metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-2-methyl­quinolinium tetra­chlorido(quinolin-8-olato-κ2N,O)stan­nate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 April 2012; accepted 30 April 2012; online 5 May 2012)

The reaction of 8-hy­droxy­quinoline, 2-methyl­quinolin-8-ol and stannic chloride yields the protonated 8-hy­droxy-2-methyl­quinolinium species. In the title salt, (C10H10NO)[Sn(C9H6NO)Cl4], the SnIV cation is N,O-chelated by the quinolin-8-olate anion and is further coordinated by four Cl anions in a distorted cis-SnNOCl4 octa­hedral geometry. In the crystal, the cation is linked to the anion by an O—H⋯O hydrogen bond.

Related literature

For the methanol solvate of the salt, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m241.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[Sn(C9H6NO)Cl4]

  • Mr = 564.83

  • Monoclinic, P 21 /c

  • a = 8.9431 (3) Å

  • b = 11.5892 (4) Å

  • c = 20.1795 (8) Å

  • β = 101.347 (4)°

  • V = 2050.59 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.616, Tmax = 0.717

  • 13674 measured reflections

  • 4723 independent reflections

  • 4222 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.055

  • S = 1.06

  • 4723 reflections

  • 262 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1 0.84 (1) 1.86 (1) 2.683 (2) 168 (3)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction of 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and stannic chloride in methanol yields a protonated 2-methyl-8-hydroxyquinoline species. The SnIVatom in the methanol-solvated salt, (C10H10NO)[SnCl4(C9H6NO)].2CH3OH, is N,O-chelated by the quinolin-8-olate (Najafi et al., 2011). A repeat of the synthesis but isopropyl alcohol in place of methanol yielded the unsolvated salt (Scheme I). The SnIVatom in the salt is N,O-chelated by the quinolin-8-olate in a cis-SnNOCl4 octahedral geometry. The cation is linked to the anion by an O–H···O hydrogen bond (Fig. 1, Table 1).

Related literature top

For the methanol solvate of the salt, see: Najafi et al. (2011).

Experimental top

Stannic chloride pentahydrate (0.35 g, 1 mmol), 8-hydroxyquinoline (0.15 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry isopropyl alcohol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy and ammonium H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 and N–H 0.88±0.01 Å; their temperature factors were refined.

Omitted owing to bad disagreement wwere (5 6 0), (-6 5 3), (-5 6 2), (-4 7 1) and (1 10 3).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C10H10NO)[SnCl4(C9H6NO)] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
8-Hydroxy-2-methylquinolinium tetrachlorido(quinolin-8-olato-κ2N,O)stannate(IV) top
Crystal data top
(C10H10NO)[Sn(C9H6NO)Cl4]F(000) = 1112
Mr = 564.83Dx = 1.830 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6840 reflections
a = 8.9431 (3) Åθ = 2.3–27.5°
b = 11.5892 (4) ŵ = 1.79 mm1
c = 20.1795 (8) ÅT = 100 K
β = 101.347 (4)°Prism, yellow
V = 2050.59 (13) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4723 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4222 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1415
Tmin = 0.616, Tmax = 0.717l = 1726
13674 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0193P)2 + 1.171P]
where P = (Fo2 + 2Fc2)/3
4723 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.54 e Å3
Crystal data top
(C10H10NO)[Sn(C9H6NO)Cl4]V = 2050.59 (13) Å3
Mr = 564.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9431 (3) ŵ = 1.79 mm1
b = 11.5892 (4) ÅT = 100 K
c = 20.1795 (8) Å0.30 × 0.25 × 0.20 mm
β = 101.347 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4723 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4222 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.717Rint = 0.029
13674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
4723 reflectionsΔρmin = 0.54 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.252394 (17)0.454836 (13)0.684298 (7)0.01219 (5)
Cl10.06888 (7)0.32750 (5)0.71370 (3)0.01978 (13)
Cl20.36818 (7)0.51365 (5)0.79638 (3)0.01813 (12)
Cl30.43713 (6)0.30303 (5)0.68659 (3)0.01751 (12)
Cl40.07496 (7)0.61568 (5)0.67319 (3)0.01740 (12)
O10.17767 (18)0.42497 (13)0.58138 (8)0.0149 (3)
O20.0249 (2)0.25623 (14)0.50577 (9)0.0221 (4)
N10.4033 (2)0.56783 (15)0.63929 (10)0.0141 (4)
N20.0535 (2)0.12664 (17)0.39515 (10)0.0161 (4)
C10.5172 (3)0.6332 (2)0.66989 (12)0.0188 (5)
H1A0.54610.63010.71770.023*
C20.5963 (3)0.7065 (2)0.63406 (13)0.0224 (6)
H2A0.67820.75230.65720.027*
C30.5545 (3)0.7115 (2)0.56511 (13)0.0227 (5)
H30.60700.76180.54030.027*
C40.4339 (3)0.6427 (2)0.53060 (12)0.0186 (5)
C50.3821 (3)0.6417 (2)0.45981 (13)0.0228 (6)
H50.42970.68920.43160.027*
C60.2630 (3)0.5720 (2)0.43221 (12)0.0227 (6)
H60.22760.57300.38460.027*
C70.1908 (3)0.4985 (2)0.47190 (12)0.0187 (5)
H70.10840.45110.45090.022*
C80.2391 (3)0.4952 (2)0.54069 (11)0.0145 (5)
C90.3609 (3)0.56980 (19)0.57047 (11)0.0147 (5)
C100.2450 (3)0.1085 (2)0.29236 (13)0.0254 (6)
H10A0.24080.19290.28980.038*
H10B0.33710.08540.30840.038*
H10C0.24720.07560.24740.038*
C110.1082 (3)0.0656 (2)0.34005 (12)0.0178 (5)
C120.0360 (3)0.0387 (2)0.33034 (12)0.0197 (5)
H120.07370.08430.29150.024*
C130.0878 (3)0.0750 (2)0.37615 (12)0.0193 (5)
H130.13630.14540.36870.023*
C140.1453 (3)0.0089 (2)0.43484 (12)0.0176 (5)
C150.2728 (3)0.0407 (2)0.48462 (13)0.0215 (5)
H150.32710.10960.47970.026*
C160.3176 (3)0.0281 (2)0.53985 (13)0.0227 (6)
H160.40450.00690.57280.027*
C170.2382 (3)0.1294 (2)0.54906 (12)0.0198 (5)
H170.27090.17510.58830.024*
C180.1135 (3)0.1629 (2)0.50175 (12)0.0169 (5)
C190.0689 (3)0.0939 (2)0.44380 (11)0.0153 (5)
H10.071 (3)0.303 (2)0.5341 (12)0.036 (9)*
H20.099 (3)0.1922 (13)0.4000 (13)0.020 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01472 (9)0.01041 (8)0.01115 (8)0.00037 (6)0.00186 (6)0.00024 (6)
Cl10.0212 (3)0.0150 (3)0.0243 (3)0.0044 (2)0.0074 (2)0.0002 (2)
Cl20.0193 (3)0.0214 (3)0.0131 (3)0.0001 (2)0.0016 (2)0.0029 (2)
Cl30.0196 (3)0.0159 (3)0.0163 (3)0.0045 (2)0.0019 (2)0.0001 (2)
Cl40.0208 (3)0.0137 (3)0.0176 (3)0.0038 (2)0.0036 (2)0.0006 (2)
O10.0173 (8)0.0144 (8)0.0127 (8)0.0002 (7)0.0025 (6)0.0007 (6)
O20.0236 (9)0.0169 (9)0.0246 (10)0.0012 (8)0.0018 (8)0.0085 (7)
N10.0170 (10)0.0106 (9)0.0152 (10)0.0006 (8)0.0046 (8)0.0003 (7)
N20.0163 (10)0.0128 (10)0.0194 (10)0.0002 (8)0.0039 (8)0.0004 (8)
C10.0201 (12)0.0167 (12)0.0197 (12)0.0029 (10)0.0043 (10)0.0036 (10)
C20.0200 (12)0.0164 (12)0.0318 (15)0.0059 (10)0.0075 (11)0.0050 (10)
C30.0224 (13)0.0179 (12)0.0321 (15)0.0005 (11)0.0156 (11)0.0025 (11)
C40.0205 (12)0.0149 (11)0.0225 (13)0.0066 (10)0.0092 (10)0.0022 (10)
C50.0290 (14)0.0208 (13)0.0220 (13)0.0088 (11)0.0131 (11)0.0060 (10)
C60.0294 (14)0.0257 (14)0.0135 (12)0.0127 (12)0.0056 (10)0.0026 (10)
C70.0181 (12)0.0202 (12)0.0166 (12)0.0051 (10)0.0003 (9)0.0013 (10)
C80.0159 (11)0.0118 (10)0.0162 (11)0.0050 (9)0.0041 (9)0.0008 (9)
C90.0168 (11)0.0120 (11)0.0158 (11)0.0061 (9)0.0047 (9)0.0017 (9)
C100.0208 (13)0.0287 (15)0.0239 (14)0.0040 (11)0.0022 (11)0.0005 (11)
C110.0174 (12)0.0183 (12)0.0181 (12)0.0069 (10)0.0044 (10)0.0001 (9)
C120.0251 (13)0.0186 (12)0.0176 (12)0.0066 (11)0.0098 (10)0.0050 (9)
C130.0238 (13)0.0143 (11)0.0219 (13)0.0006 (10)0.0096 (10)0.0012 (10)
C140.0201 (12)0.0163 (11)0.0182 (12)0.0028 (10)0.0083 (10)0.0014 (9)
C150.0211 (13)0.0201 (13)0.0243 (13)0.0026 (11)0.0066 (11)0.0048 (10)
C160.0194 (12)0.0278 (14)0.0198 (13)0.0032 (11)0.0008 (10)0.0061 (11)
C170.0214 (12)0.0226 (13)0.0154 (12)0.0093 (11)0.0036 (10)0.0012 (10)
C180.0183 (12)0.0144 (11)0.0188 (12)0.0056 (10)0.0061 (9)0.0007 (9)
C190.0145 (11)0.0171 (11)0.0152 (11)0.0047 (10)0.0052 (9)0.0016 (9)
Geometric parameters (Å, º) top
Sn1—O12.0818 (15)C6—C71.409 (4)
Sn1—N12.201 (2)C6—H60.9500
Sn1—Cl12.3678 (6)C7—C81.371 (3)
Sn1—Cl22.3938 (6)C7—H70.9500
Sn1—Cl32.4076 (6)C8—C91.427 (3)
Sn1—Cl42.4296 (6)C10—C111.486 (3)
O1—C81.348 (3)C10—H10A0.9800
O2—C181.353 (3)C10—H10B0.9800
O2—H10.835 (10)C10—H10C0.9800
N1—C11.321 (3)C11—C121.402 (3)
N1—C91.366 (3)C12—C131.362 (3)
N2—C111.328 (3)C12—H120.9500
N2—C191.372 (3)C13—C141.419 (3)
N2—H20.878 (10)C13—H130.9500
C1—C21.395 (3)C14—C191.402 (3)
C1—H1A0.9500C14—C151.412 (3)
C2—C31.369 (4)C15—C161.364 (4)
C2—H2A0.9500C15—H150.9500
C3—C41.411 (3)C16—C171.404 (4)
C3—H30.9500C16—H160.9500
C4—C91.411 (3)C17—C181.373 (3)
C4—C51.412 (3)C17—H170.9500
C5—C61.365 (4)C18—C191.408 (3)
C5—H50.9500
O1—Sn1—N177.86 (7)C8—C7—H7119.9
O1—Sn1—Cl192.52 (5)C6—C7—H7119.9
N1—Sn1—Cl1170.33 (5)O1—C8—C7123.2 (2)
O1—Sn1—Cl2169.80 (5)O1—C8—C9118.6 (2)
N1—Sn1—Cl291.96 (5)C7—C8—C9118.2 (2)
Cl1—Sn1—Cl297.65 (2)N1—C9—C4121.5 (2)
O1—Sn1—Cl388.97 (5)N1—C9—C8117.0 (2)
N1—Sn1—Cl388.20 (5)C4—C9—C8121.5 (2)
Cl1—Sn1—Cl392.67 (2)C11—C10—H10A109.5
Cl2—Sn1—Cl391.28 (2)C11—C10—H10B109.5
O1—Sn1—Cl487.70 (4)H10A—C10—H10B109.5
N1—Sn1—Cl487.00 (5)C11—C10—H10C109.5
Cl1—Sn1—Cl491.66 (2)H10A—C10—H10C109.5
Cl2—Sn1—Cl491.26 (2)H10B—C10—H10C109.5
Cl3—Sn1—Cl4174.65 (2)N2—C11—C12118.2 (2)
C8—O1—Sn1114.70 (13)N2—C11—C10119.0 (2)
C18—O2—H1110 (2)C12—C11—C10122.8 (2)
C1—N1—C9120.0 (2)C13—C12—C11120.5 (2)
C1—N1—Sn1128.84 (16)C13—C12—H12119.8
C9—N1—Sn1111.09 (14)C11—C12—H12119.8
C11—N2—C19124.2 (2)C12—C13—C14120.8 (2)
C11—N2—H2116.8 (16)C12—C13—H13119.6
C19—N2—H2119.0 (17)C14—C13—H13119.6
N1—C1—C2122.0 (2)C19—C14—C15118.4 (2)
N1—C1—H1A119.0C19—C14—C13117.4 (2)
C2—C1—H1A119.0C15—C14—C13124.2 (2)
C3—C2—C1119.2 (2)C16—C15—C14119.7 (2)
C3—C2—H2A120.4C16—C15—H15120.2
C1—C2—H2A120.4C14—C15—H15120.2
C2—C3—C4120.5 (2)C15—C16—C17121.4 (2)
C2—C3—H3119.8C15—C16—H16119.3
C4—C3—H3119.8C17—C16—H16119.3
C3—C4—C9116.8 (2)C18—C17—C16120.5 (2)
C3—C4—C5124.8 (2)C18—C17—H17119.8
C9—C4—C5118.4 (2)C16—C17—H17119.8
C6—C5—C4119.4 (2)O2—C18—C17126.1 (2)
C6—C5—H5120.3O2—C18—C19115.5 (2)
C4—C5—H5120.3C17—C18—C19118.4 (2)
C5—C6—C7122.2 (2)N2—C19—C14118.9 (2)
C5—C6—H6118.9N2—C19—C18119.5 (2)
C7—C6—H6118.9C14—C19—C18121.6 (2)
C8—C7—C6120.2 (2)
N1—Sn1—O1—C87.95 (15)C3—C4—C9—N11.3 (3)
Cl1—Sn1—O1—C8171.04 (14)C5—C4—C9—N1178.8 (2)
Cl2—Sn1—O1—C84.8 (4)C3—C4—C9—C8179.0 (2)
Cl3—Sn1—O1—C896.33 (14)C5—C4—C9—C80.9 (3)
Cl4—Sn1—O1—C879.48 (14)O1—C8—C9—N12.5 (3)
O1—Sn1—N1—C1176.9 (2)C7—C8—C9—N1177.7 (2)
Cl2—Sn1—N1—C13.69 (19)O1—C8—C9—C4177.8 (2)
Cl3—Sn1—N1—C187.52 (19)C7—C8—C9—C42.0 (3)
Cl4—Sn1—N1—C194.85 (19)C19—N2—C11—C120.6 (4)
O1—Sn1—N1—C96.51 (14)C19—N2—C11—C10177.8 (2)
Cl2—Sn1—N1—C9172.94 (14)N2—C11—C12—C130.6 (4)
Cl3—Sn1—N1—C995.84 (14)C10—C11—C12—C13179.0 (2)
Cl4—Sn1—N1—C981.79 (14)C11—C12—C13—C140.6 (4)
C9—N1—C1—C20.8 (3)C12—C13—C14—C190.6 (4)
Sn1—N1—C1—C2175.60 (17)C12—C13—C14—C15179.9 (2)
N1—C1—C2—C30.3 (4)C19—C14—C15—C160.4 (4)
C1—C2—C3—C40.6 (4)C13—C14—C15—C16178.9 (2)
C2—C3—C4—C90.1 (3)C14—C15—C16—C171.1 (4)
C2—C3—C4—C5179.9 (2)C15—C16—C17—C180.9 (4)
C3—C4—C5—C6179.4 (2)C16—C17—C18—O2177.8 (2)
C9—C4—C5—C60.7 (3)C16—C17—C18—C190.6 (4)
C4—C5—C6—C71.2 (4)C11—N2—C19—C141.9 (4)
C5—C6—C7—C80.1 (4)C11—N2—C19—C18177.3 (2)
Sn1—O1—C8—C7171.77 (18)C15—C14—C19—N2178.8 (2)
Sn1—O1—C8—C98.4 (3)C13—C14—C19—N21.8 (3)
C6—C7—C8—O1178.3 (2)C15—C14—C19—C182.0 (4)
C6—C7—C8—C91.5 (3)C13—C14—C19—C18177.4 (2)
C1—N1—C9—C41.6 (3)O2—C18—C19—N22.7 (3)
Sn1—N1—C9—C4175.39 (17)C17—C18—C19—N2178.7 (2)
C1—N1—C9—C8178.7 (2)O2—C18—C19—C14176.5 (2)
Sn1—N1—C9—C84.3 (2)C17—C18—C19—C142.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.84 (1)1.86 (1)2.683 (2)168 (3)
N2—H2···O20.88 (1)2.33 (2)2.667 (3)103 (2)

Experimental details

Crystal data
Chemical formula(C10H10NO)[Sn(C9H6NO)Cl4]
Mr564.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9431 (3), 11.5892 (4), 20.1795 (8)
β (°) 101.347 (4)
V3)2050.59 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.616, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
13674, 4723, 4222
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.06
No. of reflections4723
No. of parameters262
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.54

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.84 (1)1.86 (1)2.683 (2)168 (3)
 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds