organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1-(4-Chloro­phen­yl)-5-hy­dr­oxy-3-phenyl-1H-pyrazol-4-yl](thio­phen-2-yl)methanone

aMOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China, and bThe First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, People's Republic of China
*Correspondence e-mail: zhang_heming88@yahoo.com.cn

(Received 27 April 2012; accepted 29 April 2012; online 5 May 2012)

In the title compound, C20H13ClN2O2S, the chloro­phenyl, phenyl and thienoyl rings are oriented at dihedral angles 17.84 (7), 53.13 (8) and 34.03 (8)°, respectively, to the central pyrazole ring. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, pairs of bifurcated O—H⋯O hydrogen bonds link mol­ecules into inversion dimers with R22(12) graph-set motifs.

Related literature

For general background to pyrazolone and its complexes, see: Li et al. (2000[Li, J. Z., Li, G. & Yu, W. J. (2000). J. Rare Earths, 18, 233-236.]); Kimata et al. (2007[Kimata, A., Nakagawa, H., Ohyama, R., Fukuuchi, T., Ohta, S., Suzuki, T. & Miyata, N. (2007). J. Med. Chem. 50, 5053-5056.]). For related structures, see: Li et al. (2007[Li, J.-Z., Zhang, H.-Q., Li, H.-X., Che, P.-Z. & Wang, T.-C. (2007). Acta Cryst. E63, o1289-o1290.]); Cingolani et al. (2004[Cingolani, A., Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2004). Inorg. Chem. Commun. 7, 235-237.]); Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]). For the synthesis of the title compound, see: Jensen (1959[Jensen, B. S. (1959). Acta Chem. Scand. 13, 1668-1670.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Foces-Foces et al. (1997[Foces-Foces, C., Fontenas, C., Elguero, J. & Sobrados, I. (1997). An. Quim. Int. Ed. 93, 219-224.]). For graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13ClN2O2S

  • Mr = 380.84

  • Monoclinic, P 21 /c

  • a = 6.0686 (2) Å

  • b = 18.6887 (5) Å

  • c = 14.9734 (4) Å

  • β = 91.559 (1)°

  • V = 1697.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 20900 measured reflections

  • 3351 independent reflections

  • 3072 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.06

  • 3351 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 2.08 2.7233 (15) 135
O1—H1⋯O2i 0.82 2.12 2.7964 (15) 140
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolone, as a prominent structural motif, is found in numerous active compounds. Due to the easy preparation and its rich biological activity of broad-spectrum antibacterial action, antitumor, antisepsis(Kimata et al., 2007). Pyrazolone and its complexes have both received considerable attention in coordination chemistry and medicinal chemistry(Li et al., 2000).We report here the crystal structure of a new 4-heterocyclic acylpyrazolone (Fig. 1).

The chlorophenyl ring is slightly twisted by 17.84 (1) with respect to the pyrazolone ring, whereas the benzene and 2-thienoyl rings make dihedral angles of 53.13 (3) and 34.03 (1), respectively, with the pyrazolone (Fig. 1). The clear evidence of the hydroxyl H atom in the difference Fourier synthesis and the absence of any residual electron density in the vicinity of C7 confirm that compound (I) crystallizes as a pure enol tautomer and that no desmotropism is present (Foces-Foces et al., 1997).

The molecular structure of (I) is shown in Fig. 1, and the intermolecular O—H···O hydrogen bond (Table 1) results in the formation of a dimer with an R22(12) graph-set motif(Etter et al., 1990)(Fig. 2.). The bond lengths and angles are within normal ranges (Allen et al., 1987). Similar crystal structure of some compounds have been reported (Li et al., 2007; Cingolani et al., 2004; Holzer et al.., 1999).

Related literature top

For general background to pyrazolone and its complexes, see: Li et al. (2000); Kimata et al. (2007). For related structures, see: Li et al. (2007); Cingolani et al. (2004); Holzer et al. (1999). For the synthesis of the title compound, see: Jensen (1959). For bond-length data, see: Allen et al. (1987); Foces-Foces et al. (1997). For graph-set motifs, see: Etter et al. (1990).

Experimental top

Compound (I) was synthesized and purified according to the method proposed by Jensen (1959). (yield 72.4%.). Analysis, required for C20H13ClN2O2S: C 63.07, H 3.44, N 9.31%, S 8.42; found: C 63.01, H 3.53, N 9.34%, S 8.47. Block-like yellow single crystals of (I) were grown from an ethanol solution by slow evaporation for several weeks.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and refined as riding, with O—H distance restraint of 0.82 (1) Å and with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
[Figure 2] Fig. 2. The structure of a dimer of (I).
[1-(4-Chlorophenyl)-5-hydroxy-3-phenyl-1H-pyrazol-4-yl](thiophen- 2-yl)methanone top
Crystal data top
C20H13ClN2O2SF(000) = 784.0
Mr = 380.84Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9988 reflections
a = 6.0686 (2) Åθ = 3.1–28.2°
b = 18.6887 (5) ŵ = 0.37 mm1
c = 14.9734 (4) ÅT = 296 K
β = 91.559 (1)°Block, yellow
V = 1697.57 (9) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3072 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω scansh = 77
20900 measured reflectionsk = 2322
3351 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
3351 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H13ClN2O2SV = 1697.57 (9) Å3
Mr = 380.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0686 (2) ŵ = 0.37 mm1
b = 18.6887 (5) ÅT = 296 K
c = 14.9734 (4) Å0.22 × 0.20 × 0.18 mm
β = 91.559 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3072 reflections with I > 2σ(I)
20900 measured reflectionsRint = 0.024
3351 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3351 reflectionsΔρmin = 0.31 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7121 (2)0.56022 (8)0.81785 (9)0.0221 (3)
C20.6399 (2)0.49761 (8)0.77634 (10)0.0261 (3)
H20.50300.47840.78920.031*
C30.7742 (3)0.46391 (8)0.71551 (10)0.0269 (3)
H30.72800.42190.68760.032*
C40.9765 (2)0.49323 (8)0.69683 (10)0.0241 (3)
C51.0483 (2)0.55577 (8)0.73728 (10)0.0258 (3)
H51.18430.57520.72350.031*
C60.9166 (2)0.58925 (8)0.79828 (10)0.0255 (3)
H60.96430.63110.82630.031*
C70.4045 (2)0.57557 (8)0.92592 (9)0.0224 (3)
C80.3346 (2)0.63263 (8)0.97842 (9)0.0222 (3)
C90.4825 (2)0.68917 (8)0.95717 (9)0.0223 (3)
C100.4907 (2)0.76450 (8)0.98822 (9)0.0218 (3)
C110.3064 (2)0.80840 (8)0.98391 (10)0.0252 (3)
H110.17440.79120.95940.030*
C120.3185 (3)0.87803 (8)1.01608 (11)0.0301 (3)
H120.19490.90741.01250.036*
C130.5140 (3)0.90380 (8)1.05335 (11)0.0311 (3)
H130.52090.95011.07600.037*
C140.6989 (3)0.86062 (9)1.05681 (10)0.0301 (3)
H140.83050.87791.08170.036*
C150.6887 (2)0.79162 (8)1.02331 (10)0.0257 (3)
H150.81460.76321.02420.031*
C160.1539 (2)0.62147 (8)1.03925 (10)0.0236 (3)
C170.1226 (2)0.66529 (8)1.11888 (10)0.0234 (3)
C180.2674 (3)0.71042 (8)1.16592 (10)0.0281 (3)
H180.40990.72091.14870.034*
C190.1698 (3)0.73824 (9)1.24312 (11)0.0363 (4)
H190.24180.76941.28260.044*
C200.0405 (3)0.71486 (9)1.25382 (11)0.0367 (4)
H200.12830.72901.30060.044*
Cl11.14533 (6)0.45042 (2)0.62109 (2)0.03082 (12)
N10.5794 (2)0.59767 (6)0.87952 (8)0.0233 (3)
N20.6279 (2)0.66882 (6)0.89840 (8)0.0246 (3)
O10.33334 (17)0.50886 (5)0.91919 (7)0.0258 (2)
H10.23080.50290.95300.039*
O20.02678 (19)0.57078 (6)1.02388 (8)0.0355 (3)
S10.12432 (6)0.65709 (2)1.17238 (3)0.03080 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (7)0.0224 (7)0.0221 (7)0.0033 (5)0.0034 (5)0.0018 (5)
C20.0230 (7)0.0248 (7)0.0308 (7)0.0007 (6)0.0056 (6)0.0006 (6)
C30.0303 (8)0.0222 (7)0.0283 (7)0.0008 (6)0.0039 (6)0.0027 (6)
C40.0258 (7)0.0246 (7)0.0221 (7)0.0063 (6)0.0047 (5)0.0018 (5)
C50.0215 (7)0.0282 (8)0.0278 (7)0.0003 (6)0.0049 (6)0.0009 (6)
C60.0250 (7)0.0242 (7)0.0275 (7)0.0010 (6)0.0029 (6)0.0013 (6)
C70.0215 (7)0.0225 (7)0.0233 (7)0.0011 (5)0.0020 (5)0.0015 (5)
C80.0214 (7)0.0228 (7)0.0226 (7)0.0006 (5)0.0027 (5)0.0007 (5)
C90.0215 (7)0.0209 (7)0.0245 (7)0.0012 (5)0.0022 (5)0.0021 (5)
C100.0241 (7)0.0210 (7)0.0206 (6)0.0004 (5)0.0056 (5)0.0024 (5)
C110.0222 (7)0.0281 (8)0.0254 (7)0.0006 (6)0.0009 (6)0.0005 (6)
C120.0309 (8)0.0263 (8)0.0335 (8)0.0065 (6)0.0054 (6)0.0001 (6)
C130.0410 (9)0.0233 (7)0.0293 (8)0.0034 (7)0.0074 (7)0.0042 (6)
C140.0288 (8)0.0323 (8)0.0291 (8)0.0094 (6)0.0004 (6)0.0010 (6)
C150.0218 (7)0.0263 (7)0.0290 (7)0.0005 (6)0.0028 (6)0.0054 (6)
C160.0221 (7)0.0232 (7)0.0257 (7)0.0011 (6)0.0038 (6)0.0031 (6)
C170.0222 (7)0.0240 (7)0.0242 (7)0.0038 (5)0.0052 (6)0.0049 (6)
C180.0340 (8)0.0273 (7)0.0231 (7)0.0026 (6)0.0070 (6)0.0042 (6)
C190.0485 (10)0.0318 (8)0.0288 (8)0.0009 (7)0.0050 (7)0.0022 (7)
C200.0466 (10)0.0346 (9)0.0297 (8)0.0092 (7)0.0148 (7)0.0006 (7)
Cl10.0322 (2)0.0302 (2)0.0306 (2)0.00225 (15)0.01222 (15)0.00420 (14)
N10.0238 (6)0.0194 (6)0.0269 (6)0.0005 (5)0.0062 (5)0.0010 (5)
N20.0248 (6)0.0197 (6)0.0298 (6)0.0007 (5)0.0069 (5)0.0011 (5)
O10.0246 (5)0.0227 (5)0.0305 (5)0.0047 (4)0.0081 (4)0.0014 (4)
O20.0344 (6)0.0343 (6)0.0386 (6)0.0122 (5)0.0144 (5)0.0069 (5)
S10.0272 (2)0.0344 (2)0.0313 (2)0.00437 (15)0.01022 (16)0.00459 (15)
Geometric parameters (Å, º) top
C1—C21.390 (2)C11—C121.389 (2)
C1—C61.393 (2)C11—H110.9300
C1—N11.4254 (18)C12—C131.384 (2)
C2—C31.389 (2)C12—H120.9300
C2—H20.9300C13—C141.382 (2)
C3—C41.380 (2)C13—H130.9300
C3—H30.9300C14—C151.384 (2)
C4—C51.381 (2)C14—H140.9300
C4—Cl11.7432 (14)C15—H150.9300
C5—C61.380 (2)C16—O21.2393 (19)
C5—H50.9300C16—C171.463 (2)
C6—H60.9300C17—C181.395 (2)
C7—O11.3224 (17)C17—S11.7253 (14)
C7—N11.3491 (18)C18—C191.412 (2)
C7—C81.397 (2)C18—H180.9300
C8—C91.428 (2)C19—C201.363 (3)
C8—C161.4595 (19)C19—H190.9300
C9—N21.3191 (19)C20—S11.6965 (19)
C9—C101.483 (2)C20—H200.9300
C10—C111.387 (2)N1—N21.3892 (17)
C10—C151.394 (2)O1—H10.8200
C2—C1—C6120.36 (13)C13—C12—C11120.18 (14)
C2—C1—N1121.76 (13)C13—C12—H12119.9
C6—C1—N1117.86 (13)C11—C12—H12119.9
C3—C2—C1119.44 (14)C14—C13—C12119.87 (15)
C3—C2—H2120.3C14—C13—H13120.1
C1—C2—H2120.3C12—C13—H13120.1
C4—C3—C2119.59 (14)C13—C14—C15120.14 (14)
C4—C3—H3120.2C13—C14—H14119.9
C2—C3—H3120.2C15—C14—H14119.9
C3—C4—C5121.24 (14)C14—C15—C10120.32 (14)
C3—C4—Cl1119.44 (12)C14—C15—H15119.8
C5—C4—Cl1119.33 (11)C10—C15—H15119.8
C6—C5—C4119.52 (14)O2—C16—C8117.89 (13)
C6—C5—H5120.2O2—C16—C17119.04 (13)
C4—C5—H5120.2C8—C16—C17123.02 (13)
C5—C6—C1119.86 (14)C18—C17—C16131.02 (13)
C5—C6—H6120.1C18—C17—S1111.24 (11)
C1—C6—H6120.1C16—C17—S1117.53 (11)
O1—C7—N1120.61 (13)C17—C18—C19111.34 (15)
O1—C7—C8131.21 (13)C17—C18—H18124.3
N1—C7—C8108.13 (12)C19—C18—H18124.3
C7—C8—C9103.72 (12)C20—C19—C18113.14 (16)
C7—C8—C16119.13 (13)C20—C19—H19123.4
C9—C8—C16137.08 (13)C18—C19—H19123.4
N2—C9—C8111.79 (13)C19—C20—S1112.52 (13)
N2—C9—C10117.74 (13)C19—C20—H20123.7
C8—C9—C10130.44 (13)S1—C20—H20123.7
C11—C10—C15119.22 (14)C7—N1—N2110.71 (11)
C11—C10—C9121.78 (13)C7—N1—C1130.51 (12)
C15—C10—C9119.00 (13)N2—N1—C1118.78 (11)
C10—C11—C12120.21 (14)C9—N2—N1105.65 (11)
C10—C11—H11119.9C7—O1—H1109.5
C12—C11—H11119.9C20—S1—C1791.72 (8)
C6—C1—C2—C30.4 (2)C9—C10—C15—C14176.86 (13)
N1—C1—C2—C3178.83 (13)C7—C8—C16—O221.5 (2)
C1—C2—C3—C40.3 (2)C9—C8—C16—O2162.36 (17)
C2—C3—C4—C50.2 (2)C7—C8—C16—C17155.84 (14)
C2—C3—C4—Cl1179.53 (12)C9—C8—C16—C1720.3 (3)
C3—C4—C5—C60.7 (2)O2—C16—C17—C18159.46 (16)
Cl1—C4—C5—C6179.03 (12)C8—C16—C17—C1817.8 (2)
C4—C5—C6—C10.6 (2)O2—C16—C17—S114.63 (19)
C2—C1—C6—C50.1 (2)C8—C16—C17—S1168.10 (11)
N1—C1—C6—C5178.40 (13)C16—C17—C18—C19175.79 (15)
O1—C7—C8—C9178.08 (15)S1—C17—C18—C191.42 (17)
N1—C7—C8—C90.69 (16)C17—C18—C19—C200.0 (2)
O1—C7—C8—C160.8 (2)C18—C19—C20—S11.4 (2)
N1—C7—C8—C16176.63 (12)O1—C7—N1—N2178.57 (12)
C7—C8—C9—N20.31 (17)C8—C7—N1—N20.85 (16)
C16—C8—C9—N2176.25 (16)O1—C7—N1—C11.4 (2)
C7—C8—C9—C10177.61 (14)C8—C7—N1—C1179.14 (14)
C16—C8—C9—C105.8 (3)C2—C1—N1—C718.8 (2)
N2—C9—C10—C11126.50 (15)C6—C1—N1—C7162.77 (14)
C8—C9—C10—C1151.3 (2)C2—C1—N1—N2161.23 (13)
N2—C9—C10—C1554.02 (19)C6—C1—N1—N217.22 (19)
C8—C9—C10—C15128.16 (17)C8—C9—N2—N10.18 (16)
C15—C10—C11—C121.4 (2)C10—C9—N2—N1178.39 (12)
C9—C10—C11—C12178.06 (13)C7—N1—N2—C90.64 (16)
C10—C11—C12—C130.6 (2)C1—N1—N2—C9179.36 (12)
C11—C12—C13—C141.4 (2)C19—C20—S1—C171.85 (14)
C12—C13—C14—C150.2 (2)C18—C17—S1—C201.86 (12)
C13—C14—C15—C101.8 (2)C16—C17—S1—C20177.08 (12)
C11—C10—C15—C142.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.082.7233 (15)135
O1—H1···O2i0.822.122.7964 (15)140
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC20H13ClN2O2S
Mr380.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.0686 (2), 18.6887 (5), 14.9734 (4)
β (°) 91.559 (1)
V3)1697.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20900, 3351, 3072
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.06
No. of reflections3351
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.082.7233 (15)134.6
O1—H1···O2i0.822.122.7964 (15)139.9
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30940094) and the Science Foundation for Excellent Youth Scholars of Educational Commission of Hunan Province, China (10B077).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingolani, A., Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2004). Inorg. Chem. Commun. 7, 235–237.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFoces-Foces, C., Fontenas, C., Elguero, J. & Sobrados, I. (1997). An. Quim. Int. Ed. 93, 219–224.  Google Scholar
First citationHolzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.  CrossRef CAS Google Scholar
First citationJensen, B. S. (1959). Acta Chem. Scand. 13, 1668–1670.  CrossRef CAS Web of Science Google Scholar
First citationKimata, A., Nakagawa, H., Ohyama, R., Fukuuchi, T., Ohta, S., Suzuki, T. & Miyata, N. (2007). J. Med. Chem. 50, 5053–5056.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, J. Z., Li, G. & Yu, W. J. (2000). J. Rare Earths, 18, 233–236.  Google Scholar
First citationLi, J.-Z., Zhang, H.-Q., Li, H.-X., Che, P.-Z. & Wang, T.-C. (2007). Acta Cryst. E63, o1289–o1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds