organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Cyano­pyridinium chloride

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 25 April 2012; accepted 25 April 2012; online 5 May 2012)

In the crystal structure of the title salt, C6H5N2+·Cl, the pyridinium cation links to the Cl anion via an N—H⋯Cl hydrogen bond. Weak C—H⋯Cl inter­actions also occur.

Related literature

For the structures and properties of related compounds, see: Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.]); Dai & Chen (2011[Dai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.]); Xu et al. (2011[Xu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093-1096.]); Liu et al. (1999[Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31-34.]); Zhao et al. (2003[Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z.-G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166-4168.]); Zheng (2011[Zheng, W.-N. (2011). Acta Cryst. E67, m344.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5N2+·Cl

  • Mr = 140.57

  • Triclinic, [P \overline 1]

  • a = 6.6166 (2) Å

  • b = 7.6552 (3) Å

  • c = 8.3495 (5) Å

  • α = 63.957 (5)°

  • β = 69.830 (2)°

  • γ = 74.367 (4)°

  • V = 353.16 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 123 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 3077 measured reflections

  • 1231 independent reflections

  • 1078 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.234

  • S = 1.32

  • 1231 reflections

  • 82 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.90 2.14 3.033 (5) 174
C4—H4A⋯Cl1 0.95 2.71 3.566 (5) 151
C5—H5A⋯Cl1ii 0.95 2.65 3.566 (6) 161
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containing strong intrermolecular H-bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Chen et al., 2000; Liu et al., 1999; Zhao et al., 2003). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new materials have been elaborated (Dai & Chen, 2011; Xu et al., 2011; Zheng, 2011). Herewith we present the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit was composed of one 4-cyanopyridinium cation and one Cl- anion. The protonated N atom was involved in strong intramolecular N—H···Cl hydrogen bonds with the N···Cl distance of 3.033 (5)Å. The weak intermolecular C4—H4A···Cl1 and C5—H45···Cl1 interactions were presented in the crystal structure with C5···Cl1 = 3.566 (5)Å and C5···Cl1 = 3.566 (6)Å, respectively. The crystal packing is further stabilized by aromatic π···π interactions between the pyridine rings of the neighbouring 4-cyanopyridinium cations with the Cg···Cg distances of 4.416 (5) Å and 4.102 (5) Å (Cg is the centroide of the pyridine ring) (Fig. 2 and Table 1).

Related literature top

For the structures and properties of related compounds, see: Chen et al. (2000); Dai & Chen (2011); Xu et al. (2011); Liu et al. (1999); Zhao et al. (2003); Zheng (2011).

Experimental top

The HCl (5 mL), isonicotinonitrile (20 mmol) and ethanol (50 mL) were added into a 100 mL flask. The mixture was stirred at 333 K for 2 h, and then the precipitate was filtrated out. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement top

All the H atoms were situated into the idealized positions and treated as riding with C–H = 0.95 and N—H = 0.90 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.
4-Cyanopyridinium chloride top
Crystal data top
C6H5N2+·ClZ = 2
Mr = 140.57F(000) = 144
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6166 (2) ÅCell parameters from 1231 reflections
b = 7.6552 (3) Åθ = 2.8–27.5°
c = 8.3495 (5) ŵ = 0.45 mm1
α = 63.957 (5)°T = 123 K
β = 69.830 (2)°Block, colorless
γ = 74.367 (4)°0.10 × 0.05 × 0.05 mm
V = 353.16 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
1231 independent reflections
Radiation source: fine-focus sealed tube1078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.8°
CCD profile fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.910, Tmax = 1.000l = 99
3077 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.0002P)2 + 3.2997P]
where P = (Fo2 + 2Fc2)/3
1231 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.97 e Å3
1 restraintΔρmin = 0.62 e Å3
Crystal data top
C6H5N2+·Clγ = 74.367 (4)°
Mr = 140.57V = 353.16 (3) Å3
Triclinic, P1Z = 2
a = 6.6166 (2) ÅMo Kα radiation
b = 7.6552 (3) ŵ = 0.45 mm1
c = 8.3495 (5) ÅT = 123 K
α = 63.957 (5)°0.10 × 0.05 × 0.05 mm
β = 69.830 (2)°
Data collection top
Rigaku Mercury2
diffractometer
1231 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1078 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.042
3077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0861 restraint
wR(F2) = 0.234H-atom parameters constrained
S = 1.32Δρmax = 0.97 e Å3
1231 reflectionsΔρmin = 0.62 e Å3
82 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.8017 (7)0.1582 (6)0.6278 (6)0.0267 (11)
N10.4202 (7)0.2736 (6)0.0960 (6)0.0234 (10)
H10.35760.29000.00940.028*
C10.6318 (8)0.1817 (7)0.0856 (7)0.0238 (12)
H1A0.70920.13770.01220.029*
C30.6118 (8)0.2221 (7)0.3646 (6)0.0192 (11)
C40.3919 (8)0.3182 (7)0.3713 (7)0.0238 (13)
H4A0.31030.36480.46670.029*
C60.7156 (8)0.1908 (7)0.5071 (7)0.0258 (13)
C50.3016 (8)0.3411 (7)0.2334 (7)0.0251 (13)
H5A0.15650.40420.23490.030*
C20.7328 (8)0.1531 (7)0.2198 (7)0.0222 (12)
H2A0.87830.08940.21460.027*
Cl10.1808 (2)0.31778 (18)0.82634 (17)0.0249 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.031 (2)0.021 (2)0.0189 (19)0.0006 (18)0.0026 (17)0.0048 (16)
N10.031 (2)0.0187 (18)0.0204 (18)0.0053 (17)0.0098 (16)0.0034 (15)
C10.028 (2)0.017 (2)0.020 (2)0.001 (2)0.0027 (19)0.0056 (18)
C30.024 (2)0.0126 (19)0.015 (2)0.0054 (18)0.0029 (18)0.0008 (16)
C40.023 (2)0.017 (2)0.022 (2)0.0001 (19)0.0000 (19)0.0059 (18)
C60.025 (2)0.023 (2)0.025 (2)0.002 (2)0.003 (2)0.0097 (19)
C50.022 (2)0.018 (2)0.029 (2)0.0011 (19)0.008 (2)0.0029 (19)
C20.023 (2)0.016 (2)0.022 (2)0.0010 (19)0.0046 (18)0.0052 (18)
Cl10.0244 (6)0.0273 (6)0.0235 (5)0.0001 (5)0.0081 (4)0.0108 (4)
Geometric parameters (Å, º) top
N2—C61.225 (7)C3—C41.437 (7)
N1—C51.371 (7)C3—C61.473 (8)
N1—C11.379 (6)C4—C51.398 (8)
N1—H10.8999C4—H4A0.9500
C1—C21.404 (8)C5—H5A0.9500
C1—H1A0.9500C2—H2A0.9500
C3—C21.430 (7)
C5—N1—C1122.5 (5)C5—C4—H4A121.0
C5—N1—H1118.8C3—C4—H4A121.0
C1—N1—H1118.8N2—C6—C3177.9 (5)
N1—C1—C2119.9 (5)N1—C5—C4120.7 (4)
N1—C1—H1A120.0N1—C5—H5A119.6
C2—C1—H1A120.0C4—C5—H5A119.6
C2—C3—C4120.3 (5)C1—C2—C3118.5 (4)
C2—C3—C6118.9 (4)C1—C2—H2A120.7
C4—C3—C6120.8 (5)C3—C2—H2A120.7
C5—C4—C3118.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.902.143.033 (5)174
C4—H4A···Cl10.952.713.566 (5)151
C5—H5A···Cl1ii0.952.653.566 (6)161
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H5N2+·Cl
Mr140.57
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.6166 (2), 7.6552 (3), 8.3495 (5)
α, β, γ (°)63.957 (5), 69.830 (2), 74.367 (4)
V3)353.16 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3077, 1231, 1078
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.234, 1.32
No. of reflections1231
No. of parameters82
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.62

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.902.143.033 (5)174.1
C4—H4A···Cl10.952.713.566 (5)151
C5—H5A···Cl1ii0.952.653.566 (6)161
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.  Web of Science CrossRef Google Scholar
First citationDai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093–1096.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z.-G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166–4168.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, W.-N. (2011). Acta Cryst. E67, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds