metal-organic compounds
Chlorido{μ-2,6-bis[(2-aminoethyl)iminomethyl]-4-chlorophenolato}-μ-oxido-dicopper(II) trihydrate
aKey Laboratory for Green Chemical Processes of the Ministry of Education, Wuhan Institute of Technology, 430073 Wuhan, People's Republic of China, bInstitute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, People's Republic of China, and cCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: hzhouh@126.com
In the title dinuclear complex, [Cu2(C14H20ClN4O)ClO]·3H2O, one CuII cation assumes a distorted square-planar coordination geometry and the other a distorted square-pyramidal coordination geometry. Both CuII cations are N,N′,O-chelated by one arm of the 2,6-bis[(2-aminoethyl)iminomethyl]-4-chlorophenolate anion, and one oxide anion bridges the two CuII cations, forming a dinuclear complex. One of the CuII cations is further coordinated by an Cl− anion in the apical direction. In the water molecules are linked with the complex molecule via O—H⋯Cl hydrogen bonds while O—H⋯O hydrogen bonding occurs between lattice water molecules , forming three-dimensional network structure.
Related literature
For the synthesis, see: Gagne et al. (1981). For a related oxygen anion-bridging complex, see: Olmstead et al. (2011). For the biological activity of see: Raman et al. (2007); Hao et al. (2006). For the biological properties of binuclear complexes, see: Tian et al. (2007); Anbu et al. (2009). Several proteins in vivo contain transition metal atoms, especially, CuII, see: Dede et al. (2009); Veysel et al. (2003); Asokan et al. (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681202301X/xu5529sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681202301X/xu5529Isup2.hkl
2,6-Diformyl-4-chlorophenol was prepared according to the literature methods (Gagne et al., 1981). 2,6-Diformyl-4-chlorophenol (0.25 mmol, 0.046 g) in absolute methanol (10 ml) was added to a methanol solution (10 ml) containing 1,3-propanediamine (0.5 mmol, 0.037 g). The solution was stirred vigorously for 2 h at room temperature. Afterwards, a methanol solution (10 ml) of CuCl2.2H2O (0.5 mmol, 0.085 g) was added dropwise, the mixture was stirred for a further 6 h at ambient temperature. The dark-green block-shaped crystals suitable for X-ray structure analysis were obtained by evaporating the methanol solution of the complex over a period of one month.
H atoms were placed in calculated positions with 0.93–0.97 Å and O—H = 0.85 Å, and included in the
in the riding-model approximation, with U(H)=1.2–1.5Ueq(C,O).Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of (I), showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity. |
[Cu2(C14H20ClN4O)ClO]·3H2O | F(000) = 1080 |
Mr = 528.37 | Dx = 1.515 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4001 reflections |
a = 11.201 (5) Å | θ = 2.4–26.6° |
b = 12.387 (7) Å | µ = 2.10 mm−1 |
c = 16.718 (7) Å | T = 291 K |
β = 93.18 (4)° | Block, green |
V = 2316.0 (19) Å3 | 0.30 × 0.26 × 0.24 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 4087 independent reflections |
Radiation source: sealed tube | 3286 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
phi and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −13→13 |
Tmin = 0.572, Tmax = 0.633 | k = −14→11 |
12029 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.080P)2 + 12.660P] where P = (Fo2 + 2Fc2)/3 |
4087 reflections | (Δ/σ)max = 0.076 |
244 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.94 e Å−3 |
[Cu2(C14H20ClN4O)ClO]·3H2O | V = 2316.0 (19) Å3 |
Mr = 528.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.201 (5) Å | µ = 2.10 mm−1 |
b = 12.387 (7) Å | T = 291 K |
c = 16.718 (7) Å | 0.30 × 0.26 × 0.24 mm |
β = 93.18 (4)° |
Bruker SMART APEX CCD diffractometer | 4087 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 3286 reflections with I > 2σ(I) |
Tmin = 0.572, Tmax = 0.633 | Rint = 0.024 |
12029 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.080P)2 + 12.660P] where P = (Fo2 + 2Fc2)/3 |
4087 reflections | Δρmax = 0.65 e Å−3 |
244 parameters | Δρmin = −0.94 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29197 (15) | 0.09726 (13) | 0.30847 (10) | 0.0409 (4) | |
Cl2 | 0.31005 (15) | 0.62287 (14) | 0.44102 (10) | 0.0435 (4) | |
Cu1 | 0.43928 (7) | 0.66390 (6) | 0.32886 (5) | 0.0360 (2) | |
Cu2 | 0.22384 (7) | 0.67193 (6) | 0.21370 (5) | 0.0360 (2) | |
C1 | 0.6375 (6) | 0.7673 (6) | 0.4411 (4) | 0.0388 (15) | |
H1A | 0.6233 | 0.8117 | 0.4874 | 0.047* | |
H1B | 0.7089 | 0.7953 | 0.4180 | 0.047* | |
C2 | 0.6665 (7) | 0.6538 (6) | 0.4715 (4) | 0.0451 (17) | |
H2A | 0.6055 | 0.6302 | 0.5066 | 0.054* | |
H2B | 0.7427 | 0.6541 | 0.5020 | 0.054* | |
C3 | 0.6721 (6) | 0.5750 (5) | 0.4003 (4) | 0.0376 (15) | |
H3A | 0.7219 | 0.6064 | 0.3607 | 0.045* | |
H3B | 0.7101 | 0.5086 | 0.4191 | 0.045* | |
C4 | 0.5264 (6) | 0.4435 (6) | 0.3522 (4) | 0.0395 (15) | |
H4 | 0.5824 | 0.3950 | 0.3744 | 0.047* | |
C5 | 0.3361 (6) | 0.4596 (5) | 0.2694 (4) | 0.0360 (15) | |
C6 | 0.4249 (6) | 0.3996 (6) | 0.3141 (4) | 0.0412 (16) | |
C7 | 0.4106 (6) | 0.2905 (6) | 0.3267 (4) | 0.0358 (14) | |
H7 | 0.4677 | 0.2524 | 0.3577 | 0.043* | |
C8 | 0.3091 (7) | 0.2369 (6) | 0.2923 (4) | 0.0460 (17) | |
C9 | 0.2214 (6) | 0.2954 (5) | 0.2455 (4) | 0.0369 (14) | |
H9 | 0.1554 | 0.2602 | 0.2215 | 0.044* | |
C10 | 0.2354 (6) | 0.4051 (5) | 0.2363 (4) | 0.0396 (15) | |
C11 | 0.1424 (6) | 0.4496 (5) | 0.1867 (4) | 0.0409 (16) | |
H11 | 0.0913 | 0.3989 | 0.1621 | 0.049* | |
C12 | 0.0115 (6) | 0.5819 (6) | 0.1123 (5) | 0.0472 (18) | |
H12A | −0.0533 | 0.6059 | 0.1440 | 0.057* | |
H12B | −0.0157 | 0.5176 | 0.0837 | 0.057* | |
C13 | 0.0339 (7) | 0.6702 (6) | 0.0498 (4) | 0.0428 (16) | |
H13A | −0.0303 | 0.6710 | 0.0084 | 0.051* | |
H13B | 0.1087 | 0.6570 | 0.0249 | 0.051* | |
C14 | 0.0392 (6) | 0.7802 (5) | 0.0960 (4) | 0.0376 (15) | |
H14A | 0.0569 | 0.8361 | 0.0578 | 0.045* | |
H14B | −0.0403 | 0.7947 | 0.1136 | 0.045* | |
N1 | 0.5352 (5) | 0.7852 (5) | 0.3811 (3) | 0.0398 (13) | |
H1C | 0.5640 | 0.8243 | 0.3411 | 0.048* | |
H1D | 0.4827 | 0.8279 | 0.4050 | 0.048* | |
N2 | 0.5521 (5) | 0.5481 (5) | 0.3605 (3) | 0.0417 (13) | |
N3 | 0.1152 (5) | 0.5507 (5) | 0.1690 (3) | 0.0405 (13) | |
N4 | 0.1253 (5) | 0.7929 (5) | 0.1670 (3) | 0.0437 (14) | |
H4A | 0.0830 | 0.8191 | 0.2069 | 0.052* | |
H4B | 0.1768 | 0.8452 | 0.1545 | 0.052* | |
O1 | 0.3458 (4) | 0.5674 (4) | 0.2586 (2) | 0.0373 (10) | |
O2 | 0.3320 (4) | 0.7525 (3) | 0.2702 (3) | 0.0360 (10) | |
O1W | 0.2820 (9) | −0.0067 (9) | 0.4419 (7) | 0.144 (4) | |
H1WD | 0.2653 | 0.0494 | 0.4142 | 0.173* | |
H1WC | 0.2692 | 0.0055 | 0.4907 | 0.216* | |
O2W | 0.1297 (9) | 0.4729 (8) | 0.3981 (7) | 0.150 (4) | |
H2WD | 0.1802 | 0.4946 | 0.3656 | 0.180* | |
H2WB | 0.1094 | 0.5253 | 0.4272 | 0.224* | |
O3W | 0.0267 (9) | 0.7040 (8) | 0.3693 (5) | 0.120 (3) | |
H3WD | 0.0988 | 0.6829 | 0.3681 | 0.144* | |
H3WA | −0.0136 | 0.6575 | 0.3937 | 0.181* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0444 (9) | 0.0364 (9) | 0.0429 (9) | −0.0072 (7) | 0.0111 (7) | 0.0118 (7) |
Cl2 | 0.0412 (9) | 0.0478 (10) | 0.0426 (9) | −0.0115 (7) | 0.0131 (7) | 0.0021 (7) |
Cu1 | 0.0350 (4) | 0.0388 (5) | 0.0352 (4) | −0.0085 (3) | 0.0097 (3) | 0.0019 (3) |
Cu2 | 0.0359 (4) | 0.0376 (5) | 0.0352 (4) | 0.0013 (3) | 0.0082 (3) | 0.0003 (3) |
C1 | 0.038 (3) | 0.045 (4) | 0.034 (3) | 0.009 (3) | 0.007 (3) | 0.010 (3) |
C2 | 0.047 (4) | 0.039 (4) | 0.050 (4) | −0.003 (3) | 0.014 (3) | 0.014 (3) |
C3 | 0.046 (4) | 0.036 (3) | 0.033 (3) | −0.005 (3) | 0.015 (3) | 0.016 (3) |
C4 | 0.034 (3) | 0.040 (4) | 0.044 (4) | 0.003 (3) | 0.003 (3) | 0.005 (3) |
C5 | 0.040 (3) | 0.039 (4) | 0.030 (3) | 0.017 (3) | 0.009 (3) | −0.010 (3) |
C6 | 0.038 (4) | 0.042 (4) | 0.044 (4) | 0.012 (3) | 0.012 (3) | −0.006 (3) |
C7 | 0.038 (3) | 0.043 (4) | 0.026 (3) | 0.002 (3) | 0.006 (3) | 0.003 (3) |
C8 | 0.054 (4) | 0.032 (4) | 0.051 (4) | 0.007 (3) | 0.000 (3) | −0.008 (3) |
C9 | 0.039 (4) | 0.038 (3) | 0.035 (3) | −0.007 (3) | 0.006 (3) | −0.001 (3) |
C10 | 0.047 (4) | 0.028 (3) | 0.044 (4) | 0.016 (3) | 0.000 (3) | 0.007 (3) |
C11 | 0.047 (4) | 0.035 (4) | 0.041 (4) | 0.011 (3) | −0.002 (3) | −0.016 (3) |
C12 | 0.038 (4) | 0.031 (4) | 0.073 (5) | 0.002 (3) | −0.003 (3) | −0.008 (3) |
C13 | 0.043 (4) | 0.047 (4) | 0.038 (4) | 0.005 (3) | 0.001 (3) | −0.005 (3) |
C14 | 0.038 (3) | 0.032 (3) | 0.040 (4) | −0.011 (3) | −0.020 (3) | 0.017 (3) |
N1 | 0.036 (3) | 0.040 (3) | 0.044 (3) | 0.009 (2) | 0.008 (2) | −0.015 (3) |
N2 | 0.047 (3) | 0.042 (3) | 0.037 (3) | 0.007 (3) | 0.016 (3) | −0.002 (2) |
N3 | 0.046 (3) | 0.039 (3) | 0.038 (3) | 0.002 (3) | 0.014 (2) | −0.007 (2) |
N4 | 0.044 (3) | 0.045 (3) | 0.040 (3) | −0.020 (3) | −0.014 (3) | 0.010 (3) |
O1 | 0.036 (2) | 0.043 (3) | 0.034 (2) | 0.001 (2) | 0.0127 (19) | −0.0118 (19) |
O2 | 0.036 (2) | 0.032 (2) | 0.041 (2) | −0.0120 (19) | 0.0114 (19) | 0.0163 (19) |
O1W | 0.139 (9) | 0.154 (9) | 0.141 (9) | −0.022 (7) | 0.014 (7) | −0.009 (7) |
O2W | 0.133 (8) | 0.115 (8) | 0.208 (12) | 0.016 (6) | 0.076 (8) | 0.047 (8) |
O3W | 0.123 (7) | 0.119 (7) | 0.118 (7) | −0.016 (6) | 0.000 (6) | 0.015 (6) |
Cl1—C8 | 1.763 (7) | C7—C8 | 1.411 (10) |
Cl2—Cu1 | 2.484 (2) | C7—H7 | 0.9300 |
Cu1—O2 | 1.865 (4) | C8—C9 | 1.420 (10) |
Cu1—O1 | 1.941 (4) | C9—C10 | 1.377 (9) |
Cu1—N2 | 1.965 (6) | C9—H9 | 0.9300 |
Cu1—N1 | 2.017 (6) | C10—C11 | 1.408 (9) |
Cu1—Cu2 | 3.0040 (18) | C11—N3 | 1.319 (9) |
Cu2—O2 | 1.797 (4) | C11—H11 | 0.9300 |
Cu2—N4 | 1.994 (6) | C12—N3 | 1.508 (9) |
Cu2—O1 | 1.997 (5) | C12—C13 | 1.542 (10) |
Cu2—N3 | 2.048 (6) | C12—H12A | 0.9700 |
C1—N1 | 1.498 (8) | C12—H12B | 0.9700 |
C1—C2 | 1.524 (9) | C13—C14 | 1.565 (9) |
C1—H1A | 0.9700 | C13—H13A | 0.9700 |
C1—H1B | 0.9700 | C13—H13B | 0.9700 |
C2—C3 | 1.543 (10) | C14—N4 | 1.496 (7) |
C2—H2A | 0.9700 | C14—H14A | 0.9700 |
C2—H2B | 0.9700 | C14—H14B | 0.9700 |
C3—N2 | 1.503 (9) | N1—H1C | 0.9000 |
C3—H3A | 0.9700 | N1—H1D | 0.9000 |
C3—H3B | 0.9700 | N4—H4A | 0.9000 |
C4—N2 | 1.333 (9) | N4—H4B | 0.9000 |
C4—C6 | 1.384 (10) | O1W—H1WD | 0.8501 |
C4—H4 | 0.9300 | O1W—H1WC | 0.8499 |
C5—O1 | 1.353 (8) | O2W—H2WD | 0.8496 |
C5—C10 | 1.401 (10) | O2W—H2WB | 0.8500 |
C5—C6 | 1.420 (9) | O3W—H3WD | 0.8500 |
C6—C7 | 1.378 (10) | O3W—H3WA | 0.8501 |
O2—Cu1—O1 | 74.6 (2) | C7—C8—C9 | 120.1 (6) |
O2—Cu1—N2 | 163.2 (2) | C7—C8—Cl1 | 119.4 (5) |
O1—Cu1—N2 | 91.8 (2) | C9—C8—Cl1 | 120.5 (5) |
O2—Cu1—N1 | 95.8 (2) | C10—C9—C8 | 119.0 (6) |
O1—Cu1—N1 | 167.6 (2) | C10—C9—H9 | 120.5 |
N2—Cu1—N1 | 96.2 (2) | C8—C9—H9 | 120.5 |
O2—Cu1—Cl2 | 97.57 (13) | C9—C10—C5 | 121.7 (6) |
O1—Cu1—Cl2 | 90.79 (13) | C9—C10—C11 | 111.5 (6) |
N2—Cu1—Cl2 | 92.30 (16) | C5—C10—C11 | 126.7 (6) |
N1—Cu1—Cl2 | 98.30 (17) | N3—C11—C10 | 131.2 (7) |
O2—Cu1—Cu2 | 34.16 (13) | N3—C11—H11 | 114.4 |
O1—Cu1—Cu2 | 41.00 (14) | C10—C11—H11 | 114.4 |
N2—Cu1—Cu2 | 132.74 (18) | N3—C12—C13 | 117.3 (6) |
N1—Cu1—Cu2 | 129.95 (17) | N3—C12—H12A | 108.0 |
Cl2—Cu1—Cu2 | 90.55 (6) | C13—C12—H12A | 108.0 |
O2—Cu2—N4 | 97.5 (2) | N3—C12—H12B | 108.0 |
O2—Cu2—O1 | 74.66 (19) | C13—C12—H12B | 108.0 |
N4—Cu2—O1 | 170.4 (2) | H12A—C12—H12B | 107.2 |
O2—Cu2—N3 | 165.6 (2) | C12—C13—C14 | 106.7 (5) |
N4—Cu2—N3 | 95.9 (2) | C12—C13—H13A | 110.4 |
O1—Cu2—N3 | 92.4 (2) | C14—C13—H13A | 110.4 |
O2—Cu2—Cu1 | 35.64 (14) | C12—C13—H13B | 110.4 |
N4—Cu2—Cu1 | 133.09 (16) | C14—C13—H13B | 110.4 |
O1—Cu2—Cu1 | 39.61 (13) | H13A—C13—H13B | 108.6 |
N3—Cu2—Cu1 | 130.51 (17) | N4—C14—C13 | 119.2 (5) |
N1—C1—C2 | 120.0 (6) | N4—C14—H14A | 107.5 |
N1—C1—H1A | 107.3 | C13—C14—H14A | 107.5 |
C2—C1—H1A | 107.3 | N4—C14—H14B | 107.5 |
N1—C1—H1B | 107.3 | C13—C14—H14B | 107.5 |
C2—C1—H1B | 107.3 | H14A—C14—H14B | 107.0 |
H1A—C1—H1B | 106.9 | C1—N1—Cu1 | 123.3 (4) |
C1—C2—C3 | 110.1 (6) | C1—N1—H1C | 106.5 |
C1—C2—H2A | 109.6 | Cu1—N1—H1C | 106.5 |
C3—C2—H2A | 109.6 | C1—N1—H1D | 106.5 |
C1—C2—H2B | 109.6 | Cu1—N1—H1D | 106.5 |
C3—C2—H2B | 109.6 | H1C—N1—H1D | 106.5 |
H2A—C2—H2B | 108.2 | C4—N2—C3 | 116.4 (6) |
N2—C3—C2 | 114.1 (5) | C4—N2—Cu1 | 123.3 (5) |
N2—C3—H3A | 108.7 | C3—N2—Cu1 | 120.2 (4) |
C2—C3—H3A | 108.7 | C11—N3—C12 | 123.0 (6) |
N2—C3—H3B | 108.7 | C11—N3—Cu2 | 119.3 (5) |
C2—C3—H3B | 108.7 | C12—N3—Cu2 | 117.5 (4) |
H3A—C3—H3B | 107.6 | C14—N4—Cu2 | 123.4 (4) |
N2—C4—C6 | 126.7 (6) | C14—N4—H4A | 106.5 |
N2—C4—H4 | 116.7 | Cu2—N4—H4A | 106.5 |
C6—C4—H4 | 116.7 | C14—N4—H4B | 106.5 |
O1—C5—C10 | 119.5 (6) | Cu2—N4—H4B | 106.5 |
O1—C5—C6 | 121.8 (6) | H4A—N4—H4B | 106.5 |
C10—C5—C6 | 118.7 (6) | C5—O1—Cu1 | 124.8 (4) |
C7—C6—C4 | 114.4 (6) | C5—O1—Cu2 | 129.2 (4) |
C7—C6—C5 | 120.6 (7) | Cu1—O1—Cu2 | 99.4 (2) |
C4—C6—C5 | 124.8 (7) | Cu2—O2—Cu1 | 110.2 (2) |
C6—C7—C8 | 119.8 (6) | H1WD—O1W—H1WC | 109.5 |
C6—C7—H7 | 120.1 | H2WD—O2W—H2WB | 109.5 |
C8—C7—H7 | 120.1 | H3WD—O3W—H3WA | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WD···Cl1 | 0.85 | 1.90 | 2.583 (12) | 136 |
O2W—H2WB···O3W | 0.85 | 2.57 | 3.114 (13) | 123 |
O3W—H3WD···Cl2 | 0.85 | 2.70 | 3.478 (10) | 152 |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C14H20ClN4O)ClO]·3H2O |
Mr | 528.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 11.201 (5), 12.387 (7), 16.718 (7) |
β (°) | 93.18 (4) |
V (Å3) | 2316.0 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.10 |
Crystal size (mm) | 0.30 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.572, 0.633 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12029, 4087, 3286 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.175, 1.02 |
No. of reflections | 4087 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.080P)2 + 12.660P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.65, −0.94 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WD···Cl1 | 0.85 | 1.90 | 2.583 (12) | 135.9 |
O2W—H2WB···O3W | 0.85 | 2.57 | 3.114 (13) | 123.0 |
O3W—H3WD···Cl2 | 0.85 | 2.70 | 3.478 (10) | 151.9 |
Acknowledgements
The authors would like to thank the National Science Foundation of China (Nos. 21171135 and 20971102).
References
Anbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V. & Varghese, B. (2009). J. Inorg. Biochem. 103, 401–410. Web of Science CSD CrossRef PubMed CAS Google Scholar
Asokan, A., Mandal, P., Varghese, B. & Manoharan, P. T. (1995). Chem. Sci. 107, 281–295. CAS Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dede, B., Ozmen, I. & Karipcin, F. (2009). Polyhedron, 28, 3967–3974. Web of Science CrossRef CAS Google Scholar
Gagne, R. R., Spiro, C. L., Smith, T. J., Hamann, C. A., Thies, W. R. & Shiemke, A. K. (1981). J. Am. Chem. Soc. 103, 4073–4081. CrossRef CAS Web of Science Google Scholar
Hao, Y. L., Yao, L., Zhang, W. & Cui, Q. X. Yu. Z. W. (2006). Chem. Res. 17, 16–18. CAS Google Scholar
Olmstead, M. M., Boyce, D. W. & Bria, L. E. (2011). Acta Cryst. E67, m824–m825. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raman, N., Raja, J. D. & Sakthivel, A. (2007). J. Chem. Sci. 119, 303–310. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, J. L., Feng, L., Gu, W., Xu, G. J., Yan, S. P., Liao, D. Z., Jiang, Z. H. & Cheng, P. (2007). J. Inorg. Biochem. 101, 196–202. Web of Science CSD CrossRef PubMed CAS Google Scholar
Veysel, T. Y., Sevim, H. & Omer, A. (2003). Transition Met. Chem. 28, 676–681. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have received special attention of biochemists because of their biological activities (Raman et al., 2007; Hao et al., 2006). Researches show that binuclear complexes have good biological properties (Tian et al., 2007; Anbu et al., 2009). Several proteins in vivo contain transition metal centers, especially, the Cu(II) centers (Dede et al., 2009; Veysel et al., 2003). Thus, in this paper, we report on the synthesis and the crystal structure of a new binuclear copper complex. Although a similar complex has been reported in the literature (Asokan et al., 1995), however, the title complex has different substituent in the phenoxid group and counter anion with the reported complex. The crystal structure of the title complex is shown in Fig.1. The molecular unit contains a chloride anion and two copper ions. The coordination environment of the two copper ions are different. Cu2 has four coordinated atoms with quadrilateral configuration, all the atoms locate in an approximately plane with a mean plane derivation of 0.072 Å. While Cu1 has five coordinated atoms with a square pyramid configuration and the chloride anion occupies the apical position with Cu1-Cl2 distance of 2.484 Å. The basal plane is composed of two imino nitrogen atoms, one phenoxide atom and one oxygen anion derived from the solvent of H2O with a mean plane derivation of 0.016 Å. This oxygen anion bridged structure is also found in a dinuclear complex which was obtained by a similar experimental condition (Olmstead et al., 2011).