C50.9278 (9)0.3035 (8)1.1571 (5)0.0532 (18)
H50.97010.21501.19130.064*
C60.9371 (8)0.4285 (9)1.1801 (5)0.0535 (18)
H60.98600.42001.23000.064*
C70.8793 (8)0.5611 (8)1.1340 (5)0.0456 (16)
H70.88710.64251.15110.055*
C80.8083 (7)0.5692 (7)1.0604 (5)0.0376 (14)
F40.2353 (11)0.1121 (7)0.5538 (6)0.146 (3)
F50.3648 (10)0.1573 (10)0.4248 (7)0.167 (4)
F60.1251 (8)0.2625 (7)0.4538 (6)0.124 (2)
N30.3498 (7)0.3080 (7)0.5958 (4)0.0579 (16)
H3A0.38780.22710.62860.070*
N40.2323 (7)0.4628 (7)0.4921 (4)0.0526 (15)
H4A0.18220.49930.44620.063*
C90.2500 (13)0.2136 (11)0.4902 (7)0.076 (3)
C100.2768 (8)0.3277 (8)0.5263 (5)0.0503 (17)
C110.3561 (8)0.4384 (9)0.6076 (5)0.0516 (18)
C120.4205 (10)0.4786 (14)0.6680 (6)0.079 (3)
H120.47530.41190.71170.095*
C130.3997 (13)0.6218 (17)0.6601 (8)0.097 (4)
H130.43960.65340.70080.116*
C140.3236 (14)0.7196 (14)0.5960 (9)0.098 (4)
H140.31530.81550.59350.117*
C150.2581 (11)0.6842 (10)0.5344 (7)0.072 (2)
H150.20370.75250.49120.086*
C160.2792 (9)0.5380 (9)0.5415 (5)0.0524 (18)
Hg20.11556 (4)0.82505 (3)0.24321 (2)0.05631 (13)
Cl10.0685 (3)0.6016 (2)0.32320 (13)0.0606 (5)
Cl20.3673 (3)0.7252 (2)0.11954 (14)0.0653 (5)
Cl30.1015 (4)0.9354 (3)0.1548 (2)0.1100 (11)
Cl40.1746 (4)0.9720 (3)0.32658 (19)0.1004 (9)
O10.2620 (9)0.0518 (6)1.0084 (5)0.099 (2)
H1C0.30670.00600.96010.148*
H1B0.27510.00721.05760.148*
O20.4458 (11)0.0872 (10)0.7187 (7)0.166 (4)
H2B0.50020.00860.69390.249*
H2D0.36300.07830.75580.249*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.066 (7)0.132 (15)0.054 (7)0.020 (8)0.006 (5)0.016 (7)
F20.085 (14)0.187 (19)0.124 (17)0.076 (13)0.071 (14)0.047 (14)
F30.130 (16)0.066 (9)0.099 (9)0.029 (8)0.054 (10)0.000 (7)
F1'0.11 (3)0.20 (3)0.055 (12)0.015 (19)0.030 (13)0.034 (13)
F3'0.15 (3)0.16 (3)0.21 (4)0.10 (2)0.13 (3)0.13 (3)
F2'0.041 (8)0.17 (3)0.056 (9)0.001 (11)0.007 (7)0.001 (12)
N10.040 (3)0.054 (4)0.053 (3)0.023 (3)0.011 (3)0.007 (3)
N20.037 (3)0.032 (3)0.061 (4)0.011 (2)0.009 (3)0.001 (3)
C10.060 (6)0.069 (6)0.057 (5)0.020 (5)0.013 (4)0.007 (5)
C20.031 (4)0.050 (4)0.050 (4)0.016 (3)0.002 (3)0.002 (3)
C30.031 (3)0.037 (4)0.047 (4)0.011 (3)0.001 (3)0.009 (3)
C40.046 (4)0.048 (4)0.067 (5)0.024 (4)0.005 (4)0.007 (4)
C50.053 (5)0.047 (4)0.054 (4)0.017 (4)0.008 (4)0.004 (4)
C60.037 (4)0.069 (5)0.054 (4)0.022 (4)0.002 (3)0.005 (4)
C70.039 (4)0.051 (4)0.050 (4)0.019 (3)0.002 (3)0.016 (3)
C80.028 (3)0.039 (3)0.045 (4)0.014 (3)0.002 (3)0.006 (3)
F40.238 (10)0.076 (4)0.153 (6)0.092 (5)0.050 (6)0.011 (4)
F50.130 (6)0.189 (8)0.213 (9)0.090 (6)0.056 (6)0.144 (7)
F60.119 (5)0.108 (5)0.188 (7)0.048 (4)0.078 (5)0.035 (5)
N30.041 (4)0.063 (4)0.059 (4)0.012 (3)0.014 (3)0.013 (3)
N40.057 (4)0.065 (4)0.044 (3)0.031 (3)0.017 (3)0.005 (3)
C90.078 (7)0.074 (6)0.085 (7)0.035 (5)0.005 (6)0.022 (6)
C100.037 (4)0.054 (4)0.055 (4)0.014 (3)0.010 (3)0.003 (4)
C110.038 (4)0.080 (5)0.040 (4)0.027 (4)0.006 (3)0.002 (4)
C120.047 (5)0.137 (10)0.056 (5)0.038 (6)0.000 (4)0.015 (6)
C130.080 (8)0.163 (13)0.074 (7)0.069 (8)0.011 (6)0.055 (8)
C140.100 (9)0.119 (9)0.101 (8)0.078 (8)0.019 (7)0.040 (8)
C150.065 (6)0.079 (6)0.075 (6)0.037 (5)0.003 (5)0.008 (5)
C160.044 (4)0.067 (5)0.054 (4)0.032 (4)0.004 (4)0.007 (4)
Hg20.0667 (2)0.0587 (2)0.05325 (19)0.03158 (16)0.01580 (15)0.00235 (14)
Cl10.0810 (14)0.0633 (12)0.0535 (11)0.0420 (11)0.0290 (10)0.0135 (9)
Cl20.0645 (13)0.0756 (13)0.0635 (12)0.0374 (11)0.0002 (10)0.0144 (11)
Cl30.133 (3)0.0746 (16)0.155 (3)0.0507 (17)0.103 (2)0.0420 (17)
Cl40.158 (3)0.0916 (18)0.0906 (17)0.0746 (19)0.0426 (18)0.0120 (15)
O10.142 (7)0.050 (3)0.112 (5)0.033 (4)0.048 (5)0.006 (4)
O20.122 (7)0.135 (7)0.152 (8)0.018 (6)0.038 (6)0.076 (7)
Geometric parameters (Å, º) top
F1—C11.308 (2)N3—C101.308 (9)
F2—C11.309 (2)N3—C111.375 (10)
F3—C11.309 (2)N3—H3A0.8599
F1'—C11.309 (2)N4—C101.300 (9)
F3'—C11.309 (2)N4—C161.376 (9)
F2'—C11.309 (2)N4—H4A0.8601
N1—C21.317 (9)C9—C101.469 (11)
N1—C31.386 (8)C11—C161.377 (10)
N1—H1A0.8600C11—C121.374 (12)
N2—C21.318 (8)C12—C131.361 (15)
N2—C81.357 (8)C12—H120.9300
N2—H2A0.8600C13—C141.347 (16)
C1—C21.453 (10)C13—H130.9300
C3—C41.371 (9)C14—C151.368 (14)
C3—C81.395 (8)C14—H140.9300
C4—C51.390 (10)C15—C161.391 (11)
C4—H40.9300C15—H150.9300
C5—C61.395 (10)Hg2—Cl42.364 (2)
C5—H50.9300Hg2—Cl32.455 (3)
C6—C71.350 (10)Hg2—Cl12.4734 (19)
C6—H60.9300Hg2—Cl22.564 (2)
C7—C81.377 (9)O1—H1C0.8500
C7—H70.9300O1—H1B0.8500
F4—C91.274 (11)O2—H2B0.8500
F5—C91.274 (11)O2—H2D0.8500
F6—C91.281 (11)
C2—N1—C3107.7 (6)N2—C8—C3106.5 (6)
C2—N1—H1A126.1C7—C8—C3120.8 (6)
C3—N1—H1A126.2C10—N3—C11108.6 (6)
C2—N2—C8108.9 (6)C10—N3—H3A125.8
C2—N2—H2A125.6C11—N3—H3A125.7
C8—N2—H2A125.5C10—N4—C16108.4 (6)
F1—C1—F2'127.4 (10)C10—N4—H4A125.9
F1—C1—F3'68.6 (15)C16—N4—H4A125.7
F2'—C1—F3'109.5 (15)F4—C9—F5107.8 (10)
F1—C1—F3106.1 (10)F4—C9—F6107.4 (9)
F2'—C1—F370.4 (12)F5—C9—F6105.6 (10)
F1—C1—F2104.5 (11)F4—C9—C10112.6 (9)
F3'—C1—F2135.0 (11)F5—C9—C10110.9 (8)
F3—C1—F2105.9 (12)F6—C9—C10112.3 (8)
F2'—C1—F1'103.1 (16)N4—C10—N3110.6 (7)
F3'—C1—F1'107.4 (18)N4—C10—C9124.1 (8)
F3—C1—F1'134.0 (13)N3—C10—C9125.2 (8)
F2—C1—F1'68.8 (14)N3—C11—C16105.9 (6)
F1—C1—C2113.7 (8)N3—C11—C12132.9 (9)
F2'—C1—C2115.1 (9)C16—C11—C12121.2 (9)
F3'—C1—C2111.0 (9)C13—C12—C11116.1 (10)
F3—C1—C2113.6 (7)C13—C12—H12121.9
F2—C1—C2112.1 (7)C11—C12—H12121.9
F1'—C1—C2110.1 (9)C14—C13—C12122.8 (10)
N1—C2—N2110.7 (6)C14—C13—H13118.6
N1—C2—C1125.2 (6)C12—C13—H13118.6
N2—C2—C1124.1 (6)C13—C14—C15123.0 (11)
C4—C3—N1130.9 (6)C13—C14—H14118.5
C4—C3—C8122.9 (6)C15—C14—H14118.5
N1—C3—C8106.2 (6)C14—C15—C16114.7 (10)
C3—C4—C5116.0 (6)C14—C15—H15122.6
C3—C4—H4122.0C16—C15—H15122.6
C5—C4—H4122.0C11—C16—N4106.5 (7)
C4—C5—C6120.1 (7)C11—C16—C15122.1 (8)
C4—C5—H5119.9N4—C16—C15131.4 (8)
C6—C5—H5119.9Cl4—Hg2—Cl3119.35 (10)
C7—C6—C5123.8 (7)Cl4—Hg2—Cl1120.36 (8)
C7—C6—H6118.1Cl3—Hg2—Cl1102.26 (8)
C5—C6—H6118.1Cl4—Hg2—Cl2105.49 (10)
C6—C7—C8116.4 (6)Cl3—Hg2—Cl2105.13 (11)
C6—C7—H7121.8Cl1—Hg2—Cl2102.10 (8)
C8—C7—H7121.8H1C—O1—H1B109.5
N2—C8—C7132.7 (6)H2B—O2—H2D109.5
C3—N1—C2—N20.2 (8)N1—C3—C8—N20.0 (7)
C3—N1—C2—C1178.8 (6)C4—C3—C8—C71.7 (10)
C8—N2—C2—N10.2 (8)N1—C3—C8—C7179.9 (6)
C8—N2—C2—C1178.9 (6)C16—N4—C10—N30.3 (8)
F1—C1—C2—N184.6 (15)C16—N4—C10—C9178.9 (8)
F2'—C1—C2—N175.3 (19)C11—N3—C10—N40.9 (9)
F3'—C1—C2—N1160 (2)C11—N3—C10—C9178.3 (8)
F3—C1—C2—N1153.8 (14)F4—C9—C10—N4150.4 (9)
F2—C1—C2—N133.7 (19)F5—C9—C10—N488.8 (12)
F1'—C1—C2—N141 (3)F6—C9—C10—N429.0 (13)
F1—C1—C2—N296.5 (14)F4—C9—C10—N330.4 (13)
F2'—C1—C2—N2103.6 (17)F5—C9—C10—N390.4 (12)
F3'—C1—C2—N222 (2)F6—C9—C10—N3151.8 (9)
F3—C1—C2—N225.1 (14)C10—N3—C11—C161.1 (8)
F2—C1—C2—N2145.2 (16)C10—N3—C11—C12178.6 (8)
F1'—C1—C2—N2140 (2)N3—C11—C12—C13178.5 (8)
C2—N1—C3—C4178.1 (7)C16—C11—C12—C131.8 (12)
C2—N1—C3—C80.1 (7)C11—C12—C13—C141.4 (15)
N1—C3—C4—C5178.9 (7)C12—C13—C14—C151.3 (17)
C8—C3—C4—C51.3 (10)C13—C14—C15—C161.4 (15)
C3—C4—C5—C60.3 (10)N3—C11—C16—N40.9 (8)
C4—C5—C6—C70.2 (11)C12—C11—C16—N4178.8 (7)
C5—C6—C7—C80.2 (10)N3—C11—C16—C15178.1 (7)
C2—N2—C8—C7180.0 (7)C12—C11—C16—C152.2 (12)
C2—N2—C8—C30.1 (7)C10—N4—C16—C110.4 (8)
C6—C7—C8—N2178.8 (7)C10—N4—C16—C15178.5 (8)
C6—C7—C8—C31.1 (9)C14—C15—C16—C111.9 (12)
C4—C3—C8—N2178.2 (6)C14—C15—C16—N4179.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.862.233.081 (6)170
N2—H2A···O1ii0.861.802.656 (8)174
N3—H3A···O20.861.762.608 (9)166
N4—H4A···Cl10.862.213.069 (6)175
O1—H1C···F3iii0.852.252.994 (18)146
O1—H1B···Cl2iv0.852.553.279 (6)144
O2—H2B···F5v0.852.413.224 (13)160
O2—H2D···Cl3vi0.852.503.339 (10)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y1, z; (iv) x, y1, z+1; (v) x+1, y, z+1; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H6F3N2)2[HgCl4]·2H2O
Mr752.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2485 (18), 10.029 (2), 14.754 (3)
α, β, γ (°)79.40 (3), 75.79 (3), 67.74 (3)
V3)1221.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)6.81
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.095, 0.152
No. of measured, independent and
observed [I > 2σ(I)] reflections
12786, 5564, 4040
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.119, 1.08
No. of reflections5564
No. of parameters326
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 1.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.862.233.081 (6)170.2
N2—H2A···O1ii0.861.802.656 (8)174.0
N3—H3A···O20.861.762.608 (9)166.1
N4—H4A···Cl10.862.213.069 (6)175.2
O1—H1C···F3iii0.852.252.994 (18)145.9
O1—H1B···Cl2iv0.852.553.279 (6)144.3
O2—H2B···F5v0.852.413.224 (13)159.9
O2—H2D···Cl3vi0.852.503.339 (10)171.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y1, z; (iv) x, y1, z+1; (v) x+1, y, z+1; (vi) x, y+1, z+1.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, M.-L. (2011a). Acta Cryst. E67, o2821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2011b). Acta Cryst. E67, o3473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012a). Acta Cryst. E68, o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012b). Acta Cryst. E68, o1012.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012c). Acta Cryst. E68, o1076.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163–1195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds