organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-methyl­anilinium) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 6 May 2012; accepted 10 May 2012; online 16 May 2012)

In the crystal of the title mol­ecular salt, 2C7H10N+·C10H6O6S22−, the naphthalene-1,5-disulfonate anion is located on an inversion center and accepts N—H⋯O hydrogen bonds from the 3-methyl­anilinium cations, forming supra­molecular layers parallel to the ac plane.

Related literature

For background to ferroelectric compounds, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang & Xiong (2012[Zhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163-1195.]); Zhang et al. (2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For a related structure, see: Liu (2012[Liu, M.-L. (2012). Acta Cryst. E68, o228.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H10N+·C10H6O6S22−

  • Mr = 502.59

  • Monoclinic, P 21 /c

  • a = 8.3426 (17) Å

  • b = 19.896 (4) Å

  • c = 7.0670 (14) Å

  • β = 90.14 (3)°

  • V = 1173.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.901, Tmax = 0.923

  • 10755 measured reflections

  • 2311 independent reflections

  • 2131 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.190

  • S = 1.22

  • 2311 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 1.90 2.779 (6) 168
N1—H1B⋯O2ii 0.89 1.89 2.779 (6) 177
N1—H1C⋯O1iii 0.89 1.93 2.797 (6) 165
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular-ionic compounds containing inorganic and organic ions due to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Fu et al, 2011; Ye et al. 2009; Zhang et al. 2009; Zhang & Xiong, 2012; Zhang et al. 2010). In our laboratory, the title compound has been synthesized to investigate to its potential ferroelectric properties. However, it was found that the dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

The title compound,(C7H10N)2.C10H6O6S2, has an asymmetric unit that consists of 3-methylanilinium cation, half an naphthalene-1,5-disulfonate anions, which are linked by an N—H···O hydrogen bond(Fig 1). The non-hydrogen atoms of the cation and the anion are coplanar with the r.m.s deviation are 0.0123Å and 0.0326Å respectively, the angle of the two plane is 114.7°. In the crystal structure, the cations are linked to anions by N—H···O hydrogen bonds to form layer-like structure which is parallel to ac plane (Fig 2).

Related literature top

For background literature concerning ferroelectric complexes, see: Fu et al. (2011); Ye et al. (2009); Zhang & Xiong (2012); Zhang et al. (2009, 2010). For a related structure, see: Liu (2012).

Experimental top

1.07 g (1 mmol) of 3-toluidine was firstly dissolved in 30 ml of ethanol, to which 0.288 g (1 mmol) of 1,5-naphthalene-disulfonic acid was added to give a solution at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 5 days in air.

Refinement top

H atoms were placed in calculated positions with N—H = 0.89 and C—H = 0.93– 0.96 Å, and refined in riding mode, Uiso(H) = 1.5Ueq(C,N) for methyl and amino H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. The unlablled atoms are in the asymmetric unit at (1-x,1-y,1-z).
[Figure 2] Fig. 2. The packing of the title compound with view along the a axis. Dashed lines indicate hydrogen bonds.
Bis(3-methylanilinium) naphthalene-1,5-disulfonate top
Crystal data top
2C7H10N+·C10H6O6S22F(000) = 528
Mr = 502.59Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2066 reflections
a = 8.3426 (17) Åθ = 3.4–25.0°
b = 19.896 (4) ŵ = 0.27 mm1
c = 7.0670 (14) ÅT = 293 K
β = 90.14 (3)°Block, colourless
V = 1173.0 (4) Å30.36 × 0.32 × 0.28 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
2311 independent reflections
Radiation source: fine-focus sealed tube2131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2424
Tmin = 0.901, Tmax = 0.923l = 88
10755 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0077P)2 + 6.1071P]
where P = (Fo2 + 2Fc2)/3
2311 reflections(Δ/σ)max = 0.034
156 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
2C7H10N+·C10H6O6S22V = 1173.0 (4) Å3
Mr = 502.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3426 (17) ŵ = 0.27 mm1
b = 19.896 (4) ÅT = 293 K
c = 7.0670 (14) Å0.36 × 0.32 × 0.28 mm
β = 90.14 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2311 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2131 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.923Rint = 0.036
10755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.22Δρmax = 0.50 e Å3
2311 reflectionsΔρmin = 0.33 e Å3
156 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19559 (14)0.57953 (6)0.74214 (17)0.0295 (3)
O20.2105 (5)0.6206 (2)0.9102 (5)0.0493 (11)
O30.1516 (5)0.6197 (2)0.5795 (6)0.0518 (11)
O10.0920 (5)0.5221 (2)0.7674 (7)0.0554 (12)
N11.0108 (5)0.6117 (2)0.2234 (6)0.0388 (10)
H1A1.06880.61440.32900.058*
H1B1.07480.61600.12360.058*
H1C0.96180.57200.21890.058*
C110.3285 (6)0.4582 (3)0.2293 (7)0.0360 (12)
H110.24640.44790.14470.043*
C80.3919 (5)0.5474 (2)0.6913 (7)0.0288 (10)
C90.4199 (5)0.5100 (2)0.5201 (6)0.0265 (10)
C70.7308 (6)0.6503 (3)0.2401 (7)0.0334 (11)
H70.69880.60570.25050.040*
C100.2950 (6)0.4918 (2)0.3920 (7)0.0317 (11)
H100.18950.50310.42000.038*
C60.8907 (6)0.6655 (3)0.2215 (7)0.0331 (11)
C20.6166 (6)0.7012 (3)0.2436 (7)0.0374 (12)
C120.4886 (6)0.4387 (3)0.1880 (7)0.0360 (11)
H120.51060.41600.07590.043*
C50.9429 (7)0.7315 (3)0.2022 (8)0.0441 (13)
H51.05110.74130.18710.053*
C30.6696 (7)0.7671 (3)0.2287 (8)0.0434 (13)
H30.59540.80190.23420.052*
C40.8297 (8)0.7822 (3)0.2060 (8)0.0461 (14)
H40.86170.82670.19330.055*
C10.4405 (7)0.6864 (4)0.2685 (11)0.0618 (18)
H1D0.41110.69350.39820.093*
H1E0.41960.64040.23460.093*
H1F0.37870.71560.18860.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0236 (5)0.0366 (6)0.0282 (6)0.0052 (5)0.0023 (4)0.0040 (5)
O20.050 (2)0.064 (3)0.034 (2)0.007 (2)0.0046 (17)0.0176 (19)
O30.063 (3)0.055 (3)0.037 (2)0.026 (2)0.0026 (19)0.0006 (19)
O10.033 (2)0.051 (3)0.082 (3)0.0064 (18)0.012 (2)0.000 (2)
N10.042 (2)0.038 (2)0.037 (2)0.0038 (19)0.0001 (19)0.0004 (19)
C110.026 (2)0.042 (3)0.039 (3)0.001 (2)0.006 (2)0.012 (2)
C80.026 (2)0.031 (2)0.030 (2)0.0020 (19)0.0028 (19)0.0006 (19)
C90.027 (2)0.026 (2)0.027 (2)0.0007 (18)0.0021 (18)0.0014 (18)
C70.040 (3)0.032 (3)0.028 (2)0.004 (2)0.002 (2)0.004 (2)
C100.026 (2)0.037 (3)0.033 (3)0.003 (2)0.0034 (19)0.002 (2)
C60.037 (3)0.034 (3)0.027 (2)0.003 (2)0.002 (2)0.002 (2)
C20.038 (3)0.045 (3)0.029 (3)0.002 (2)0.001 (2)0.003 (2)
C120.038 (3)0.037 (3)0.033 (3)0.004 (2)0.001 (2)0.006 (2)
C50.042 (3)0.048 (3)0.042 (3)0.011 (3)0.004 (2)0.001 (3)
C30.051 (3)0.035 (3)0.044 (3)0.007 (2)0.003 (3)0.001 (2)
C40.061 (4)0.033 (3)0.045 (3)0.006 (3)0.001 (3)0.006 (2)
C10.037 (3)0.066 (4)0.083 (5)0.002 (3)0.007 (3)0.002 (4)
Geometric parameters (Å, º) top
S1—O11.444 (4)C7—C21.392 (7)
S1—O21.446 (4)C7—H70.9300
S1—O31.446 (4)C10—H100.9300
S1—C81.795 (5)C6—C51.391 (7)
N1—C61.467 (6)C2—C31.387 (8)
N1—H1A0.8900C2—C11.509 (8)
N1—H1B0.8900C12—C8i1.339 (7)
N1—H1C0.8900C12—H120.9300
C11—C101.360 (7)C5—C41.381 (8)
C11—C121.422 (7)C5—H50.9300
C11—H110.9300C3—C41.379 (8)
C8—C12i1.339 (7)C3—H30.9300
C8—C91.440 (6)C4—H40.9300
C9—C101.425 (6)C1—H1D0.9600
C9—C9i1.424 (9)C1—H1E0.9600
C7—C61.374 (7)C1—H1F0.9600
O1—S1—O2113.3 (3)C9—C10—H10119.7
O1—S1—O3112.6 (3)C7—C6—C5121.4 (5)
O2—S1—O3111.3 (2)C7—C6—N1120.2 (5)
O1—S1—C8106.8 (2)C5—C6—N1118.5 (5)
O2—S1—C8106.8 (2)C3—C2—C7117.9 (5)
O3—S1—C8105.5 (2)C3—C2—C1120.3 (5)
C6—N1—H1A109.5C7—C2—C1121.7 (5)
C6—N1—H1B109.5C8i—C12—C11120.7 (5)
H1A—N1—H1B109.5C8i—C12—H12119.6
C6—N1—H1C109.5C11—C12—H12119.6
H1A—N1—H1C109.5C4—C5—C6118.3 (5)
H1B—N1—H1C109.5C4—C5—H5120.9
C10—C11—C12120.2 (5)C6—C5—H5120.9
C10—C11—H11119.9C4—C3—C2121.6 (5)
C12—C11—H11119.9C4—C3—H3119.2
C12i—C8—C9121.3 (4)C2—C3—H3119.2
C12i—C8—S1118.5 (4)C3—C4—C5120.4 (5)
C9—C8—S1120.1 (3)C3—C4—H4119.8
C10—C9—C9i119.2 (5)C5—C4—H4119.8
C10—C9—C8123.0 (4)C2—C1—H1D109.5
C9i—C9—C8117.8 (5)C2—C1—H1E109.5
C6—C7—C2120.5 (5)H1D—C1—H1E109.5
C6—C7—H7119.8C2—C1—H1F109.5
C2—C7—H7119.8H1D—C1—H1F109.5
C11—C10—C9120.7 (4)H1E—C1—H1F109.5
C11—C10—H10119.7
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.891.902.779 (6)168
N1—H1B···O2iii0.891.892.779 (6)177
N1—H1C···O1i0.891.932.797 (6)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula2C7H10N+·C10H6O6S22
Mr502.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3426 (17), 19.896 (4), 7.0670 (14)
β (°) 90.14 (3)
V3)1173.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.901, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
10755, 2311, 2131
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.190, 1.22
No. of reflections2311
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.902.779 (6)168.3
N1—H1B···O2ii0.891.892.779 (6)177.2
N1—H1C···O1iii0.891.932.797 (6)165.3
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, M.-L. (2012). Acta Cryst. E68, o228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163–1195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds