organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′′-Di­bromo-1,1′′-bis­­(prop-2-en-1-yl)-1,1′′,2,2′′-tetra­hydro­di­spiro­[indole-3,7′-[6,9]di­aza­tri­cyclo­[7.3.0.02,6]do­decane-8′,3′′-indole]-2,2′′-dione

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V–Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bInstitute of Nanomaterials and Nanotechnology MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 April 2012; accepted 29 April 2012; online 5 May 2012)

In the mol­ecule of the title compound, C30H30Br2N4O2, the piperazine ring adopts a chair conformation. The pyrrolidine rings that are fused to the piperazine ring adopt envelope conformations (in which the N atom represents the flap). The indoline fused-ring systems are nearly planar (r.m.s. deviations = 0.009 and 0.019 Å); the two fused rings are aligned at 60.63 (6)°.

Related literature

For background to the class of dispiro compounds, see: Al Mamari et al. (2012a[Al Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012a). Tetrahedron Lett. 53, 2328-2331.]). For a related structure, see: Al Mamari et al. (2012b[Al Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012b). Acta Cryst. E68, o1637.]).

[Scheme 1]

Experimental

Crystal data
  • C30H30Br2N4O2

  • Mr = 638.40

  • Monoclinic, P 21 /c

  • a = 14.1658 (3) Å

  • b = 9.7203 (2) Å

  • c = 20.6677 (3) Å

  • β = 100.037 (1)°

  • V = 2802.30 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker APEX DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.474, Tmax = 0.517

  • 31592 measured reflections

  • 6671 independent reflections

  • 4152 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 0.96

  • 6671 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We reported the the 1,3-dipolar cycloaddition of 1-allyl-5-haloisatin derivatives as dipolarophiles with the azomethine ylides generated in situ from N-allylisatin and L-proline to yield dispiro-oxindoles (Al Mamari et al., 2012a). Although one of the reactants is optically active, the product, C30H30Br2N4O2, crystallizes in a centrosymmetric space group, as does the bromo analog (Scheme I). However, the bromo analog is not isostructural; the two compounds have different cell dimensions. The piperazine ring adopts a chair conformation. The pyrrolidine rings that are fused to the piperazine ring adopt envelope conformations (in which the N atom represents the flap) (Fig. 1). The indoline fused-ring systems are nearly planar (r.m.s. deviation 0.009, 0.019 Å); the two fused-rings are aligned at 60.63 (6) °.

Related literature top

For background to the class of dispiro compounds, see: Al Mamari et al. (2012a). For a related structure, see: Al Mamari et al. (2012b).

Experimental top

A mixture of 1-allyl–5-bromo-indoline-2,3-dione (1 g, 0.005 mol) and proline (0.5 g, 0.004 mole) in ethanol (20 ml) was heated for 2 hours. On completion of the reaction as indicated by TLC, water (50 ml) was added. The precipitate was collected and recrystallized from ethanol to yield colorless crystals.

Refinement top

The aromatic and methylene H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The (0 0 2) and (0 1 1) reflections were omitted owing to bad disagreement.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C30H30Br2N4O2 at the 50% probability level.
5,5''-Dibromo-1,1''-bis(prop-2-en-1-yl)-1,1'',2,2''-tetrahydrodispiro[indole- 3,7'-[6,9]diazatricyclo[7.3.0.02,6]dodecane-8',3''-indole]-2,2''-dione top
Crystal data top
C30H30Br2N4O2F(000) = 1296
Mr = 638.40Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8234 reflections
a = 14.1658 (3) Åθ = 2.3–24.1°
b = 9.7203 (2) ŵ = 2.93 mm1
c = 20.6677 (3) ÅT = 293 K
β = 100.037 (1)°Prism, colorless
V = 2802.30 (9) Å30.30 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker APEX DUO
diffractometer
6671 independent reflections
Radiation source: fine-focus sealed tube4152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.474, Tmax = 0.517k = 912
31592 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.2207P]
where P = (Fo2 + 2Fc2)/3
6671 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C30H30Br2N4O2V = 2802.30 (9) Å3
Mr = 638.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1658 (3) ŵ = 2.93 mm1
b = 9.7203 (2) ÅT = 293 K
c = 20.6677 (3) Å0.30 × 0.28 × 0.26 mm
β = 100.037 (1)°
Data collection top
Bruker APEX DUO
diffractometer
6671 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4152 reflections with I > 2σ(I)
Tmin = 0.474, Tmax = 0.517Rint = 0.050
31592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.96Δρmax = 0.54 e Å3
6671 reflectionsΔρmin = 0.61 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58304 (2)0.77248 (4)0.418209 (16)0.06146 (13)
Br20.21952 (4)0.00640 (4)0.46489 (2)0.09482 (18)
O10.07667 (13)0.4625 (2)0.35513 (9)0.0494 (5)
O20.36870 (13)0.5244 (2)0.22067 (9)0.0453 (5)
C10.29680 (18)0.5642 (3)0.44015 (12)0.0359 (6)
C20.3608 (2)0.5972 (3)0.49586 (13)0.0512 (8)
H20.34680.57960.53740.061*
C30.4470 (2)0.6575 (3)0.48829 (14)0.0504 (7)
H30.49230.67970.52500.061*
C40.46540 (18)0.6846 (3)0.42628 (13)0.0411 (6)
C50.40107 (17)0.6518 (3)0.37021 (12)0.0340 (6)
H50.41450.67190.32880.041*
C60.31608 (16)0.5884 (2)0.37742 (11)0.0301 (5)
C70.23255 (17)0.5410 (3)0.32613 (12)0.0308 (5)
C80.15937 (18)0.4978 (3)0.37166 (13)0.0351 (6)
C90.1613 (2)0.4637 (3)0.49103 (14)0.0476 (7)
H9A0.21060.42210.52360.057*
H9B0.11420.39310.47590.057*
C100.1140 (2)0.5741 (4)0.52322 (14)0.0525 (8)
H100.09300.55130.56210.063*
C110.0991 (3)0.6987 (4)0.50244 (18)0.0718 (10)
H11A0.11880.72630.46380.086*
H11B0.06870.76100.52610.086*
C120.1692 (2)0.7781 (3)0.30457 (15)0.0487 (7)
H12A0.22500.83090.32430.058*
H12B0.12810.76400.33700.058*
C130.1150 (3)0.8498 (4)0.24315 (16)0.0647 (9)
H13A0.05560.88920.25200.078*
H13B0.15370.92290.22940.078*
C140.0943 (2)0.7407 (3)0.19024 (16)0.0561 (8)
H14A0.13490.75280.15740.067*
H14B0.02770.74380.16890.067*
C150.11682 (18)0.6059 (3)0.22698 (13)0.0401 (6)
H150.06200.57740.24680.048*
C160.14914 (19)0.4891 (3)0.18941 (13)0.0407 (6)
H160.20290.51890.16870.049*
C170.0744 (2)0.4164 (4)0.13854 (15)0.0578 (8)
H17A0.01150.42090.15090.069*
H17B0.07120.45780.09550.069*
C180.1094 (3)0.2683 (4)0.13855 (19)0.0803 (12)
H18A0.05860.20520.14460.096*
H18B0.12980.24690.09730.096*
C190.1929 (2)0.2564 (3)0.19506 (16)0.0566 (8)
H19A0.18970.17140.21920.068*
H19B0.25370.26030.17950.068*
C200.35499 (18)0.4387 (3)0.26056 (13)0.0356 (6)
C210.26015 (17)0.4105 (2)0.28799 (12)0.0339 (6)
C220.29012 (19)0.2894 (3)0.33298 (13)0.0398 (6)
C230.2387 (2)0.2126 (3)0.37111 (15)0.0494 (7)
H230.17460.23150.37210.059*
C240.2863 (3)0.1059 (3)0.40796 (15)0.0590 (9)
C250.3796 (3)0.0721 (3)0.40497 (17)0.0662 (10)
H250.40860.00100.42980.079*
C260.4307 (2)0.1456 (3)0.36554 (16)0.0586 (8)
H260.49360.12260.36270.070*
C270.3849 (2)0.2546 (3)0.33049 (14)0.0428 (7)
C280.5159 (2)0.3350 (4)0.26852 (15)0.0544 (8)
H28A0.51080.36520.22330.065*
H28B0.53630.23960.27060.065*
C290.5904 (2)0.4189 (5)0.31056 (19)0.0817 (12)
H290.57190.50610.32200.098*
C300.6727 (3)0.3861 (7)0.3315 (2)0.133 (2)
H30A0.69500.30010.32150.159*
H30B0.71350.44700.35750.159*
N10.20466 (15)0.5078 (2)0.43570 (11)0.0387 (5)
N20.19727 (14)0.6467 (2)0.27880 (10)0.0334 (5)
N30.18063 (14)0.3764 (2)0.23592 (10)0.0381 (5)
N40.42146 (16)0.3437 (2)0.28745 (11)0.0430 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03869 (17)0.0799 (3)0.0637 (2)0.02284 (15)0.00310 (14)0.00209 (17)
Br20.1388 (4)0.0657 (3)0.0792 (3)0.0361 (2)0.0167 (3)0.0224 (2)
O10.0349 (10)0.0619 (13)0.0521 (12)0.0160 (9)0.0098 (9)0.0044 (10)
O20.0421 (11)0.0487 (12)0.0479 (11)0.0025 (9)0.0156 (9)0.0003 (10)
C10.0338 (13)0.0370 (15)0.0373 (14)0.0030 (11)0.0075 (11)0.0020 (12)
C20.0512 (17)0.070 (2)0.0319 (14)0.0084 (15)0.0054 (13)0.0032 (14)
C30.0422 (16)0.067 (2)0.0381 (15)0.0104 (15)0.0034 (12)0.0031 (14)
C40.0318 (13)0.0437 (16)0.0468 (16)0.0067 (12)0.0044 (12)0.0001 (13)
C50.0330 (13)0.0355 (14)0.0345 (13)0.0044 (11)0.0087 (11)0.0004 (11)
C60.0302 (12)0.0298 (13)0.0301 (12)0.0003 (10)0.0048 (10)0.0022 (10)
C70.0290 (12)0.0313 (13)0.0330 (13)0.0028 (10)0.0079 (10)0.0017 (11)
C80.0348 (14)0.0328 (14)0.0395 (14)0.0021 (11)0.0113 (11)0.0021 (11)
C90.0464 (16)0.0577 (19)0.0410 (15)0.0092 (14)0.0146 (13)0.0076 (14)
C100.0531 (18)0.067 (2)0.0412 (16)0.0120 (16)0.0201 (14)0.0020 (16)
C110.087 (3)0.069 (3)0.067 (2)0.007 (2)0.037 (2)0.013 (2)
C120.0523 (17)0.0370 (16)0.0568 (18)0.0086 (13)0.0093 (14)0.0029 (14)
C130.081 (2)0.053 (2)0.062 (2)0.0252 (18)0.0178 (18)0.0126 (17)
C140.0487 (17)0.062 (2)0.0545 (17)0.0136 (15)0.0004 (14)0.0120 (16)
C150.0307 (13)0.0494 (17)0.0388 (14)0.0001 (12)0.0020 (11)0.0009 (13)
C160.0347 (14)0.0507 (17)0.0364 (14)0.0047 (12)0.0057 (11)0.0035 (13)
C170.0502 (18)0.080 (2)0.0410 (16)0.0097 (17)0.0022 (13)0.0119 (16)
C180.082 (3)0.084 (3)0.070 (2)0.011 (2)0.003 (2)0.039 (2)
C190.062 (2)0.0503 (19)0.0578 (19)0.0069 (15)0.0118 (16)0.0219 (15)
C200.0343 (14)0.0347 (15)0.0384 (14)0.0005 (12)0.0076 (11)0.0086 (12)
C210.0325 (13)0.0300 (14)0.0396 (14)0.0025 (11)0.0071 (11)0.0034 (11)
C220.0470 (15)0.0289 (14)0.0437 (15)0.0013 (12)0.0082 (12)0.0053 (12)
C230.0611 (19)0.0333 (16)0.0532 (17)0.0076 (14)0.0086 (15)0.0010 (14)
C240.088 (3)0.0355 (17)0.0518 (18)0.0125 (17)0.0087 (17)0.0008 (14)
C250.098 (3)0.0369 (19)0.058 (2)0.0124 (18)0.002 (2)0.0019 (16)
C260.067 (2)0.0466 (19)0.0586 (19)0.0157 (16)0.0003 (16)0.0007 (16)
C270.0491 (16)0.0332 (15)0.0447 (15)0.0044 (12)0.0040 (13)0.0086 (12)
C280.0423 (16)0.071 (2)0.0512 (17)0.0166 (15)0.0115 (14)0.0123 (16)
C290.043 (2)0.123 (4)0.081 (3)0.004 (2)0.0170 (18)0.035 (2)
C300.058 (3)0.243 (7)0.099 (3)0.011 (4)0.018 (2)0.057 (4)
N10.0345 (12)0.0471 (14)0.0368 (12)0.0066 (10)0.0124 (9)0.0015 (10)
N20.0336 (11)0.0312 (12)0.0352 (11)0.0019 (9)0.0049 (9)0.0003 (9)
N30.0362 (12)0.0382 (13)0.0394 (12)0.0048 (10)0.0049 (10)0.0095 (10)
N40.0379 (12)0.0431 (14)0.0490 (13)0.0069 (11)0.0106 (10)0.0055 (11)
Geometric parameters (Å, º) top
Br1—C41.906 (3)C15—N21.476 (3)
Br2—C241.898 (3)C15—C161.492 (4)
O1—C81.212 (3)C15—H150.9800
O2—C201.211 (3)C16—N31.474 (3)
C1—C21.374 (4)C16—C171.528 (4)
C1—C61.391 (3)C16—H160.9800
C1—N11.404 (3)C17—C181.523 (5)
C2—C31.388 (4)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.377 (4)C18—C191.515 (5)
C3—H30.9300C18—H18A0.9700
C4—C51.381 (3)C18—H18B0.9700
C5—C61.384 (3)C19—N31.468 (3)
C5—H50.9300C19—H19A0.9700
C6—C71.516 (3)C19—H19B0.9700
C7—N21.446 (3)C20—N41.365 (3)
C7—C81.574 (3)C20—C211.571 (3)
C7—C211.578 (3)C21—N31.454 (3)
C8—N11.370 (3)C21—C221.514 (4)
C9—N11.454 (3)C22—C231.382 (4)
C9—C101.482 (4)C22—C271.394 (4)
C9—H9A0.9700C23—C241.390 (4)
C9—H9B0.9700C23—H230.9300
C10—C111.291 (5)C24—C251.373 (5)
C10—H100.9300C25—C261.380 (5)
C11—H11A0.9300C25—H250.9300
C11—H11B0.9300C26—C271.380 (4)
C12—N21.466 (3)C26—H260.9300
C12—C131.532 (4)C27—N41.404 (4)
C12—H12A0.9700C28—N41.461 (3)
C12—H12B0.9700C28—C291.488 (5)
C13—C141.515 (5)C28—H28A0.9700
C13—H13A0.9700C28—H28B0.9700
C13—H13B0.9700C29—C301.214 (6)
C14—C151.520 (4)C29—H290.9300
C14—H14A0.9700C30—H30A0.9300
C14—H14B0.9700C30—H30B0.9300
C2—C1—C6122.3 (2)C18—C17—C16104.5 (3)
C2—C1—N1128.0 (2)C18—C17—H17A110.8
C6—C1—N1109.7 (2)C16—C17—H17A110.8
C1—C2—C3118.0 (3)C18—C17—H17B110.8
C1—C2—H2121.0C16—C17—H17B110.8
C3—C2—H2121.0H17A—C17—H17B108.9
C4—C3—C2119.9 (3)C19—C18—C17106.4 (3)
C4—C3—H3120.1C19—C18—H18A110.4
C2—C3—H3120.1C17—C18—H18A110.4
C3—C4—C5122.2 (2)C19—C18—H18B110.4
C3—C4—Br1118.5 (2)C17—C18—H18B110.4
C5—C4—Br1119.3 (2)H18A—C18—H18B108.6
C4—C5—C6118.1 (2)N3—C19—C18103.2 (3)
C4—C5—H5120.9N3—C19—H19A111.1
C6—C5—H5120.9C18—C19—H19A111.1
C5—C6—C1119.5 (2)N3—C19—H19B111.1
C5—C6—C7130.4 (2)C18—C19—H19B111.1
C1—C6—C7110.1 (2)H19A—C19—H19B109.1
N2—C7—C6113.1 (2)O2—C20—N4124.1 (2)
N2—C7—C8114.1 (2)O2—C20—C21127.9 (2)
C6—C7—C8100.27 (19)N4—C20—C21107.9 (2)
N2—C7—C21108.64 (19)N3—C21—C22112.1 (2)
C6—C7—C21111.26 (19)N3—C21—C20111.9 (2)
C8—C7—C21109.31 (19)C22—C21—C20101.0 (2)
O1—C8—N1124.0 (2)N3—C21—C7108.97 (19)
O1—C8—C7127.8 (2)C22—C21—C7112.7 (2)
N1—C8—C7108.2 (2)C20—C21—C7109.99 (19)
N1—C9—C10115.2 (3)C23—C22—C27119.8 (3)
N1—C9—H9A108.5C23—C22—C21130.6 (3)
C10—C9—H9A108.5C27—C22—C21109.5 (2)
N1—C9—H9B108.5C22—C23—C24117.5 (3)
C10—C9—H9B108.5C22—C23—H23121.3
H9A—C9—H9B107.5C24—C23—H23121.3
C11—C10—C9126.2 (3)C25—C24—C23122.2 (3)
C11—C10—H10116.9C25—C24—Br2119.6 (3)
C9—C10—H10116.9C23—C24—Br2118.2 (3)
C10—C11—H11A120.0C24—C25—C26120.7 (3)
C10—C11—H11B120.0C24—C25—H25119.6
H11A—C11—H11B120.0C26—C25—H25119.6
N2—C12—C13102.9 (2)C25—C26—C27117.4 (3)
N2—C12—H12A111.2C25—C26—H26121.3
C13—C12—H12A111.2C27—C26—H26121.3
N2—C12—H12B111.2C26—C27—C22122.4 (3)
C13—C12—H12B111.2C26—C27—N4127.9 (3)
H12A—C12—H12B109.1C22—C27—N4109.7 (2)
C14—C13—C12106.6 (2)N4—C28—C29113.7 (2)
C14—C13—H13A110.4N4—C28—H28A108.8
C12—C13—H13A110.4C29—C28—H28A108.8
C14—C13—H13B110.4N4—C28—H28B108.8
C12—C13—H13B110.4C29—C28—H28B108.8
H13A—C13—H13B108.6H28A—C28—H28B107.7
C13—C14—C15104.2 (2)C30—C29—C28127.1 (5)
C13—C14—H14A110.9C30—C29—H29116.4
C15—C14—H14A110.9C28—C29—H29116.4
C13—C14—H14B110.9C29—C30—H30A120.0
C15—C14—H14B110.9C29—C30—H30B120.0
H14A—C14—H14B108.9H30A—C30—H30B120.0
N2—C15—C16108.3 (2)C8—N1—C1111.4 (2)
N2—C15—C14101.5 (2)C8—N1—C9123.2 (2)
C16—C15—C14116.9 (2)C1—N1—C9125.4 (2)
N2—C15—H15109.9C7—N2—C12117.2 (2)
C16—C15—H15109.9C7—N2—C15115.6 (2)
C14—C15—H15109.9C12—N2—C15105.9 (2)
N3—C16—C15108.1 (2)C21—N3—C19116.9 (2)
N3—C16—C17101.5 (2)C21—N3—C16114.9 (2)
C15—C16—C17118.1 (2)C19—N3—C16105.5 (2)
N3—C16—H16109.5C20—N4—C27111.7 (2)
C15—C16—H16109.5C20—N4—C28122.0 (2)
C17—C16—H16109.5C27—N4—C28126.2 (2)
C6—C1—C2—C30.4 (4)C27—C22—C23—C242.7 (4)
N1—C1—C2—C3177.4 (3)C21—C22—C23—C24179.9 (3)
C1—C2—C3—C41.1 (5)C22—C23—C24—C253.0 (5)
C2—C3—C4—C51.0 (5)C22—C23—C24—Br2176.1 (2)
C2—C3—C4—Br1178.2 (2)C23—C24—C25—C261.2 (5)
C3—C4—C5—C60.7 (4)Br2—C24—C25—C26178.0 (2)
Br1—C4—C5—C6179.82 (19)C24—C25—C26—C271.0 (5)
C4—C5—C6—C12.2 (4)C25—C26—C27—C221.2 (4)
C4—C5—C6—C7179.8 (2)C25—C26—C27—N4179.9 (3)
C2—C1—C6—C52.1 (4)C23—C22—C27—C260.6 (4)
N1—C1—C6—C5176.1 (2)C21—C22—C27—C26178.5 (3)
C2—C1—C6—C7179.8 (3)C23—C22—C27—N4178.3 (2)
N1—C1—C6—C72.0 (3)C21—C22—C27—N40.4 (3)
C5—C6—C7—N251.2 (3)N4—C28—C29—C30138.3 (5)
C1—C6—C7—N2126.6 (2)O1—C8—N1—C1174.0 (2)
C5—C6—C7—C8173.1 (3)C7—C8—N1—C15.4 (3)
C1—C6—C7—C84.7 (3)O1—C8—N1—C96.4 (4)
C5—C6—C7—C2171.4 (3)C7—C8—N1—C9174.2 (2)
C1—C6—C7—C21110.8 (2)C2—C1—N1—C8175.8 (3)
N2—C7—C8—O152.2 (3)C6—C1—N1—C82.3 (3)
C6—C7—C8—O1173.4 (3)C2—C1—N1—C94.6 (4)
C21—C7—C8—O169.6 (3)C6—C1—N1—C9177.3 (2)
N2—C7—C8—N1127.2 (2)C10—C9—N1—C896.0 (3)
C6—C7—C8—N16.0 (3)C10—C9—N1—C184.5 (3)
C21—C7—C8—N1111.0 (2)C6—C7—N2—C1254.9 (3)
N1—C9—C10—C118.1 (5)C8—C7—N2—C1258.9 (3)
N2—C12—C13—C1414.0 (3)C21—C7—N2—C12178.9 (2)
C12—C13—C14—C1512.4 (3)C6—C7—N2—C15179.1 (2)
C13—C14—C15—N233.9 (3)C8—C7—N2—C1567.1 (3)
C13—C14—C15—C16151.5 (3)C21—C7—N2—C1555.1 (2)
N2—C15—C16—N357.9 (3)C13—C12—N2—C7167.2 (2)
C14—C15—C16—N3171.7 (2)C13—C12—N2—C1536.6 (3)
N2—C15—C16—C17172.4 (2)C16—C15—N2—C760.2 (3)
C14—C15—C16—C1773.9 (3)C14—C15—N2—C7176.2 (2)
N3—C16—C17—C1830.9 (3)C16—C15—N2—C12168.2 (2)
C15—C16—C17—C18148.9 (3)C14—C15—N2—C1244.6 (3)
C16—C17—C18—C197.9 (4)C22—C21—N3—C1954.2 (3)
C17—C18—C19—N318.3 (4)C20—C21—N3—C1958.5 (3)
O2—C20—C21—N358.6 (3)C7—C21—N3—C19179.6 (2)
N4—C20—C21—N3118.6 (2)C22—C21—N3—C16178.7 (2)
O2—C20—C21—C22178.0 (3)C20—C21—N3—C1666.0 (3)
N4—C20—C21—C220.8 (2)C7—C21—N3—C1655.9 (3)
O2—C20—C21—C762.7 (3)C18—C19—N3—C21168.3 (3)
N4—C20—C21—C7120.1 (2)C18—C19—N3—C1639.2 (3)
N2—C7—C21—N350.1 (2)C15—C16—N3—C2160.8 (3)
C6—C7—C21—N3175.23 (19)C17—C16—N3—C21174.3 (2)
C8—C7—C21—N375.0 (2)C15—C16—N3—C19169.0 (2)
N2—C7—C21—C22175.15 (19)C17—C16—N3—C1944.0 (3)
C6—C7—C21—C2259.7 (3)O2—C20—N4—C27178.0 (2)
C8—C7—C21—C2250.1 (3)C21—C20—N4—C270.6 (3)
N2—C7—C21—C2073.0 (2)O2—C20—N4—C281.8 (4)
C6—C7—C21—C2052.2 (3)C21—C20—N4—C28175.6 (2)
C8—C7—C21—C20162.0 (2)C26—C27—N4—C20179.0 (3)
N3—C21—C22—C2359.0 (4)C22—C27—N4—C200.2 (3)
C20—C21—C22—C23178.3 (3)C26—C27—N4—C283.0 (4)
C7—C21—C22—C2364.4 (4)C22—C27—N4—C28175.8 (2)
N3—C21—C22—C27118.6 (2)C29—C28—N4—C2091.7 (4)
C20—C21—C22—C270.7 (3)C29—C28—N4—C2792.6 (4)
C7—C21—C22—C27118.0 (2)

Experimental details

Crystal data
Chemical formulaC30H30Br2N4O2
Mr638.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.1658 (3), 9.7203 (2), 20.6677 (3)
β (°) 100.037 (1)
V3)2802.30 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker APEX DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.474, 0.517
No. of measured, independent and
observed [I > 2σ(I)] reflections
31592, 6671, 4152
Rint0.050
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 0.96
No. of reflections6671
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.61

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Mohammed V-Agdal, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAl Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012b). Acta Cryst. E68, o1637.  CSD CrossRef IUCr Journals Google Scholar
First citationAl Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012a). Tetrahedron Lett. 53, 2328–2331.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds