metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Naphthalene-1,5-di­sulfonato-κ2O1:O5)bis­­[tri­aqua­(glycinato-κ2N,O)copper(II)]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 April 2012; accepted 30 April 2012; online 5 May 2012)

In the title compound, [Cu2(C2H4NO2)2(C10H6O6S2)(H2O)6], the naphthalene­disulfonate group lies on a center of inversion and bridges two glycinate-chelated CuII atoms. The CuII atom exists in a CuNO4 square-pyramidal geometry that is distorted towards an octa­hedron owing to a long Cu—Osulfonate bond [2.636 (2) Å]. In the crystal, extensive N—H⋯O and O—H⋯O hydrogen bonds link adjacent mol­ecules into a three-dimensional network

Related literature

For a review of metal arene­sulfonates, see: Cai (2004[Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H4NO2)2(C10H6O6S2)(H2O)6]

  • Mr = 669.57

  • Monoclinic, P 21 /c

  • a = 5.802 (3) Å

  • b = 11.341 (6) Å

  • c = 17.613 (8) Å

  • β = 99.793 (18)°

  • V = 1142.1 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 293 K

  • 0.38 × 0.26 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.498, Tmax = 0.688

  • 10939 measured reflections

  • 2615 independent reflections

  • 2482 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.073

  • S = 1.07

  • 2615 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2i 0.84 2.02 2.741 (2) 143
O1w—H12⋯O5ii 0.84 2.10 2.785 (2) 139
O2w—H21⋯O4iii 0.84 2.00 2.773 (2) 152
O2w—H22⋯O4iv 0.84 2.02 2.823 (2) 158
O3w—H31⋯O2ii 0.84 1.91 2.676 (2) 151
O3w—H32⋯O3iv 0.84 1.93 2.691 (2) 150
N1—H1⋯O5 0.88 2.53 3.079 (3) 121
N1—H2⋯O2ii 0.88 2.50 3.194 (3) 137
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal arenesulfonates are generally crystalline compounds; in some, the metal is connected to the arenesulfonate by a covalent bond whereas in others, the arenesulfonate interacts indirectly with the metal center in an outer-sphere type of coordination (Cai, 2004). In the title compound (Scheme I), the CuII atom exists in a CuNO4 square-pyramidal geometry that is distorted towards an octahedron owing to the long Cu–Osulfonate bond (2.636 (2) Å). The atom lies above the square plane (r.m.s. deviation 0.082 Å) and the apical water molecule lies 2.371 (2) Å above the plane (Fig.1). Extensive N–H···O and O–H···O hydrogen bonds link adjacent molecules into a three-dimensional network (Table 1).

Related literature top

For a review of metal arenesulfonates, see: Cai (2004).

Experimental top

Dicopper carbonate dihydroxide (1 mmol, 221 mg), glycine (2 mmol, 150 mg) 1,5-naphthalenedisulfonic acid tetrahydrate (2 mmol, 720 mg) were dissolved in water (10 ml). The solution was heated for 5 h and then filtered. Blue crystals separated from the solution after several days.

Refinement top

H-atoms were placed in calculated positions (C–H 0.93–0.97, N–H 0.88, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,N,O).

The (2 2 3) reflection was omitted owing to bad disagreement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.
(µ-Naphthalene-1,5-disulfonato- κ2O1:O5)bis[triaqua(glycinato- κ2N,O)copper(II)] top
Crystal data top
[Cu2(C2H4NO2)2(C10H6O6S2)(H2O)6]F(000) = 684
Mr = 669.57Dx = 1.947 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10177 reflections
a = 5.802 (3) Åθ = 3.6–27.5°
b = 11.341 (6) ŵ = 2.13 mm1
c = 17.613 (8) ÅT = 293 K
β = 99.793 (18)°Prism, blue
V = 1142.1 (9) Å30.38 × 0.26 × 0.19 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2615 independent reflections
Radiation source: fine-focus sealed tube2482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scanθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 76
Tmin = 0.498, Tmax = 0.688k = 1414
10939 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.6921P]
where P = (Fo2 + 2Fc2)/3
2615 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu2(C2H4NO2)2(C10H6O6S2)(H2O)6]V = 1142.1 (9) Å3
Mr = 669.57Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.802 (3) ŵ = 2.13 mm1
b = 11.341 (6) ÅT = 293 K
c = 17.613 (8) Å0.38 × 0.26 × 0.19 mm
β = 99.793 (18)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2615 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2482 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.688Rint = 0.022
10939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
2615 reflectionsΔρmin = 0.63 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.35965 (4)0.51409 (2)0.341914 (12)0.02354 (9)
S10.70836 (8)0.73372 (4)0.44741 (2)0.02159 (11)
O10.1995 (2)0.64747 (12)0.28644 (8)0.0287 (3)
O20.2226 (3)0.77425 (13)0.19250 (8)0.0343 (3)
O1w0.1638 (3)0.37202 (15)0.26192 (9)0.0397 (4)
H110.09560.32560.28790.060*
H120.25990.33420.24070.060*
O2w0.1040 (3)0.50030 (11)0.40277 (8)0.0265 (3)
H210.09390.56330.42710.040*
H220.13250.44410.43400.040*
O3w0.5629 (3)0.39956 (14)0.40378 (8)0.0369 (3)
H310.59170.34360.37560.055*
H320.49560.37340.43890.055*
O30.4994 (2)0.66501 (11)0.45410 (7)0.0270 (3)
O40.9218 (3)0.67519 (12)0.48533 (8)0.0327 (3)
O50.7143 (3)0.76531 (13)0.36808 (8)0.0345 (3)
N10.5974 (3)0.53828 (15)0.27352 (9)0.0280 (3)
H10.72510.56970.29990.034*
H20.63440.47020.25480.034*
C10.2931 (3)0.68561 (16)0.23169 (10)0.0236 (3)
C20.4970 (3)0.61731 (17)0.21047 (11)0.0279 (4)
H2A0.44440.57140.16430.033*
H2B0.61600.67190.19960.033*
C30.6918 (3)0.86710 (14)0.49908 (9)0.0200 (3)
C40.8728 (3)0.89338 (16)0.55662 (10)0.0258 (4)
H40.99580.84040.56910.031*
C50.8744 (4)1.00050 (17)0.59723 (12)0.0275 (4)
H50.99821.01740.63660.033*
C60.6966 (3)1.07958 (16)0.57946 (10)0.0239 (3)
H60.70241.15070.60600.029*
C70.5021 (3)1.05448 (14)0.52074 (9)0.0186 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02546 (13)0.02263 (14)0.02478 (14)0.00560 (8)0.01067 (9)0.00671 (8)
S10.0305 (2)0.01428 (19)0.0221 (2)0.00179 (15)0.01062 (16)0.00129 (14)
O10.0311 (6)0.0273 (7)0.0307 (7)0.0076 (5)0.0134 (5)0.0098 (5)
O20.0379 (7)0.0294 (7)0.0378 (8)0.0054 (6)0.0131 (6)0.0152 (6)
O1w0.0462 (9)0.0409 (9)0.0350 (8)0.0102 (7)0.0153 (7)0.0150 (7)
O2w0.0324 (7)0.0199 (6)0.0310 (7)0.0022 (5)0.0162 (6)0.0001 (5)
O3w0.0491 (8)0.0386 (8)0.0266 (7)0.0221 (7)0.0162 (6)0.0093 (6)
O30.0362 (7)0.0196 (6)0.0270 (6)0.0049 (5)0.0107 (5)0.0012 (5)
O40.0352 (7)0.0224 (6)0.0420 (8)0.0107 (6)0.0106 (6)0.0027 (6)
O50.0529 (9)0.0306 (7)0.0241 (6)0.0039 (6)0.0187 (6)0.0018 (5)
N10.0273 (8)0.0283 (8)0.0302 (8)0.0054 (6)0.0103 (6)0.0031 (6)
C10.0254 (8)0.0210 (8)0.0246 (8)0.0019 (7)0.0046 (7)0.0005 (6)
C20.0325 (9)0.0286 (9)0.0247 (8)0.0019 (7)0.0113 (7)0.0021 (7)
C30.0266 (8)0.0145 (7)0.0202 (7)0.0013 (6)0.0076 (6)0.0006 (6)
C40.0259 (8)0.0224 (8)0.0282 (9)0.0057 (7)0.0021 (7)0.0003 (7)
C50.0274 (9)0.0269 (9)0.0255 (9)0.0008 (7)0.0033 (7)0.0042 (7)
C60.0288 (8)0.0194 (8)0.0226 (8)0.0018 (7)0.0023 (7)0.0037 (6)
C70.0239 (8)0.0142 (7)0.0183 (7)0.0001 (6)0.0051 (6)0.0000 (6)
Geometric parameters (Å, º) top
Cu1—O11.9485 (15)O3w—H320.8400
Cu1—O3w1.9566 (15)N1—C21.468 (2)
Cu1—O2w1.9783 (16)N1—H10.8800
Cu1—N11.9988 (18)N1—H20.8800
Cu1—O1w2.3081 (17)C1—C21.513 (3)
Cu1—O32.636 (2)C2—H2A0.9700
S1—O51.4486 (15)C2—H2B0.9700
S1—O41.4626 (15)C3—C41.363 (3)
S1—O31.4629 (15)C3—C7i1.430 (2)
S1—C31.7763 (18)C4—C51.409 (3)
O1—C11.261 (2)C4—H40.9300
O2—C11.248 (2)C5—C61.362 (3)
O1w—H110.8400C5—H50.9300
O1w—H120.8400C6—C71.424 (2)
O2w—H210.8400C6—H60.9300
O2w—H220.8400C7—C3i1.430 (2)
O3w—H310.8400C7—C7i1.434 (3)
O1—Cu1—O3w170.20 (7)Cu1—N1—H1110.0
O1—Cu1—O2w89.75 (6)C2—N1—H2110.0
O3w—Cu1—O2w94.72 (7)Cu1—N1—H2110.0
O1—Cu1—N184.86 (6)H1—N1—H2108.4
O3w—Cu1—N190.81 (7)O2—C1—O1123.76 (17)
O2w—Cu1—N1174.45 (6)O2—C1—C2118.17 (16)
O1—Cu1—O1w95.31 (7)O1—C1—C2118.03 (16)
O3w—Cu1—O1w93.67 (8)N1—C2—C1110.61 (15)
O2w—Cu1—O1w86.50 (6)N1—C2—H2A109.5
N1—Cu1—O1w92.67 (7)C1—C2—H2A109.5
O5—S1—O4113.29 (9)N1—C2—H2B109.5
O5—S1—O3111.43 (9)C1—C2—H2B109.5
O4—S1—O3111.76 (9)H2A—C2—H2B108.1
O5—S1—C3107.21 (9)C4—C3—C7i121.37 (15)
O4—S1—C3105.54 (8)C4—C3—S1117.72 (13)
O3—S1—C3107.12 (8)C7i—C3—S1120.89 (13)
C1—O1—Cu1114.77 (12)C3—C4—C5120.24 (16)
Cu1—O1w—H11109.5C3—C4—H4119.9
Cu1—O1w—H12109.5C5—C4—H4119.9
H11—O1w—H12109.5C6—C5—C4120.77 (17)
Cu1—O2w—H21109.5C6—C5—H5119.6
Cu1—O2w—H22109.5C4—C5—H5119.6
H21—O2w—H22109.5C5—C6—C7120.72 (17)
Cu1—O3w—H31109.5C5—C6—H6119.6
Cu1—O3w—H32109.5C7—C6—H6119.6
H31—O3w—H32109.5C6—C7—C3i123.13 (15)
C2—N1—Cu1108.28 (12)C6—C7—C7i119.03 (19)
C2—N1—H1110.0C3i—C7—C7i117.83 (18)
O2w—Cu1—O1—C1174.25 (13)O4—S1—C3—C44.06 (16)
N1—Cu1—O1—C14.42 (13)O3—S1—C3—C4123.29 (15)
O1w—Cu1—O1—C187.80 (14)O5—S1—C3—C7i61.24 (16)
O1—Cu1—N1—C213.65 (13)O4—S1—C3—C7i177.71 (14)
O3w—Cu1—N1—C2175.17 (13)O3—S1—C3—C7i58.48 (16)
O1w—Cu1—N1—C281.45 (13)C7i—C3—C4—C51.1 (3)
Cu1—O1—C1—O2175.95 (15)S1—C3—C4—C5177.09 (15)
Cu1—O1—C1—C26.4 (2)C3—C4—C5—C60.4 (3)
Cu1—N1—C2—C119.48 (19)C4—C5—C6—C71.6 (3)
O2—C1—C2—N1164.25 (17)C5—C6—C7—C3i178.49 (18)
O1—C1—C2—N118.0 (2)C5—C6—C7—C7i1.3 (3)
O5—S1—C3—C4116.99 (15)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2ii0.842.022.741 (2)143
O1w—H12···O5iii0.842.102.785 (2)139
O2w—H21···O4iv0.842.002.773 (2)152
O2w—H22···O4v0.842.022.823 (2)158
O3w—H31···O2iii0.841.912.676 (2)151
O3w—H32···O3v0.841.932.691 (2)150
N1—H1···O50.882.533.079 (3)121
N1—H2···O2iii0.882.503.194 (3)137
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H4NO2)2(C10H6O6S2)(H2O)6]
Mr669.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.802 (3), 11.341 (6), 17.613 (8)
β (°) 99.793 (18)
V3)1142.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.38 × 0.26 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.498, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
10939, 2615, 2482
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 1.07
No. of reflections2615
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.63

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.842.022.741 (2)143
O1w—H12···O5ii0.842.102.785 (2)139
O2w—H21···O4iii0.842.002.773 (2)152
O2w—H22···O4iv0.842.022.823 (2)158
O3w—H31···O2ii0.841.912.676 (2)151
O3w—H32···O3iv0.841.932.691 (2)150
N1—H1···O50.882.533.079 (3)121
N1—H2···O2ii0.882.503.194 (3)137
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCai, J. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds