metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Propan-2-yl­­oxy)carbon­yl]quinolin-1-ium tetra­chlorido(quinoline-2-carboxyl­ato-κ2N,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 April 2012; accepted 1 May 2012; online 5 May 2012)

In the title salt, (C13H14NO2)[Sn(C10H6NO2)Cl4], the SnIV cation is N,O-chelated by the quinolincarboxyl­ate unit and further coordinated by four Cl anions in a distorted octa­hedral geometry. In the crystal, the 2-[(propan-2-yl­oxy)­carbon­yl]quinolin-1-ium cation is linked to the Sn complex anion by an N—H⋯O hydrogen bond.

Related literature

For related stannates, see: Vafaee et al. (2010[Vafaee, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m390.]); Najafi et al. (2012[Najafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m738.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H14NO2)[Sn(C10H6NO2)Cl4]

  • Mr = 648.90

  • Monoclinic, P 21 /c

  • a = 7.1932 (2) Å

  • b = 17.8616 (4) Å

  • c = 19.1963 (5) Å

  • β = 95.156 (3)°

  • V = 2456.40 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.584, Tmax = 0.752

  • 16873 measured reflections

  • 5665 independent reflections

  • 4896 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.062

  • S = 1.00

  • 5665 reflections

  • 311 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.88 (1) 1.95 (1) 2.819 (3) 169 (3)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Stannic chloride and quinoline-2-carboxylic acid reacts in methanol medium to yield 2-(ethoxycarbonyl)quinolinium tetrachlorido(quinoline-2-carboxylatostannate(IV), which crystallizes a as a methanol solvate (Vafaee et al., 2010). The corresponding 2-(isoproproxycarbonyl)quinolinium salt (Scheme I) is obtained when isopropyl alcohol is used in placed of methanol; however, the compound does not has any solvent of crystallization. Tthe SnIV atom is chelated by the quinolincarboxylate unit and it exists in an octahedral coordination geometry (Fig. 1). The cation is linked to the anion by an N–H···O hydrogen bond (Table 1).

Related literature top

For related stannates, see: Vafaee et al. (2010); Najafi et al. (2012).

Experimental top

Stannic chloride pentahydrate (0.35 g, 1 mmol) and quinoline-2-carboxylic acid (0.17 g, 2 mmol) were loaded into a convection tube; the tube was filled with isopropyl alcohol and kept at 333 K. Light yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The ammonium H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C13H14NO2)[SnCl4(C10H6NO2)] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-[(Propan-2-yloxy)carbonyl]quinolin-1-ium tetrachlorido(quinoline-2-carboxylato-κ2N,O)stannate(IV) top
Crystal data top
(C13H14NO2)[Sn(C10H6NO2)Cl4]F(000) = 1288
Mr = 648.90Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8443 reflections
a = 7.1932 (2) Åθ = 2.3–27.5°
b = 17.8616 (4) ŵ = 1.51 mm1
c = 19.1963 (5) ÅT = 100 K
β = 95.156 (3)°Prism, light yellow
V = 2456.40 (11) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5665 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4896 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scanh = 98
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2322
Tmin = 0.584, Tmax = 0.752l = 2414
16873 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.7987P]
where P = (Fo2 + 2Fc2)/3
5665 reflections(Δ/σ)max = 0.002
311 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.59 e Å3
Crystal data top
(C13H14NO2)[Sn(C10H6NO2)Cl4]V = 2456.40 (11) Å3
Mr = 648.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1932 (2) ŵ = 1.51 mm1
b = 17.8616 (4) ÅT = 100 K
c = 19.1963 (5) Å0.40 × 0.40 × 0.20 mm
β = 95.156 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5665 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4896 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.752Rint = 0.032
16873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.45 e Å3
5665 reflectionsΔρmin = 0.59 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.53403 (2)0.617340 (8)0.681802 (8)0.01204 (5)
Cl10.74011 (8)0.54275 (3)0.75709 (3)0.01880 (13)
Cl20.55407 (8)0.54164 (3)0.58147 (3)0.01864 (13)
Cl30.26300 (8)0.55748 (3)0.71743 (3)0.01923 (13)
Cl40.78982 (8)0.69944 (3)0.66038 (3)0.01852 (13)
O10.3671 (2)0.68976 (8)0.61805 (9)0.0160 (3)
O20.2388 (2)0.80248 (9)0.60590 (9)0.0214 (4)
O30.1647 (2)0.96046 (9)0.38812 (9)0.0212 (4)
O40.1828 (3)0.92896 (9)0.50283 (10)0.0288 (4)
N10.4572 (2)0.71449 (10)0.75561 (10)0.0123 (4)
N20.0861 (3)0.78646 (10)0.46623 (11)0.0137 (4)
H20.128 (4)0.7973 (15)0.5093 (7)0.033 (8)*
C10.3248 (3)0.75441 (12)0.64113 (13)0.0152 (5)
C20.3810 (3)0.77079 (12)0.71758 (12)0.0137 (5)
C30.3490 (3)0.84213 (12)0.74524 (13)0.0175 (5)
H30.29640.88100.71600.021*
C40.3946 (3)0.85458 (13)0.81454 (13)0.0169 (5)
H40.37920.90300.83360.020*
C50.4647 (3)0.79574 (12)0.85798 (13)0.0139 (5)
C60.5036 (3)0.80425 (13)0.93158 (13)0.0179 (5)
H60.48480.85140.95280.021*
C70.5676 (3)0.74510 (14)0.97183 (13)0.0195 (5)
H70.59470.75131.02080.023*
C80.5937 (3)0.67457 (14)0.94067 (13)0.0178 (5)
H80.63650.63360.96930.021*
C90.5583 (3)0.66412 (13)0.86986 (13)0.0153 (5)
H90.57620.61630.84990.018*
C100.4955 (3)0.72447 (12)0.82692 (12)0.0121 (5)
C110.1536 (3)0.91484 (13)0.44172 (13)0.0153 (5)
C120.0940 (3)0.83797 (12)0.41617 (13)0.0137 (5)
C130.0433 (3)0.82038 (13)0.34648 (13)0.0151 (5)
H130.05060.85700.31100.018*
C140.0177 (3)0.74902 (13)0.32982 (13)0.0168 (5)
H140.05180.73630.28230.020*
C150.0301 (3)0.69484 (12)0.38213 (13)0.0148 (5)
C160.0970 (3)0.62128 (12)0.36872 (14)0.0184 (5)
H160.13020.60560.32200.022*
C170.1139 (3)0.57292 (13)0.42255 (14)0.0196 (5)
H170.16210.52410.41320.023*
C180.0606 (3)0.59455 (13)0.49189 (14)0.0178 (5)
H180.07440.56000.52870.021*
C190.0103 (3)0.66398 (12)0.50750 (13)0.0160 (5)
H190.04960.67740.55440.019*
C200.0238 (3)0.71517 (12)0.45259 (12)0.0131 (5)
C210.2217 (3)1.03864 (12)0.40355 (14)0.0209 (5)
H21A0.19581.05190.45240.025*
C220.4265 (4)1.04469 (15)0.39607 (17)0.0311 (7)
H22A0.46791.09620.40610.047*
H22B0.45091.03150.34820.047*
H22C0.49481.01040.42900.047*
C230.1016 (4)1.08525 (15)0.35205 (17)0.0370 (7)
H23A0.13121.13830.35970.056*
H23B0.03021.07660.35860.056*
H23C0.12571.07120.30430.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01605 (9)0.01020 (8)0.00981 (9)0.00155 (6)0.00086 (6)0.00091 (6)
Cl10.0217 (3)0.0154 (3)0.0188 (3)0.0028 (2)0.0009 (2)0.0007 (2)
Cl20.0258 (3)0.0169 (3)0.0137 (3)0.0036 (2)0.0044 (2)0.0055 (2)
Cl30.0201 (3)0.0194 (3)0.0188 (3)0.0065 (2)0.0051 (2)0.0038 (2)
Cl40.0215 (3)0.0189 (3)0.0155 (3)0.0071 (2)0.0042 (2)0.0020 (2)
O10.0231 (8)0.0126 (8)0.0116 (9)0.0012 (7)0.0017 (7)0.0017 (6)
O20.0326 (9)0.0148 (8)0.0154 (10)0.0037 (7)0.0051 (8)0.0016 (7)
O30.0337 (10)0.0132 (8)0.0170 (10)0.0065 (7)0.0033 (8)0.0011 (7)
O40.0488 (12)0.0205 (9)0.0158 (10)0.0068 (8)0.0051 (9)0.0022 (7)
N10.0138 (9)0.0121 (9)0.0113 (10)0.0019 (8)0.0025 (8)0.0006 (7)
N20.0129 (9)0.0162 (10)0.0115 (11)0.0008 (8)0.0014 (8)0.0007 (8)
C10.0179 (11)0.0149 (11)0.0129 (12)0.0040 (9)0.0026 (9)0.0009 (9)
C20.0163 (11)0.0125 (11)0.0123 (12)0.0040 (9)0.0009 (9)0.0003 (9)
C30.0224 (12)0.0117 (11)0.0180 (14)0.0006 (10)0.0005 (10)0.0004 (9)
C40.0174 (11)0.0123 (11)0.0208 (14)0.0019 (10)0.0004 (10)0.0036 (10)
C50.0102 (10)0.0169 (11)0.0148 (13)0.0028 (9)0.0015 (9)0.0037 (9)
C60.0166 (11)0.0219 (12)0.0153 (13)0.0044 (10)0.0023 (10)0.0080 (10)
C70.0163 (11)0.0322 (14)0.0102 (13)0.0028 (10)0.0012 (9)0.0015 (10)
C80.0167 (11)0.0258 (13)0.0110 (13)0.0016 (10)0.0018 (9)0.0043 (10)
C90.0151 (11)0.0157 (11)0.0150 (13)0.0001 (9)0.0020 (9)0.0001 (9)
C100.0114 (10)0.0132 (10)0.0117 (12)0.0021 (9)0.0008 (9)0.0002 (9)
C110.0142 (11)0.0161 (11)0.0153 (13)0.0034 (9)0.0002 (9)0.0008 (9)
C120.0101 (10)0.0144 (11)0.0165 (13)0.0011 (9)0.0000 (9)0.0014 (9)
C130.0135 (11)0.0175 (11)0.0145 (13)0.0005 (9)0.0024 (9)0.0036 (9)
C140.0160 (11)0.0210 (12)0.0131 (13)0.0017 (10)0.0000 (10)0.0002 (10)
C150.0089 (10)0.0175 (11)0.0179 (13)0.0033 (9)0.0005 (9)0.0001 (9)
C160.0154 (11)0.0185 (12)0.0206 (14)0.0001 (9)0.0025 (10)0.0035 (10)
C170.0166 (11)0.0142 (11)0.0275 (15)0.0013 (10)0.0007 (10)0.0017 (10)
C180.0156 (11)0.0165 (11)0.0213 (14)0.0006 (9)0.0021 (10)0.0039 (10)
C190.0142 (11)0.0186 (12)0.0148 (13)0.0003 (9)0.0008 (9)0.0023 (9)
C200.0092 (10)0.0152 (11)0.0148 (13)0.0003 (9)0.0011 (9)0.0009 (9)
C210.0289 (13)0.0123 (11)0.0221 (15)0.0049 (10)0.0050 (11)0.0027 (10)
C220.0281 (14)0.0243 (14)0.0417 (19)0.0089 (12)0.0078 (13)0.0093 (13)
C230.0507 (18)0.0193 (13)0.039 (2)0.0085 (13)0.0061 (15)0.0010 (12)
Geometric parameters (Å, º) top
Sn1—O12.0851 (15)C8—H80.9500
Sn1—N12.3377 (19)C9—C101.407 (3)
Sn1—Cl22.3683 (6)C9—H90.9500
Sn1—Cl32.3773 (6)C11—C121.507 (3)
Sn1—Cl12.3824 (6)C12—C131.391 (3)
Sn1—Cl42.4168 (6)C13—C141.376 (3)
O1—C11.283 (3)C13—H130.9500
O2—C11.225 (3)C14—C151.403 (3)
O3—C111.321 (3)C14—H140.9500
O3—C211.478 (3)C15—C201.420 (3)
O4—C111.200 (3)C15—C161.415 (3)
N1—C21.332 (3)C16—C171.361 (4)
N1—C101.383 (3)C16—H160.9500
N2—C121.335 (3)C17—C181.406 (3)
N2—C201.367 (3)C17—H170.9500
N2—H20.876 (10)C18—C191.364 (3)
C1—C21.515 (3)C18—H180.9500
C2—C31.407 (3)C19—C201.405 (3)
C3—C41.360 (3)C19—H190.9500
C3—H30.9500C21—C221.497 (3)
C4—C51.407 (3)C21—C231.504 (4)
C4—H40.9500C21—H21A1.0000
C5—C61.423 (3)C22—H22A0.9800
C5—C101.431 (3)C22—H22B0.9800
C6—C71.364 (3)C22—H22C0.9800
C6—H60.9500C23—H23A0.9800
C7—C81.414 (3)C23—H23B0.9800
C7—H70.9500C23—H23C0.9800
C8—C91.373 (3)
O1—Sn1—N174.94 (6)N1—C10—C5120.2 (2)
O1—Sn1—Cl287.18 (5)C9—C10—C5119.4 (2)
N1—Sn1—Cl2162.12 (5)O4—C11—O3127.9 (2)
O1—Sn1—Cl390.24 (5)O4—C11—C12122.0 (2)
N1—Sn1—Cl385.12 (5)O3—C11—C12110.1 (2)
Cl2—Sn1—Cl395.08 (2)N2—C12—C13120.8 (2)
O1—Sn1—Cl1175.51 (4)N2—C12—C11115.0 (2)
N1—Sn1—Cl1102.45 (5)C13—C12—C11124.1 (2)
Cl2—Sn1—Cl195.39 (2)C14—C13—C12118.9 (2)
Cl3—Sn1—Cl193.19 (2)C14—C13—H13120.5
O1—Sn1—Cl486.02 (5)C12—C13—H13120.5
N1—Sn1—Cl482.98 (5)C13—C14—C15120.8 (2)
Cl2—Sn1—Cl496.04 (2)C13—C14—H14119.6
Cl3—Sn1—Cl4168.08 (2)C15—C14—H14119.6
Cl1—Sn1—Cl490.05 (2)C14—C15—C20118.4 (2)
C1—O1—Sn1119.85 (15)C14—C15—C16123.6 (2)
C11—O3—C21117.52 (19)C20—C15—C16118.0 (2)
C2—N1—C10118.74 (19)C17—C16—C15120.2 (2)
C2—N1—Sn1109.66 (15)C17—C16—H16119.9
C10—N1—Sn1131.19 (14)C15—C16—H16119.9
C12—N2—C20122.6 (2)C16—C17—C18120.6 (2)
C12—N2—H2119.5 (19)C16—C17—H17119.7
C20—N2—H2117.9 (19)C18—C17—H17119.7
O2—C1—O1124.3 (2)C19—C18—C17121.5 (2)
O2—C1—C2118.5 (2)C19—C18—H18119.2
O1—C1—C2117.20 (19)C17—C18—H18119.2
N1—C2—C3123.4 (2)C18—C19—C20118.5 (2)
N1—C2—C1116.50 (19)C18—C19—H19120.8
C3—C2—C1120.1 (2)C20—C19—H19120.8
C4—C3—C2118.9 (2)N2—C20—C19120.4 (2)
C4—C3—H3120.5N2—C20—C15118.5 (2)
C2—C3—H3120.5C19—C20—C15121.1 (2)
C3—C4—C5120.0 (2)O3—C21—C22107.85 (19)
C3—C4—H4120.0O3—C21—C23105.0 (2)
C5—C4—H4120.0C22—C21—C23114.1 (2)
C4—C5—C6122.4 (2)O3—C21—H21A109.9
C4—C5—C10118.6 (2)C22—C21—H21A109.9
C6—C5—C10119.0 (2)C23—C21—H21A109.9
C7—C6—C5120.4 (2)C21—C22—H22A109.5
C7—C6—H6119.8C21—C22—H22B109.5
C5—C6—H6119.8H22A—C22—H22B109.5
C6—C7—C8120.1 (2)C21—C22—H22C109.5
C6—C7—H7120.0H22A—C22—H22C109.5
C8—C7—H7120.0H22B—C22—H22C109.5
C9—C8—C7121.3 (2)C21—C23—H23A109.5
C9—C8—H8119.3C21—C23—H23B109.5
C7—C8—H8119.3H23A—C23—H23B109.5
C8—C9—C10119.8 (2)C21—C23—H23C109.5
C8—C9—H9120.1H23A—C23—H23C109.5
C10—C9—H9120.1H23B—C23—H23C109.5
N1—C10—C9120.4 (2)
N1—Sn1—O1—C110.22 (16)C2—N1—C10—C54.1 (3)
Cl2—Sn1—O1—C1169.82 (16)Sn1—N1—C10—C5167.66 (15)
Cl3—Sn1—O1—C195.10 (16)C8—C9—C10—N1179.2 (2)
Cl4—Sn1—O1—C173.57 (16)C8—C9—C10—C51.6 (3)
O1—Sn1—N1—C211.88 (14)C4—C5—C10—N10.2 (3)
Cl2—Sn1—N1—C212.0 (3)C6—C5—C10—N1179.38 (19)
Cl3—Sn1—N1—C2103.44 (14)C4—C5—C10—C9177.4 (2)
Cl1—Sn1—N1—C2164.36 (13)C6—C5—C10—C91.7 (3)
Cl4—Sn1—N1—C275.87 (14)C21—O3—C11—O40.7 (4)
O1—Sn1—N1—C10175.81 (19)C21—O3—C11—C12179.99 (18)
Cl2—Sn1—N1—C10175.67 (13)C20—N2—C12—C131.9 (3)
Cl3—Sn1—N1—C1084.25 (18)C20—N2—C12—C11175.94 (19)
Cl1—Sn1—N1—C107.94 (19)O4—C11—C12—N23.4 (3)
Cl4—Sn1—N1—C1096.43 (18)O3—C11—C12—N2177.26 (19)
Sn1—O1—C1—O2174.66 (17)O4—C11—C12—C13174.3 (2)
Sn1—O1—C1—C27.1 (3)O3—C11—C12—C135.0 (3)
C10—N1—C2—C34.6 (3)N2—C12—C13—C140.8 (3)
Sn1—N1—C2—C3168.75 (18)C11—C12—C13—C14176.8 (2)
C10—N1—C2—C1174.27 (19)C12—C13—C14—C150.5 (3)
Sn1—N1—C2—C112.3 (2)C13—C14—C15—C200.7 (3)
O2—C1—C2—N1173.4 (2)C13—C14—C15—C16178.0 (2)
O1—C1—C2—N14.9 (3)C14—C15—C16—C17176.7 (2)
O2—C1—C2—C35.5 (3)C20—C15—C16—C172.1 (3)
O1—C1—C2—C3176.1 (2)C15—C16—C17—C181.7 (4)
N1—C2—C3—C41.2 (4)C16—C17—C18—C190.4 (4)
C1—C2—C3—C4177.7 (2)C17—C18—C19—C202.1 (3)
C2—C3—C4—C52.8 (4)C12—N2—C20—C19177.1 (2)
C3—C4—C5—C6175.9 (2)C12—N2—C20—C151.6 (3)
C3—C4—C5—C103.2 (3)C18—C19—C20—N2177.0 (2)
C4—C5—C6—C7178.6 (2)C18—C19—C20—C151.7 (3)
C10—C5—C6—C70.6 (3)C14—C15—C20—N20.3 (3)
C5—C6—C7—C80.8 (3)C16—C15—C20—N2179.1 (2)
C6—C7—C8—C90.9 (4)C14—C15—C20—C19178.4 (2)
C7—C8—C9—C100.3 (3)C16—C15—C20—C190.4 (3)
C2—N1—C10—C9173.6 (2)C11—O3—C21—C2297.2 (3)
Sn1—N1—C10—C914.7 (3)C11—O3—C21—C23140.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.88 (1)1.95 (1)2.819 (3)169 (3)

Experimental details

Crystal data
Chemical formula(C13H14NO2)[Sn(C10H6NO2)Cl4]
Mr648.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1932 (2), 17.8616 (4), 19.1963 (5)
β (°) 95.156 (3)
V3)2456.40 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.584, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
16873, 5665, 4896
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.062, 1.00
No. of reflections5665
No. of parameters311
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.59

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.88 (1)1.95 (1)2.819 (3)169 (3)
 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m738.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVafaee, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m390.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds