organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-4-nitro­anilinium chloride

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn

(Received 30 April 2012; accepted 26 May 2012; online 31 May 2012)

The asymmetric unit of the title salt, C7H9N2O2+·Cl, contains two independent cations and anions. In the crystal, each N-methyl-4-nitro­anilinium cation is linked to two Cl anions via N—H⋯Cl hydrogen bonds. ππ stacking is observed between the benzene rings of adjacent cations [centroid-to-centroid distances = 3.7684 (14) and 3.7917 (7) Å].

Related literature

For applications of N-methyl-4-nitro­benzenamine, see: Bellamy & Sammour (1993[Bellamy, A. J. & Sammour, M. H. (1993). Propell. Explos. Pyrot. 18, 46-50.]); Sammour (1994[Sammour, M. H. (1994). Propell. Explos. Pyrot. 19, 82-86.]); Williams & Friedlander (2000[Williams, E. M. & Friedlander, C. (2000). US Patent No. 6126763.]); Davies & Provatas (2006[Davies, P. J. & Provatas, A. (2006). DSTO Publications Online, DSTO-TR-1904, http://hdl.handle.net/1947/4431 .]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N2O2+·Cl

  • Mr = 188.61

  • Monoclinic, P 21 /c

  • a = 7.0509 (14) Å

  • b = 19.120 (4) Å

  • c = 13.443 (3) Å

  • β = 95.20 (3)°

  • V = 1804.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.927, Tmax = 0.955

  • 17869 measured reflections

  • 4282 independent reflections

  • 3022 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.03

  • 4282 reflections

  • 236 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl2i 0.90 (1) 2.18 (1) 3.0702 (17) 170 (2)
N2—H2B⋯Cl1i 0.89 (1) 2.16 (1) 3.0482 (19) 173 (2)
N4—H4A⋯Cl2ii 0.90 (1) 2.15 (1) 3.0361 (18) 168 (2)
N4—H4B⋯Cl1 0.89 (1) 2.26 (1) 3.1157 (18) 163 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a stablizer, N-methyl-4-nitrobenzenamine is used in order to lengthen the useful service life of double-base and minimum smoke propellants (Bellamy & Sammour, 1993; Sammour, 1994; Williams & Friedlander, 2000). As a important ingredient, N-methyl-4-nitrobenzenamine can improve melt-cast explosive systems mechanical properties (Davies & Provatas, 2006). In order to research reaction properties, here we report the synthesis and the crystal structure of the title compound (Fig. 1).

The title compound consists of a N-(4-nitrophenyl)-methylammonium cation and a chloride anion. The hydrochloric acid deprotonated and the N-methyl-4-nitrobenzenamine accepts the proton to produce the protonated organic cation, namely N-(4-nitrophenyl)-methylammonium chloride. In the crystal structure, contains two cations and two anions. They are linked by N—H···Cl hydrogen bonds to form a three-dimensional complex network.

Related literature top

For applications of N-methyl-4-nitrobenzenamine, see: Bellamy & Sammour (1993); Sammour (1994); Williams & Friedlander (2000); Davies & Provatas (2006).

Experimental top

The title compound was synthesized by N-methyl-4-nitrobenzenamine and concentrated hydrochloric acid in acetone at room temperature. Single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

H atoms bonded to N atoms were located in a difference Fourier map and refined isotropically with bond restraint of N—H = 0.89 (2) Å. Other H atoms were positioned geometrically and treated as riding with C—H = 0.93–0.96 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
[Figure 2] Fig. 2. The packing of the title compound.
N-Methyl-4-nitroanilinium chloride top
Crystal data top
C7H9N2O2+·ClF(000) = 784
Mr = 188.61Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4042 reflections
a = 7.0509 (14) Åθ = 2.6–27.9°
b = 19.120 (4) ŵ = 0.39 mm1
c = 13.443 (3) ÅT = 293 K
β = 95.20 (3)°Block, yellow
V = 1804.8 (6) Å30.20 × 0.20 × 0.12 mm
Z = 8
Data collection top
Rigaku Saturn
diffractometer
4282 independent reflections
Radiation source: rotating anode3022 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.051
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2525
Tmin = 0.927, Tmax = 0.955l = 1712
17869 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4282 reflectionsΔρmax = 0.24 e Å3
236 parametersΔρmin = 0.27 e Å3
4 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.073 (4)
Crystal data top
C7H9N2O2+·ClV = 1804.8 (6) Å3
Mr = 188.61Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.0509 (14) ŵ = 0.39 mm1
b = 19.120 (4) ÅT = 293 K
c = 13.443 (3) Å0.20 × 0.20 × 0.12 mm
β = 95.20 (3)°
Data collection top
Rigaku Saturn
diffractometer
4282 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3022 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.955Rint = 0.051
17869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
4282 reflectionsΔρmin = 0.27 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5920 (3)0.47358 (8)0.82213 (13)0.0978 (7)
O20.6814 (3)0.46456 (9)0.97433 (15)0.1113 (9)
O30.2318 (3)0.28345 (10)1.09445 (12)0.0814 (6)
O40.1062 (3)0.20296 (9)0.99778 (13)0.0869 (6)
N10.6303 (3)0.43952 (9)0.89526 (14)0.0532 (5)
N20.5910 (2)0.14490 (8)0.86838 (12)0.0408 (4)
N30.1557 (2)0.26321 (10)1.01448 (14)0.0542 (5)
N40.0461 (2)0.45901 (8)0.70054 (11)0.0400 (4)
C10.5619 (3)0.26091 (10)0.79113 (13)0.0405 (4)
H10.53430.23930.72950.049*
C20.5707 (3)0.33269 (10)0.79740 (13)0.0414 (4)
H20.54850.36030.74060.050*
C30.6131 (2)0.36260 (9)0.88971 (14)0.0394 (4)
C40.6468 (3)0.32360 (10)0.97592 (14)0.0442 (5)
H40.67570.34531.03740.053*
C50.6365 (3)0.25178 (10)0.96866 (13)0.0416 (4)
H50.65800.22421.02560.050*
C60.5942 (2)0.22099 (9)0.87655 (12)0.0351 (4)
C70.4023 (3)0.11454 (11)0.83074 (18)0.0602 (6)
H7A0.30530.13240.86960.090*
H7B0.40740.06450.83650.090*
H7C0.37320.12720.76200.090*
C80.0468 (3)0.33800 (9)0.76075 (13)0.0388 (4)
H80.01250.32330.69560.047*
C90.0732 (3)0.28977 (9)0.83732 (14)0.0411 (4)
H90.05680.24220.82510.049*
C100.1243 (3)0.31429 (10)0.93243 (13)0.0402 (4)
C110.1482 (3)0.38398 (10)0.95434 (14)0.0474 (5)
H110.18170.39871.01950.057*
C120.1211 (3)0.43201 (10)0.87722 (13)0.0423 (4)
H120.13600.47960.88980.051*
C130.0720 (2)0.40829 (9)0.78202 (12)0.0347 (4)
C140.1958 (3)0.45515 (11)0.62862 (15)0.0557 (6)
H14A0.31840.46400.66340.084*
H14B0.17010.48960.57720.084*
H14C0.19480.40940.59910.084*
Cl10.10531 (8)0.61298 (3)0.77271 (4)0.05256 (19)
Cl20.31979 (7)0.57619 (3)0.42629 (3)0.04808 (18)
H2A0.632 (3)0.1249 (11)0.9271 (10)0.062 (7)*
H2B0.684 (2)0.1328 (12)0.8311 (15)0.075 (8)*
H4A0.0708 (18)0.4519 (12)0.6697 (15)0.068 (7)*
H4B0.041 (3)0.5011 (7)0.7277 (15)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.187 (2)0.0365 (10)0.0681 (12)0.0036 (11)0.0040 (12)0.0119 (8)
O20.181 (2)0.0497 (11)0.0926 (13)0.0070 (12)0.0467 (15)0.0217 (10)
O30.1046 (14)0.0890 (14)0.0489 (10)0.0101 (11)0.0028 (9)0.0215 (9)
O40.1261 (17)0.0515 (11)0.0827 (12)0.0016 (10)0.0070 (11)0.0284 (9)
N10.0590 (11)0.0368 (10)0.0633 (12)0.0019 (8)0.0029 (9)0.0075 (9)
N20.0475 (10)0.0353 (9)0.0395 (9)0.0044 (7)0.0038 (7)0.0004 (7)
N30.0558 (11)0.0538 (12)0.0544 (11)0.0097 (9)0.0121 (9)0.0178 (9)
N40.0442 (9)0.0350 (9)0.0396 (9)0.0033 (7)0.0021 (7)0.0040 (7)
C10.0491 (11)0.0400 (11)0.0317 (9)0.0016 (8)0.0002 (8)0.0022 (7)
C20.0455 (11)0.0402 (11)0.0380 (10)0.0005 (8)0.0019 (8)0.0049 (8)
C30.0381 (10)0.0339 (10)0.0463 (11)0.0009 (7)0.0047 (8)0.0031 (8)
C40.0525 (12)0.0453 (11)0.0341 (10)0.0021 (9)0.0003 (8)0.0069 (8)
C50.0477 (11)0.0428 (11)0.0337 (9)0.0026 (8)0.0001 (8)0.0035 (8)
C60.0331 (9)0.0339 (9)0.0381 (10)0.0019 (7)0.0026 (7)0.0008 (7)
C70.0611 (14)0.0381 (12)0.0789 (16)0.0080 (10)0.0066 (12)0.0052 (10)
C80.0414 (10)0.0345 (10)0.0400 (10)0.0010 (8)0.0009 (8)0.0033 (8)
C90.0399 (10)0.0312 (10)0.0526 (12)0.0011 (7)0.0065 (8)0.0024 (8)
C100.0398 (10)0.0397 (11)0.0416 (10)0.0034 (8)0.0067 (8)0.0108 (8)
C110.0588 (13)0.0462 (12)0.0364 (10)0.0007 (9)0.0010 (9)0.0004 (8)
C120.0534 (12)0.0314 (10)0.0408 (10)0.0031 (8)0.0028 (8)0.0024 (8)
C130.0332 (9)0.0340 (9)0.0366 (9)0.0004 (7)0.0015 (7)0.0048 (7)
C140.0711 (15)0.0500 (13)0.0483 (12)0.0070 (10)0.0177 (10)0.0066 (10)
Cl10.0642 (4)0.0381 (3)0.0568 (3)0.0017 (2)0.0129 (2)0.0025 (2)
Cl20.0535 (3)0.0514 (3)0.0381 (3)0.0033 (2)0.0030 (2)0.0018 (2)
Geometric parameters (Å, º) top
O1—N11.190 (2)C4—C51.378 (3)
O2—N11.191 (2)C4—H40.9300
O3—N31.220 (2)C5—C61.379 (2)
O4—N31.218 (2)C5—H50.9300
N1—C31.477 (2)C7—H7A0.9600
N2—C61.459 (2)C7—H7B0.9600
N2—C71.497 (3)C7—H7C0.9600
N2—H2A0.901 (9)C8—C91.382 (2)
N2—H2B0.891 (10)C8—C131.382 (2)
N3—C101.475 (2)C8—H80.9300
N4—C131.462 (2)C9—C101.379 (3)
N4—C141.496 (3)C9—H90.9300
N4—H4A0.898 (10)C10—C111.372 (3)
N4—H4B0.885 (10)C11—C121.385 (3)
C1—C21.376 (3)C11—H110.9300
C1—C61.380 (2)C12—C131.372 (2)
C1—H10.9300C12—H120.9300
C2—C31.374 (2)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.380 (3)C14—H14C0.9600
O1—N1—O2123.02 (19)C5—C6—C1121.13 (16)
O1—N1—C3119.47 (17)C5—C6—N2119.60 (15)
O2—N1—C3117.52 (18)C1—C6—N2119.23 (15)
C6—N2—C7114.80 (14)N2—C7—H7A109.5
C6—N2—H2A110.9 (14)N2—C7—H7B109.5
C7—N2—H2A109.6 (14)H7A—C7—H7B109.5
C6—N2—H2B107.1 (16)N2—C7—H7C109.5
C7—N2—H2B112.7 (16)H7A—C7—H7C109.5
H2A—N2—H2B101 (2)H7B—C7—H7C109.5
O4—N3—O3123.90 (19)C9—C8—C13119.26 (16)
O4—N3—C10117.86 (18)C9—C8—H8120.4
O3—N3—C10118.23 (19)C13—C8—H8120.4
C13—N4—C14113.82 (15)C10—C9—C8118.03 (17)
C13—N4—H4A107.0 (14)C10—C9—H9121.0
C14—N4—H4A111.5 (14)C8—C9—H9121.0
C13—N4—H4B107.5 (14)C11—C10—C9123.10 (17)
C14—N4—H4B111.6 (15)C11—C10—N3118.39 (17)
H4A—N4—H4B104.9 (19)C9—C10—N3118.50 (17)
C2—C1—C6119.82 (16)C10—C11—C12118.52 (17)
C2—C1—H1120.1C10—C11—H11120.7
C6—C1—H1120.1C12—C11—H11120.7
C3—C2—C1118.37 (16)C13—C12—C11119.01 (17)
C3—C2—H2120.8C13—C12—H12120.5
C1—C2—H2120.8C11—C12—H12120.5
C2—C3—C4122.68 (17)C12—C13—C8122.08 (16)
C2—C3—N1118.04 (16)C12—C13—N4118.90 (16)
C4—C3—N1119.23 (16)C8—C13—N4119.02 (15)
C5—C4—C3118.36 (16)N4—C14—H14A109.5
C5—C4—H4120.8N4—C14—H14B109.5
C3—C4—H4120.8H14A—C14—H14B109.5
C4—C5—C6119.64 (16)N4—C14—H14C109.5
C4—C5—H5120.2H14A—C14—H14C109.5
C6—C5—H5120.2H14B—C14—H14C109.5
C6—C1—C2—C30.4 (3)C13—C8—C9—C100.1 (3)
C1—C2—C3—C40.1 (3)C8—C9—C10—C110.7 (3)
C1—C2—C3—N1177.47 (17)C8—C9—C10—N3179.08 (16)
O1—N1—C3—C26.2 (3)O4—N3—C10—C11168.9 (2)
O2—N1—C3—C2174.3 (2)O3—N3—C10—C1112.1 (3)
O1—N1—C3—C4176.2 (2)O4—N3—C10—C911.3 (3)
O2—N1—C3—C43.3 (3)O3—N3—C10—C9167.65 (18)
C2—C3—C4—C50.3 (3)C9—C10—C11—C120.5 (3)
N1—C3—C4—C5177.77 (17)N3—C10—C11—C12179.22 (17)
C3—C4—C5—C60.3 (3)C10—C11—C12—C130.1 (3)
C4—C5—C6—C10.0 (3)C11—C12—C13—C80.6 (3)
C4—C5—C6—N2177.53 (17)C11—C12—C13—N4179.17 (17)
C2—C1—C6—C50.4 (3)C9—C8—C13—C120.5 (3)
C2—C1—C6—N2177.88 (17)C9—C8—C13—N4179.30 (16)
C7—N2—C6—C5118.4 (2)C14—N4—C13—C12111.3 (2)
C7—N2—C6—C164.1 (2)C14—N4—C13—C868.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2i0.90 (1)2.18 (1)3.0702 (17)170 (2)
N2—H2B···Cl1i0.89 (1)2.16 (1)3.0482 (19)173 (2)
N4—H4A···Cl2ii0.90 (1)2.15 (1)3.0361 (18)168 (2)
N4—H4B···Cl10.89 (1)2.26 (1)3.1157 (18)163 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H9N2O2+·Cl
Mr188.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.0509 (14), 19.120 (4), 13.443 (3)
β (°) 95.20 (3)
V3)1804.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.20 × 0.20 × 0.12
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.927, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
17869, 4282, 3022
Rint0.051
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.03
No. of reflections4282
No. of parameters236
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2i0.901 (9)2.179 (10)3.0702 (17)170.3 (19)
N2—H2B···Cl1i0.891 (10)2.162 (10)3.0482 (19)173 (2)
N4—H4A···Cl2ii0.898 (10)2.151 (11)3.0361 (18)168 (2)
N4—H4B···Cl10.885 (10)2.259 (12)3.1157 (18)163 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank China North Industries Group Corporation for financial support.

References

First citationBellamy, A. J. & Sammour, M. H. (1993). Propell. Explos. Pyrot. 18, 46–50.  CrossRef CAS Google Scholar
First citationDavies, P. J. & Provatas, A. (2006). DSTO Publications Online, DSTO-TR-1904, http://hdl.handle.net/1947/4431Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSammour, M. H. (1994). Propell. Explos. Pyrot. 19, 82–86.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, E. M. & Friedlander, C. (2000). US Patent No. 6126763.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds