organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′′-Bis(prop-2-en-1-yl)-1,1′′,2,2′′-tetra­hydro­di­spiro­[indole-3,7′-[6,9]di­aza­tri­cyclo­[7.3.0.02,6]do­decane-8′,3′′-indole]-2,2′′-dione

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V–Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bInstitute of Nanomaterials and Nanotechnology MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 April 2012; accepted 29 April 2012; online 5 May 2012)

The mol­ecule of the title compound, C30H32N4O2, lies on a twofold rotation axis that passes through the mid-points of the C—C bonds of the piperazine ring, which adopts a chair conformation. The pyrrolidine ring that is fused to the piperazine ring adopts an envelope conformation (in which the N atom represents the flap). The indoline fused-ring system is nearly planar (r.m.s. deviation = 0.044 Å); the two symmetry-related indoline fused-rings systems are aligned at 71.44 (3)°.

Related literature

For background to the class of dispiro compounds, see: Al Mamari et al. (2012[Al Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012). Tetrahedron Lett. 53, 2328-2331.]). For a related structure, see: Sugaleshini et al. (2006[Sugaleshini, S., Gayathri, D., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2006). Acta Cryst. E62, o2432-o2434.]).

[Scheme 1]

Experimental

Crystal data
  • C30H32N4O2

  • Mr = 480.60

  • Monoclinic, C 2/c

  • a = 14.9484 (2) Å

  • b = 9.9173 (1) Å

  • c = 17.5713 (3) Å

  • β = 111.119 (1)°

  • V = 2429.94 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Bruker APEX DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.988

  • 13297 measured reflections

  • 2797 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.00

  • 2797 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We reported the the 1,3-dipolar cycloaddition of 1-allyl-5-haloisatin derivatives as dipolarophiles with the azomethine ylides generated in situ from N-allylisatin and L-proline to yield dispiro-oxindoles (Al Mamari et al., 2012). Although one of the reactants is optically active, the product crystallizes in a centrosymmetric space group, as does the unsubstituted compound, C30H32N4O20 (Scheme I), which represents the homolog of this class of compounds. The molecule lies on a two-fold rotation axis that passes through the two mid-points of the C–C bonds of the piperazine ring, which adopts a chair conformation. The pyrrolidine ring that is fused to the piperazine ring adopts an envelope conformation (in which the N atom represents the flap) (Fig. 1). The indoline fused-ring system is planar (r.m.s. deviation 0.044 Å); the two fused-rings are aligned at 71.44 (3) °.

The reaction of acenaphthracenequinone and L-proline gave acenapthene-2-spiro-5'-perhydrodipyrrolo[1,2-a;2',1'-c]pyrazine-6'-spiro-2''-acenapthene-1,1''-dione, which also crystallizes in a centrosymmetric space group (Sugaleshini et al., 2006).

Related literature top

For background to the class of dispiro compounds, see: Al Mamari et al. (2012). For a related structure, see: Sugaleshini et al. (2006).

Experimental top

A mixture of 1-allyl-indoline-2,3-dione (1 g, 0.005 mol) and proline (0.5 g, 0.004 mole) in ethanol (20 ml) was heated for 2 hours. On completion of the reaction as indicated by TLC, water (50 ml) was added. The precipitate was collected and recrystallized from ethanol to yield colorless crystals.

Refinement top

The aromatic and methylene H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C30H32N4O2 at the 50% probability level. Symmetry-related atoms are not labeled.
1,1''-Bis(prop-2-en-1-yl)-1,1'',2,2''-tetrahydrodispiro[indole-3,7'- [6,9]diazatricyclo[7.3.0.02,6]dodecane-8',3''-indole]-2,2''-dione top
Crystal data top
C30H32N4O2F(000) = 1024
Mr = 480.60Dx = 1.314 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8483 reflections
a = 14.9484 (2) Åθ = 2.5–32.7°
b = 9.9173 (1) ŵ = 0.08 mm1
c = 17.5713 (3) ÅT = 293 K
β = 111.119 (1)°Prism, colorless
V = 2429.94 (6) Å30.18 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker APEX DUO
diffractometer
2797 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1119
Tmin = 0.985, Tmax = 0.988k = 1212
13297 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0678P)2 + 1.2982P]
where P = (Fo2 + 2Fc2)/3
2797 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C30H32N4O2V = 2429.94 (6) Å3
Mr = 480.60Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.9484 (2) ŵ = 0.08 mm1
b = 9.9173 (1) ÅT = 293 K
c = 17.5713 (3) Å0.18 × 0.16 × 0.14 mm
β = 111.119 (1)°
Data collection top
Bruker APEX DUO
diffractometer
2797 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2441 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.988Rint = 0.024
13297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
2797 reflectionsΔρmin = 0.18 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43126 (6)0.47958 (9)0.37259 (6)0.0390 (2)
N10.52761 (7)0.66607 (10)0.39788 (6)0.0315 (2)
N20.59105 (6)0.39146 (9)0.30977 (6)0.0285 (2)
C10.49026 (7)0.54901 (11)0.35787 (6)0.0283 (2)
C20.53923 (7)0.51947 (10)0.29458 (6)0.0255 (2)
C30.61013 (7)0.63591 (11)0.31150 (7)0.0272 (2)
C40.68373 (8)0.66113 (12)0.28314 (8)0.0348 (3)
H40.69230.60640.24330.042*
C50.74493 (8)0.76994 (13)0.31530 (9)0.0406 (3)
H50.79370.78910.29580.049*
C60.73379 (9)0.84936 (13)0.37577 (9)0.0409 (3)
H60.77520.92150.39640.049*
C70.66169 (9)0.82346 (12)0.40655 (8)0.0373 (3)
H70.65460.87620.44780.045*
C80.60104 (8)0.71628 (11)0.37335 (7)0.0289 (2)
C90.50268 (10)0.72080 (14)0.46422 (8)0.0419 (3)
H9A0.56110.73500.51100.050*
H9B0.46440.65480.47970.050*
C100.44850 (11)0.85017 (16)0.44444 (10)0.0520 (4)
H100.43410.89030.48650.062*
C110.41912 (12)0.91320 (17)0.37480 (12)0.0618 (4)
H11A0.43160.87750.33070.074*
H11B0.38570.99390.36910.074*
C120.66448 (9)0.37194 (13)0.39119 (7)0.0376 (3)
H12A0.63920.39160.43370.045*
H12B0.72000.42840.39890.045*
C130.68964 (10)0.22205 (14)0.39088 (9)0.0486 (4)
H13A0.74950.21110.38190.058*
H13B0.69590.18040.44250.058*
C140.60698 (9)0.15842 (13)0.32126 (9)0.0424 (3)
H14A0.62750.13180.27700.051*
H14B0.58220.07990.34010.051*
C150.53166 (8)0.26936 (11)0.29411 (7)0.0315 (3)
H150.49250.26900.32840.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0364 (4)0.0421 (5)0.0445 (5)0.0111 (4)0.0218 (4)0.0000 (4)
N10.0325 (5)0.0313 (5)0.0345 (5)0.0039 (4)0.0167 (4)0.0031 (4)
N20.0229 (4)0.0263 (5)0.0318 (5)0.0005 (3)0.0046 (4)0.0013 (4)
C10.0253 (5)0.0298 (5)0.0297 (5)0.0008 (4)0.0099 (4)0.0028 (4)
C20.0213 (5)0.0263 (5)0.0293 (5)0.0012 (4)0.0095 (4)0.0006 (4)
C30.0222 (5)0.0264 (5)0.0315 (5)0.0012 (4)0.0078 (4)0.0021 (4)
C40.0276 (5)0.0384 (6)0.0411 (6)0.0026 (5)0.0156 (5)0.0004 (5)
C50.0270 (6)0.0423 (7)0.0547 (7)0.0064 (5)0.0173 (5)0.0041 (6)
C60.0289 (6)0.0313 (6)0.0579 (8)0.0081 (5)0.0101 (5)0.0005 (5)
C70.0345 (6)0.0309 (6)0.0443 (7)0.0042 (5)0.0116 (5)0.0060 (5)
C80.0253 (5)0.0271 (5)0.0337 (5)0.0005 (4)0.0099 (4)0.0027 (4)
C90.0484 (7)0.0470 (7)0.0361 (6)0.0057 (6)0.0223 (6)0.0062 (5)
C100.0529 (8)0.0475 (8)0.0669 (9)0.0053 (6)0.0353 (7)0.0185 (7)
C110.0509 (9)0.0482 (9)0.0854 (12)0.0068 (7)0.0234 (9)0.0022 (8)
C120.0302 (6)0.0380 (6)0.0362 (6)0.0025 (5)0.0017 (5)0.0024 (5)
C130.0389 (7)0.0392 (7)0.0537 (8)0.0078 (5)0.0004 (6)0.0065 (6)
C140.0386 (7)0.0292 (6)0.0515 (7)0.0049 (5)0.0066 (6)0.0061 (5)
C150.0281 (5)0.0261 (5)0.0375 (6)0.0008 (4)0.0085 (5)0.0022 (4)
Geometric parameters (Å, º) top
O1—C11.2178 (13)C7—H70.9300
N1—C11.3677 (15)C9—C101.490 (2)
N1—C81.4070 (14)C9—H9A0.9700
N1—C91.4511 (15)C9—H9B0.9700
N2—C21.4608 (13)C10—C111.301 (3)
N2—C151.4677 (14)C10—H100.9300
N2—C121.4688 (14)C11—H11A0.9300
C1—C21.5637 (14)C11—H11B0.9300
C2—C31.5226 (14)C12—C131.5339 (18)
C2—C2i1.583 (2)C12—H12A0.9700
C3—C41.3843 (15)C12—H12B0.9700
C3—C81.3933 (16)C13—C141.5273 (19)
C4—C51.3958 (17)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.380 (2)C14—C151.5226 (16)
C5—H50.9300C14—H14A0.9700
C6—C71.3929 (18)C14—H14B0.9700
C6—H60.9300C15—C15i1.497 (2)
C7—C81.3824 (16)C15—H150.9800
C1—N1—C8111.22 (9)C10—C9—H9A108.7
C1—N1—C9123.71 (10)N1—C9—H9B108.7
C8—N1—C9124.63 (10)C10—C9—H9B108.7
C2—N2—C15115.95 (8)H9A—C9—H9B107.6
C2—N2—C12116.96 (9)C11—C10—C9127.15 (14)
C15—N2—C12105.26 (9)C11—C10—H10116.4
O1—C1—N1124.30 (10)C9—C10—H10116.4
O1—C1—C2127.27 (10)C10—C11—H11A120.0
N1—C1—C2108.39 (9)C10—C11—H11B120.0
N2—C2—C3109.72 (8)H11A—C11—H11B120.0
N2—C2—C1112.72 (8)N2—C12—C13102.86 (10)
C3—C2—C1100.98 (8)N2—C12—H12A111.2
N2—C2—C2i109.62 (6)C13—C12—H12A111.2
C3—C2—C2i114.12 (7)N2—C12—H12B111.2
C1—C2—C2i109.52 (9)C13—C12—H12B111.2
C4—C3—C8119.41 (10)H12A—C12—H12B109.1
C4—C3—C2130.87 (10)C14—C13—C12105.93 (10)
C8—C3—C2109.23 (9)C14—C13—H13A110.5
C3—C4—C5118.94 (11)C12—C13—H13A110.5
C3—C4—H4120.5C14—C13—H13B110.5
C5—C4—H4120.5C12—C13—H13B110.5
C6—C5—C4120.64 (11)H13A—C13—H13B108.7
C6—C5—H5119.7C15—C14—C13104.24 (10)
C4—C5—H5119.7C15—C14—H14A110.9
C5—C6—C7121.24 (11)C13—C14—H14A110.9
C5—C6—H6119.4C15—C14—H14B110.9
C7—C6—H6119.4C13—C14—H14B110.9
C8—C7—C6117.35 (12)H14A—C14—H14B108.9
C8—C7—H7121.3N2—C15—C15i107.95 (8)
C6—C7—H7121.3N2—C15—C14102.03 (9)
C7—C8—C3122.38 (11)C15i—C15—C14116.41 (10)
C7—C8—N1127.46 (11)N2—C15—H15110.0
C3—C8—N1110.04 (9)C15i—C15—H15110.0
N1—C9—C10114.21 (11)C14—C15—H15110.0
N1—C9—H9A108.7
C8—N1—C1—O1173.93 (11)C4—C5—C6—C70.1 (2)
C9—N1—C1—O11.24 (18)C5—C6—C7—C80.85 (19)
C8—N1—C1—C23.80 (12)C6—C7—C8—C30.04 (18)
C9—N1—C1—C2176.49 (10)C6—C7—C8—N1175.65 (11)
C15—N2—C2—C3178.61 (9)C4—C3—C8—C71.66 (17)
C12—N2—C2—C356.22 (12)C2—C3—C8—C7174.50 (10)
C15—N2—C2—C169.71 (11)C4—C3—C8—N1174.70 (10)
C12—N2—C2—C155.46 (12)C2—C3—C8—N11.86 (12)
C15—N2—C2—C2i52.56 (13)C1—N1—C8—C7172.47 (11)
C12—N2—C2—C2i177.72 (10)C9—N1—C8—C70.14 (19)
O1—C1—C2—N258.18 (14)C1—N1—C8—C33.66 (13)
N1—C1—C2—N2119.46 (10)C9—N1—C8—C3176.27 (11)
O1—C1—C2—C3175.17 (11)C1—N1—C9—C10113.01 (14)
N1—C1—C2—C32.47 (11)C8—N1—C9—C1075.28 (15)
O1—C1—C2—C2i64.14 (12)N1—C9—C10—C113.0 (2)
N1—C1—C2—C2i118.22 (7)C2—N2—C12—C13169.82 (10)
N2—C2—C3—C452.23 (15)C15—N2—C12—C1339.45 (12)
C1—C2—C3—C4171.40 (11)N2—C12—C13—C1417.94 (15)
C2i—C2—C3—C471.23 (15)C12—C13—C14—C158.73 (15)
N2—C2—C3—C8119.51 (10)C2—N2—C15—C15i60.60 (14)
C1—C2—C3—C80.34 (11)C12—N2—C15—C15i168.44 (11)
C2i—C2—C3—C8117.03 (11)C2—N2—C15—C14176.24 (10)
C8—C3—C4—C52.36 (17)C12—N2—C15—C1445.28 (12)
C2—C3—C4—C5173.40 (11)C13—C14—C15—N232.17 (13)
C3—C4—C5—C61.51 (19)C13—C14—C15—C15i149.40 (12)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC30H32N4O2
Mr480.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.9484 (2), 9.9173 (1), 17.5713 (3)
β (°) 111.119 (1)
V3)2429.94 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerBruker APEX DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13297, 2797, 2441
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.00
No. of reflections2797
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Mohammed V-Agdal, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAl Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012). Tetrahedron Lett. 53, 2328–2331.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugaleshini, S., Gayathri, D., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2006). Acta Cryst. E62, o2432–o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds