metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-di-tert-butyl-4H-1,2,4-triazol-4-amine-κN1)(nitrato-κO)silver(I) ethanol monosolvate monohydrate

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 April 2012; accepted 27 April 2012; online 5 May 2012)

The AgI atom in the title compound, [Ag(NO3)(C10H20N4)2]·C2H5OH·H2O, is coordinated by the N atoms of two N-heterocycles [N—Ag—N = 151.5 (1)°]; the approximately linear coordination geometry is distorted into a T-shaped geometry owing to a long Ag⋯Onitrate bond [2.717 (4) Å]. The N atoms of the N-heterocycles that are not involved in coordination point towards the lattice water mol­ecule, which functions as a hydrogen-bond donor. The water mol­ecule itself is a hydrogen-bond acceptor towards the ethanol solvent mol­ecule. Hydrogen bonds of the type N–H⋯O give rise to a layer motif parallel to (001).

Related literature

For the synthesis of the N-heterocycle, see: Yang et al. (2012[Yang, G., Duan, P.-C., Shi, K.-G. & Raptis, R. G. (2012). Cryst. Growth Des. 12, 1882-1889.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C10H20N4)2]·C2H6O·H2O

  • Mr = 626.56

  • Orthorhombic, P 21 21 21

  • a = 10.149 (2) Å

  • b = 14.802 (3) Å

  • c = 20.405 (4) Å

  • V = 3065.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.844, Tmax = 0.902

  • 11760 measured reflections

  • 6724 independent reflections

  • 5767 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.091

  • S = 1.15

  • 6724 reflections

  • 363 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2227 Friedel pairs

  • Flack parameter: 0.48 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1w 0.85 (1) 1.94 (2) 2.772 (6) 167 (6)
O1w—H11⋯N2 0.84 (1) 2.16 (2) 2.976 (5) 164 (6)
O1w—H12⋯N6 0.84 (1) 2.08 (2) 2.915 (5) 171 (6)
N4—H41⋯O1i 0.88 (1) 2.20 (2) 3.008 (6) 153 (4)
N4—H42⋯O4ii 0.88 (1) 2.43 (2) 3.226 (6) 152 (4)
N8—H81⋯O2iii 0.88 (1) 2.27 (1) 3.144 (6) 171 (4)
N8—H82⋯O4iv 0.88 (1) 2.28 (2) 3.127 (7) 161 (6)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) x+1, y, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We recently reported the synthesis of di-tert-butyl-4H-1,2,4-triazol-4-amine, a compound that furnishes four isomeric silver(I) thiolatesadducts with silver(I) (Yang et al., 2012). The AgI atom in Ag(NO3)(C10H20N4)2.H2O.C2H5OH (Scheme I) is coordinated by the the N atoms of two N-heterocycles [N–Ag–N 151.5 (1) °]; the approximately linear coordination geometry is distorted into a T-shaped geometry owing to a long Ag···Onitrate bond [2.717 (4) Å] (Fig. 1). The N atoms of the N-heterocycles that are not involved in coordination point towards the water molecule, which functions as hydrogen-bond donor. The water molecule itself is hydrogen bond acceptor towards the ethanol molecule. Hydrogen bonds of the type N–H···O give rise to a layer motif (Table 1).

Related literature top

For the synthesis of the N-heterocycle, see: Yang et al. (2012).

Experimental top

The N-heterocyclic amine was synthesized as reported (Yang et al., 2012). An acetonitrile solution (1 ml) of silver nitrate (0.05 mmol, 8 mg) was mixed with an ethanol solution (1 ml) of the compound (0.01 mmol, 19 mg). The solution was set aside for the growth of colorless crystals, which were deposited after a week in 30% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å, O–H 0.84±0.01 Å and H···H 1.37±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ag(NO3)(C10H20N4)2.H2O.C2H5OH at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The long Ag–O bond is denoted by a dashed bond.
Bis(3,5-di-tert-butyl-4H-1,2,4-triazol-4-amine- κN1)(nitrato-κO)silver(I) ethanol monosolvate monohydrate top
Crystal data top
[Ag(NO3)(C10H20N4)2]·C2H6O·H2OF(000) = 1320
Mr = 626.56Dx = 1.358 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11783 reflections
a = 10.149 (2) Åθ = 1.7–27.5°
b = 14.802 (3) ŵ = 0.70 mm1
c = 20.405 (4) ÅT = 293 K
V = 3065.3 (11) Å3Prism, colorless
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6724 independent reflections
Radiation source: fine-focus sealed tube5767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scanθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.844, Tmax = 0.902k = 019
11760 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0195P)2 + 2.4088P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
6724 reflectionsΔρmax = 0.28 e Å3
363 parametersΔρmin = 0.46 e Å3
7 restraintsAbsolute structure: Flack (1983), 2227 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.48 (3)
Crystal data top
[Ag(NO3)(C10H20N4)2]·C2H6O·H2OV = 3065.3 (11) Å3
Mr = 626.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.149 (2) ŵ = 0.70 mm1
b = 14.802 (3) ÅT = 293 K
c = 20.405 (4) Å0.25 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6724 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5767 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.902Rint = 0.044
11760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.28 e Å3
S = 1.15Δρmin = 0.46 e Å3
6724 reflectionsAbsolute structure: Flack (1983), 2227 Friedel pairs
363 parametersAbsolute structure parameter: 0.48 (3)
7 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.66379 (3)0.80143 (2)0.790672 (16)0.04839 (10)
O10.6035 (3)0.6499 (3)0.8596 (2)0.0729 (11)
O20.4161 (4)0.7157 (3)0.8614 (2)0.0849 (13)
O30.4257 (4)0.5733 (3)0.8692 (3)0.0876 (14)
O40.9653 (4)0.9402 (3)0.59873 (19)0.0669 (10)
O1W0.8036 (4)0.7982 (4)0.63591 (19)0.0729 (11)
N10.5190 (3)0.8688 (2)0.73091 (16)0.0391 (8)
N20.5237 (3)0.8422 (2)0.66564 (17)0.0389 (8)
N30.3520 (3)0.9287 (2)0.68103 (15)0.0322 (7)
N40.2395 (4)0.9833 (3)0.6723 (2)0.0467 (10)
N50.8624 (3)0.7531 (2)0.80776 (15)0.0361 (8)
N60.9183 (3)0.7150 (3)0.75210 (16)0.0382 (9)
N71.0358 (3)0.6783 (2)0.83740 (15)0.0334 (8)
N81.1297 (4)0.6390 (3)0.8800 (2)0.0484 (11)
N90.4821 (4)0.6455 (3)0.8638 (2)0.0462 (9)
C10.4162 (4)0.9210 (3)0.7396 (2)0.0334 (9)
C20.3745 (4)0.9642 (3)0.80379 (19)0.0378 (10)
C30.4758 (5)0.9436 (4)0.8568 (2)0.0581 (14)
H3A0.55990.96760.84410.087*
H3B0.48280.87940.86250.087*
H3C0.44860.97080.89730.087*
C40.2405 (5)0.9256 (4)0.8252 (3)0.0625 (15)
H4A0.24710.86120.82970.094*
H4B0.17510.94000.79290.094*
H4C0.21560.95160.86650.094*
C50.3651 (5)1.0677 (3)0.7967 (3)0.0591 (13)
H5A0.44911.09130.78350.089*
H5B0.34021.09380.83790.089*
H5C0.30021.08250.76420.089*
C60.4225 (4)0.8794 (3)0.6363 (2)0.0362 (10)
C70.3900 (4)0.8649 (3)0.5646 (2)0.0403 (10)
C80.5029 (5)0.8112 (5)0.5332 (2)0.0709 (16)
H8A0.51360.75480.55590.106*
H8B0.58310.84540.53620.106*
H8C0.48290.79970.48800.106*
C90.3738 (7)0.9540 (4)0.5276 (3)0.077 (2)
H9A0.30360.98830.54700.115*
H9B0.35330.94180.48250.115*
H9C0.45430.98790.53010.115*
C100.2645 (5)0.8078 (4)0.5584 (2)0.0627 (14)
H10A0.27560.75220.58190.094*
H10B0.24810.79490.51300.094*
H10C0.19130.84060.57630.094*
C110.9341 (4)0.7314 (3)0.8586 (2)0.0321 (9)
C120.9110 (4)0.7612 (3)0.9293 (2)0.0375 (10)
C130.7894 (5)0.8214 (3)0.9327 (2)0.0550 (14)
H13A0.71370.78810.91810.083*
H13B0.80190.87320.90510.083*
H13C0.77610.84080.97710.083*
C140.8880 (5)0.6789 (3)0.9731 (2)0.0546 (13)
H14A0.81300.64580.95740.082*
H14B0.87210.69861.01720.082*
H14C0.96440.64070.97210.082*
C151.0301 (5)0.8155 (4)0.9531 (2)0.0621 (15)
H15A1.01580.83430.99760.093*
H15B1.04130.86780.92580.093*
H15C1.10770.77860.95080.093*
C161.0224 (4)0.6699 (3)0.77094 (18)0.0321 (9)
C171.1144 (4)0.6206 (3)0.7243 (2)0.0407 (11)
C181.0508 (5)0.6196 (4)0.6563 (2)0.0567 (14)
H18A1.03530.68050.64210.085*
H18B0.96860.58760.65830.085*
H18C1.10850.59000.62590.085*
C191.2451 (4)0.6716 (4)0.7205 (3)0.0661 (17)
H19A1.28550.67290.76300.099*
H19B1.22930.73230.70590.099*
H19C1.30270.64170.69010.099*
C210.9561 (6)0.9340 (5)0.5300 (3)0.0750 (17)
H21A0.97950.87320.51680.090*
H21B1.02000.97490.51070.090*
C220.8266 (7)0.9553 (5)0.5036 (3)0.093 (2)
H22A0.82860.95020.45670.139*
H22B0.80291.01580.51570.139*
H22C0.76290.91380.52100.139*
C301.1378 (6)0.5227 (4)0.7462 (3)0.0721 (17)
H30A1.17840.52230.78870.108*
H30B1.19450.49300.71530.108*
H30C1.05500.49140.74830.108*
H40.918 (5)0.900 (3)0.616 (3)0.07 (2)*
H110.728 (3)0.806 (4)0.652 (3)0.08 (2)*
H120.844 (5)0.775 (3)0.6672 (19)0.08 (2)*
H410.267 (4)1.032 (2)0.652 (2)0.053 (16)*
H420.182 (3)0.954 (2)0.6480 (18)0.047 (13)*
H811.209 (2)0.658 (3)0.870 (2)0.040 (14)*
H821.118 (6)0.5800 (10)0.880 (3)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04155 (16)0.0608 (2)0.04285 (16)0.02041 (17)0.00957 (16)0.0024 (2)
O10.0377 (19)0.094 (3)0.087 (3)0.0074 (19)0.0054 (19)0.010 (2)
O20.091 (3)0.050 (2)0.113 (4)0.018 (2)0.032 (3)0.009 (2)
O30.053 (2)0.059 (2)0.151 (4)0.010 (2)0.013 (3)0.028 (3)
O40.069 (3)0.080 (3)0.052 (2)0.010 (2)0.006 (2)0.005 (2)
O1W0.050 (2)0.110 (3)0.059 (2)0.016 (3)0.0067 (18)0.034 (3)
N10.0349 (18)0.052 (2)0.0309 (18)0.0102 (17)0.0017 (14)0.0019 (16)
N20.0382 (19)0.047 (2)0.0313 (18)0.0093 (17)0.0015 (15)0.0042 (16)
N30.0285 (17)0.0348 (17)0.0332 (16)0.0089 (16)0.0051 (15)0.0004 (13)
N40.034 (2)0.054 (3)0.052 (3)0.0135 (19)0.0080 (18)0.001 (2)
N50.0316 (18)0.0479 (19)0.0288 (17)0.0124 (15)0.0002 (13)0.0030 (14)
N60.0296 (16)0.054 (2)0.0314 (18)0.0076 (17)0.0007 (13)0.0006 (17)
N70.0283 (16)0.046 (2)0.0255 (16)0.0053 (15)0.0027 (13)0.0033 (15)
N80.036 (2)0.072 (3)0.037 (2)0.017 (2)0.0061 (16)0.008 (2)
N90.048 (2)0.053 (3)0.038 (2)0.004 (2)0.0045 (19)0.0014 (19)
C10.030 (2)0.034 (2)0.036 (2)0.0032 (18)0.0022 (17)0.0019 (18)
C20.039 (2)0.044 (2)0.030 (2)0.0069 (17)0.0020 (17)0.0018 (18)
C30.068 (4)0.072 (4)0.034 (3)0.010 (3)0.007 (3)0.008 (2)
C40.054 (3)0.075 (4)0.059 (3)0.000 (3)0.019 (3)0.001 (3)
C50.070 (3)0.050 (3)0.057 (3)0.012 (2)0.006 (3)0.006 (3)
C60.033 (2)0.035 (2)0.041 (2)0.0013 (18)0.0003 (18)0.0038 (19)
C70.043 (2)0.046 (3)0.033 (2)0.000 (2)0.0061 (18)0.001 (2)
C80.064 (3)0.106 (5)0.043 (3)0.013 (4)0.005 (2)0.018 (3)
C90.131 (6)0.062 (3)0.038 (3)0.001 (4)0.012 (3)0.011 (2)
C100.061 (3)0.075 (4)0.053 (3)0.009 (3)0.010 (2)0.012 (3)
C110.0282 (19)0.040 (2)0.028 (2)0.0015 (17)0.0000 (16)0.0019 (17)
C120.035 (2)0.048 (3)0.029 (2)0.002 (2)0.0000 (17)0.0012 (19)
C130.072 (3)0.058 (3)0.035 (2)0.022 (3)0.007 (2)0.008 (2)
C140.067 (3)0.056 (3)0.041 (2)0.009 (3)0.015 (2)0.009 (2)
C150.059 (3)0.080 (4)0.047 (3)0.023 (3)0.005 (2)0.018 (3)
C160.0276 (19)0.040 (2)0.029 (2)0.0008 (16)0.0030 (15)0.0007 (16)
C170.034 (2)0.056 (3)0.032 (2)0.0082 (19)0.0064 (17)0.004 (2)
C180.053 (3)0.086 (4)0.031 (2)0.001 (3)0.010 (2)0.011 (2)
C190.037 (2)0.111 (5)0.051 (3)0.005 (3)0.010 (2)0.009 (3)
C210.082 (4)0.079 (4)0.064 (4)0.006 (3)0.003 (3)0.002 (3)
C220.086 (5)0.111 (5)0.081 (4)0.008 (5)0.023 (4)0.012 (4)
C300.091 (5)0.065 (3)0.060 (3)0.032 (3)0.012 (3)0.005 (3)
Geometric parameters (Å, º) top
Ag1—N12.154 (3)C7—C81.535 (7)
Ag1—N52.167 (3)C8—H8A0.9600
Ag1—O12.717 (4)C8—H8B0.9600
O1—N91.236 (5)C8—H8C0.9600
O2—N91.238 (5)C9—H9A0.9600
O3—N91.217 (5)C9—H9B0.9600
O4—C211.409 (7)C9—H9C0.9600
O4—H40.845 (10)C10—H10A0.9600
O1W—H110.836 (10)C10—H10B0.9600
O1W—H120.838 (10)C10—H10C0.9600
N1—C11.311 (5)C11—C121.525 (6)
N1—N21.390 (5)C12—C131.523 (6)
N2—C61.310 (5)C12—C141.529 (6)
N3—C11.366 (5)C12—C151.531 (6)
N3—C61.370 (5)C13—H13A0.9600
N3—N41.410 (5)C13—H13B0.9600
N4—H410.878 (10)C13—H13C0.9600
N4—H420.879 (10)C14—H14A0.9600
N5—C111.308 (5)C14—H14B0.9600
N5—N61.389 (4)C14—H14C0.9600
N6—C161.307 (5)C15—H15A0.9600
N7—C111.368 (5)C15—H15B0.9600
N7—C161.369 (5)C15—H15C0.9600
N7—N81.416 (5)C16—C171.520 (5)
N8—H810.882 (10)C17—C191.528 (6)
N8—H820.881 (10)C17—C181.531 (6)
C1—C21.518 (6)C17—C301.535 (7)
C2—C31.524 (6)C18—H18A0.9600
C2—C41.538 (6)C18—H18B0.9600
C2—C51.542 (6)C18—H18C0.9600
C3—H3A0.9600C19—H19A0.9600
C3—H3B0.9600C19—H19B0.9600
C3—H3C0.9600C19—H19C0.9600
C4—H4A0.9600C21—C221.454 (8)
C4—H4B0.9600C21—H21A0.9700
C4—H4C0.9600C21—H21B0.9700
C5—H5A0.9600C22—H22A0.9600
C5—H5B0.9600C22—H22B0.9600
C5—H5C0.9600C22—H22C0.9600
C6—C71.516 (6)C30—H30A0.9600
C7—C91.529 (7)C30—H30B0.9600
C7—C101.533 (6)C30—H30C0.9600
N1—Ag1—N5151.45 (12)H9A—C9—H9C109.5
N1—Ag1—O1121.43 (13)H9B—C9—H9C109.5
N5—Ag1—O181.58 (12)C7—C10—H10A109.5
N9—O1—Ag1107.7 (3)C7—C10—H10B109.5
C21—O4—H4109 (4)H10A—C10—H10B109.5
H11—O1W—H12102 (6)C7—C10—H10C109.5
C1—N1—N2108.9 (3)H10A—C10—H10C109.5
C1—N1—Ag1137.7 (3)H10B—C10—H10C109.5
N2—N1—Ag1112.8 (2)N5—C11—N7108.0 (3)
C6—N2—N1107.0 (3)N5—C11—C12126.4 (4)
C1—N3—C6106.8 (3)N7—C11—C12125.5 (3)
C1—N3—N4123.0 (3)C13—C12—C11109.7 (3)
C6—N3—N4130.1 (3)C13—C12—C14108.3 (4)
N3—N4—H41106 (3)C11—C12—C14110.3 (4)
N3—N4—H42109 (3)C13—C12—C15108.5 (4)
H41—N4—H42110 (4)C11—C12—C15109.3 (3)
C11—N5—N6108.8 (3)C14—C12—C15110.7 (4)
C11—N5—Ag1136.6 (3)C12—C13—H13A109.5
N6—N5—Ag1112.5 (2)C12—C13—H13B109.5
C16—N6—N5107.3 (3)H13A—C13—H13B109.5
C11—N7—C16106.9 (3)C12—C13—H13C109.5
C11—N7—N8123.3 (3)H13A—C13—H13C109.5
C16—N7—N8129.7 (4)H13B—C13—H13C109.5
N7—N8—H81110 (3)C12—C14—H14A109.5
N7—N8—H82108 (4)C12—C14—H14B109.5
H81—N8—H82116 (5)H14A—C14—H14B109.5
O3—N9—O1121.4 (4)C12—C14—H14C109.5
O3—N9—O2119.1 (4)H14A—C14—H14C109.5
O1—N9—O2119.5 (5)H14B—C14—H14C109.5
N1—C1—N3108.1 (3)C12—C15—H15A109.5
N1—C1—C2125.9 (4)C12—C15—H15B109.5
N3—C1—C2125.9 (3)H15A—C15—H15B109.5
C1—C2—C3109.9 (3)C12—C15—H15C109.5
C1—C2—C4109.6 (4)H15A—C15—H15C109.5
C3—C2—C4108.7 (4)H15B—C15—H15C109.5
C1—C2—C5110.7 (4)N6—C16—N7109.0 (3)
C3—C2—C5107.9 (4)N6—C16—C17123.9 (3)
C4—C2—C5109.9 (4)N7—C16—C17127.0 (4)
C2—C3—H3A109.5C16—C17—C19109.2 (4)
C2—C3—H3B109.5C16—C17—C18108.2 (3)
H3A—C3—H3B109.5C19—C17—C18108.9 (4)
C2—C3—H3C109.5C16—C17—C30111.5 (4)
H3A—C3—H3C109.5C19—C17—C30110.3 (4)
H3B—C3—H3C109.5C18—C17—C30108.6 (4)
C2—C4—H4A109.5C17—C18—H18A109.5
C2—C4—H4B109.5C17—C18—H18B109.5
H4A—C4—H4B109.5H18A—C18—H18B109.5
C2—C4—H4C109.5C17—C18—H18C109.5
H4A—C4—H4C109.5H18A—C18—H18C109.5
H4B—C4—H4C109.5H18B—C18—H18C109.5
C2—C5—H5A109.5C17—C19—H19A109.5
C2—C5—H5B109.5C17—C19—H19B109.5
H5A—C5—H5B109.5H19A—C19—H19B109.5
C2—C5—H5C109.5C17—C19—H19C109.5
H5A—C5—H5C109.5H19A—C19—H19C109.5
H5B—C5—H5C109.5H19B—C19—H19C109.5
N2—C6—N3109.2 (4)O4—C21—C22114.5 (6)
N2—C6—C7123.5 (4)O4—C21—H21A108.6
N3—C6—C7127.2 (4)C22—C21—H21A108.6
C6—C7—C9112.1 (4)O4—C21—H21B108.6
C6—C7—C10109.8 (4)C22—C21—H21B108.6
C9—C7—C10110.2 (4)H21A—C21—H21B107.6
C6—C7—C8108.2 (4)C21—C22—H22A109.5
C9—C7—C8108.8 (4)C21—C22—H22B109.5
C10—C7—C8107.5 (4)H22A—C22—H22B109.5
C7—C8—H8A109.5C21—C22—H22C109.5
C7—C8—H8B109.5H22A—C22—H22C109.5
H8A—C8—H8B109.5H22B—C22—H22C109.5
C7—C8—H8C109.5C17—C30—H30A109.5
H8A—C8—H8C109.5C17—C30—H30B109.5
H8B—C8—H8C109.5H30A—C30—H30B109.5
C7—C9—H9A109.5C17—C30—H30C109.5
C7—C9—H9B109.5H30A—C30—H30C109.5
H9A—C9—H9B109.5H30B—C30—H30C109.5
C7—C9—H9C109.5
N1—Ag1—O1—N917.7 (4)C1—N3—C6—C7178.5 (4)
N5—Ag1—O1—N9179.6 (3)N4—N3—C6—C75.4 (7)
N5—Ag1—N1—C1145.1 (4)N2—C6—C7—C9126.9 (5)
O1—Ag1—N1—C175.1 (5)N3—C6—C7—C955.8 (6)
N5—Ag1—N1—N244.9 (5)N2—C6—C7—C10110.1 (5)
O1—Ag1—N1—N294.9 (3)N3—C6—C7—C1067.1 (6)
C1—N1—N2—C60.1 (5)N2—C6—C7—C87.0 (6)
Ag1—N1—N2—C6172.9 (3)N3—C6—C7—C8175.8 (4)
N1—Ag1—N5—C11157.9 (4)N6—N5—C11—N70.9 (4)
O1—Ag1—N5—C1155.9 (4)Ag1—N5—C11—N7160.4 (3)
N1—Ag1—N5—N641.2 (4)N6—N5—C11—C12178.1 (4)
O1—Ag1—N5—N6105.0 (3)Ag1—N5—C11—C1220.6 (7)
C11—N5—N6—C160.8 (4)C16—N7—C11—N50.7 (4)
Ag1—N5—N6—C16165.4 (3)N8—N7—C11—N5177.0 (4)
Ag1—O1—N9—O3152.1 (4)C16—N7—C11—C12178.3 (4)
Ag1—O1—N9—O226.7 (5)N8—N7—C11—C124.0 (6)
N2—N1—C1—N30.6 (5)N5—C11—C12—C130.0 (6)
Ag1—N1—C1—N3169.7 (3)N7—C11—C12—C13178.8 (4)
N2—N1—C1—C2179.6 (4)N5—C11—C12—C14119.2 (5)
Ag1—N1—C1—C29.3 (7)N7—C11—C12—C1461.9 (5)
C6—N3—C1—N10.9 (5)N5—C11—C12—C15118.8 (5)
N4—N3—C1—N1177.4 (4)N7—C11—C12—C1560.0 (5)
C6—N3—C1—C2179.9 (4)N5—N6—C16—N70.3 (5)
N4—N3—C1—C23.6 (6)N5—N6—C16—C17177.8 (4)
N1—C1—C2—C34.1 (6)C11—N7—C16—N60.2 (5)
N3—C1—C2—C3177.1 (4)N8—N7—C16—N6177.3 (4)
N1—C1—C2—C4115.3 (5)C11—N7—C16—C17177.2 (4)
N3—C1—C2—C463.5 (6)N8—N7—C16—C175.3 (7)
N1—C1—C2—C5123.2 (5)N6—C16—C17—C19108.7 (5)
N3—C1—C2—C558.0 (6)N7—C16—C17—C1968.4 (6)
N1—N2—C6—N30.5 (5)N6—C16—C17—C189.8 (6)
N1—N2—C6—C7178.2 (4)N7—C16—C17—C18173.1 (4)
C1—N3—C6—N20.9 (5)N6—C16—C17—C30129.2 (5)
N4—N3—C6—N2177.0 (4)N7—C16—C17—C3053.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1w0.85 (1)1.94 (2)2.772 (6)167 (6)
O1w—H11···N20.84 (1)2.16 (2)2.976 (5)164 (6)
O1w—H12···N60.84 (1)2.08 (2)2.915 (5)171 (6)
N4—H41···O1i0.88 (1)2.20 (2)3.008 (6)153 (4)
N4—H42···O4ii0.88 (1)2.43 (2)3.226 (6)152 (4)
N8—H81···O2iii0.88 (1)2.27 (1)3.144 (6)171 (4)
N8—H82···O4iv0.88 (1)2.28 (2)3.127 (7)161 (6)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C10H20N4)2]·C2H6O·H2O
Mr626.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.149 (2), 14.802 (3), 20.405 (4)
V3)3065.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.844, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
11760, 6724, 5767
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.091, 1.15
No. of reflections6724
No. of parameters363
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.46
Absolute structureFlack (1983), 2227 Friedel pairs
Absolute structure parameter0.48 (3)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1w0.85 (1)1.94 (2)2.772 (6)167 (6)
O1w—H11···N20.84 (1)2.16 (2)2.976 (5)164 (6)
O1w—H12···N60.84 (1)2.08 (2)2.915 (5)171 (6)
N4—H41···O1i0.88 (1)2.20 (2)3.008 (6)153 (4)
N4—H42···O4ii0.88 (1)2.43 (2)3.226 (6)152 (4)
N8—H81···O2iii0.88 (1)2.27 (1)3.144 (6)171 (4)
N8—H82···O4iv0.88 (1)2.28 (2)3.127 (7)161 (6)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2.
 

Acknowledgements

We thank Zhengzhou University of China and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, G., Duan, P.-C., Shi, K.-G. & Raptis, R. G. (2012). Cryst. Growth Des. 12, 1882–1889.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds