organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy­anilinium 2-chloro­acetate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 7 May 2012; accepted 11 May 2012; online 26 May 2012)

In the crystal of the title salt, C6H8NO+·C2H2ClO2, the 4-hy­droxy­anilinium cation links to adjacent chloro­acetate anions via N—H⋯O and O—H⋯O hydrogen bonds; weak C—H⋯O inter­actions also occur between the anions and cations.

Related literature

For the structures and properties of related compounds, see: Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]); Xue et al. (2002[Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495-497.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]); Ye et al. (2008[Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P.-W.-H. & Huang, S.-P.-D. (2008). Inorg. Chem. 47, 772-774.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8NO+·C2H2ClO2

  • Mr = 203.62

  • Monoclinic, P 21 /c

  • a = 10.702 (3) Å

  • b = 4.5242 (10) Å

  • c = 19.357 (7) Å

  • β = 96.825 (2)°

  • V = 930.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 6248 measured reflections

  • 2122 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.104

  • S = 1.09

  • 2122 reflections

  • 119 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.91 1.86 2.755 (3) 166
N1—H1B⋯O2i 0.91 1.87 2.777 (3) 171
N1—H1C⋯O2ii 0.91 1.90 2.762 (2) 157
O1—H1⋯O3iii 0.82 1.87 2.683 (2) 172
C8—H8A⋯O1iv 0.99 2.38 3.319 (3) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) -x, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containing strong intrermolecular H-bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Chen et al., 2001; Huang et al., 1999; Zhang et al., 2001). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new crystal materials have been elaborated (Wang et al., 2002; Xue et al., 2002; Ye et al., 2008). Herewith, we present the synthesis and crystal structure of the title compound, 4-hydroxyanilinium 2-chloroacetate.

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit was composed of one 4-hydroxyanilinium cation and one 2-chloroacetate anion. The protonated N atom was involved in strong intramolecular N—H···O hydrogen bonds with the N···O distances of 2.777 (3)Å, 2.762 (2)Å and 2.755 (3)Å, respectively. The N—H···O and O—H···O H-bonding interactions connected the ion units into a 2D network parallel to the ab-plane. The weak intermolecular C8—H8A···O1 interaction was presented in the crystal structure with C8···O1 = 3.319 (3)Å.

Related literature top

For the structures and properties of related compounds, see: Chen et al. (2001); Wang et al. (2002); Xue et al. (2002); Huang et al. (1999); Zhang et al. (2001); Ye et al. (2008).

Experimental top

The 2-chloroacetic acid (10 mmol), 4-aminophenol (10 mmol) and ethanol (50 mL) were added into a 100 mL flask. The mixture was stirred at 333 K for 2 h, and then the precipitate was filtered out. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement top

All the H atoms attached to C atoms were situated into the idealized positions and treated as riding with C–H = 0.95 Å (aromatic) and C–H = 0.99 Å (methylene) with Uiso(H) = 1.2Ueq(C). The positional parameters of the H atoms bonded to N and O were located in a difference Fourier map and refined with restraints of H—N = 0.91 (2) and H—O = 0.82 (2) Å, Uiso(H) = 1.5Ueq(N,O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.
4-Hydroxyanilinium 2-chloroacetate top
Crystal data top
C6H8NO+·C2H2ClO2F(000) = 424
Mr = 203.62Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2122 reflections
a = 10.702 (3) Åθ = 2.7–27.5°
b = 4.5242 (10) ŵ = 0.38 mm1
c = 19.357 (7) ÅT = 173 K
β = 96.825 (2)°Block, colorless
V = 930.6 (5) Å30.10 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2122 independent reflections
Radiation source: fine-focus sealed tube1699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD profile fitting scansh = 1213
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 55
Tmin = 0.910, Tmax = 1.000l = 2523
6248 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.041P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
2122 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.31 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
C6H8NO+·C2H2ClO2V = 930.6 (5) Å3
Mr = 203.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.702 (3) ŵ = 0.38 mm1
b = 4.5242 (10) ÅT = 173 K
c = 19.357 (7) Å0.10 × 0.05 × 0.05 mm
β = 96.825 (2)°
Data collection top
Rigaku Mercury2
diffractometer
2122 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1699 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.045
6248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0484 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2122 reflectionsΔρmin = 0.31 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.41622 (5)1.32273 (13)0.29181 (3)0.02016 (16)
O30.29262 (14)0.7514 (4)0.42037 (8)0.0222 (4)
O20.48355 (14)0.9420 (4)0.41518 (8)0.0188 (4)
N10.37140 (16)0.5601 (4)0.55354 (10)0.0163 (4)
H1A0.35550.60380.50740.024*
H1B0.41700.39020.55900.024*
H1C0.41580.71040.57600.024*
O10.08865 (14)0.4356 (4)0.66202 (9)0.0250 (4)
H10.14610.36840.63470.037*
C20.1616 (2)0.3348 (6)0.54972 (13)0.0223 (5)
H2A0.17810.22890.50940.027*
C70.3694 (2)0.9122 (5)0.39246 (11)0.0163 (5)
C10.2513 (2)0.5212 (5)0.58293 (12)0.0164 (5)
C60.2298 (2)0.6739 (6)0.64231 (12)0.0204 (5)
H6A0.29290.79950.66510.025*
C40.0232 (2)0.4565 (5)0.63473 (12)0.0184 (5)
C50.1148 (2)0.6413 (6)0.66814 (12)0.0235 (5)
H5A0.09890.74580.70880.028*
C30.0466 (2)0.3032 (6)0.57581 (13)0.0231 (5)
H3A0.01590.17600.55310.028*
C80.3133 (2)1.0670 (5)0.32664 (12)0.0191 (5)
H8A0.23661.17380.33640.023*
H8B0.28730.91560.29090.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0217 (3)0.0185 (3)0.0211 (3)0.0005 (2)0.0056 (2)0.0027 (2)
O30.0177 (8)0.0311 (10)0.0180 (8)0.0054 (7)0.0023 (7)0.0060 (7)
O20.0146 (8)0.0172 (8)0.0236 (9)0.0023 (7)0.0018 (6)0.0011 (7)
N10.0141 (9)0.0171 (10)0.0177 (10)0.0021 (8)0.0020 (7)0.0020 (8)
O10.0135 (8)0.0374 (11)0.0245 (9)0.0036 (8)0.0041 (7)0.0002 (8)
C20.0221 (12)0.0226 (12)0.0232 (12)0.0053 (11)0.0066 (10)0.0074 (10)
C70.0161 (11)0.0166 (11)0.0165 (11)0.0005 (9)0.0035 (9)0.0015 (9)
C10.0126 (10)0.0173 (12)0.0193 (12)0.0005 (9)0.0023 (9)0.0059 (9)
C60.0158 (11)0.0267 (13)0.0181 (11)0.0025 (10)0.0012 (9)0.0015 (10)
C40.0135 (10)0.0217 (12)0.0197 (12)0.0005 (9)0.0012 (9)0.0069 (10)
C50.0191 (11)0.0338 (15)0.0175 (12)0.0009 (11)0.0014 (9)0.0015 (10)
C30.0183 (11)0.0225 (12)0.0285 (13)0.0089 (10)0.0027 (10)0.0057 (11)
C80.0169 (11)0.0197 (12)0.0205 (12)0.0036 (10)0.0012 (9)0.0031 (10)
Geometric parameters (Å, º) top
Cl1—C81.784 (2)C2—H2A0.9500
O3—C71.265 (3)C7—C81.514 (3)
O2—C71.256 (3)C1—C61.384 (3)
N1—C11.477 (3)C6—C51.390 (3)
N1—H1A0.9100C6—H6A0.9500
N1—H1B0.9100C4—C31.383 (3)
N1—H1C0.9100C4—C51.389 (3)
O1—C41.368 (3)C5—H5A0.9500
O1—H10.8203C3—H3A0.9500
C2—C11.378 (3)C8—H8A0.9900
C2—C31.392 (3)C8—H8B0.9900
C1—N1—H1A109.5C1—C6—H6A120.4
C1—N1—H1B109.5C5—C6—H6A120.4
H1A—N1—H1B109.5O1—C4—C3122.4 (2)
C1—N1—H1C109.5O1—C4—C5117.6 (2)
H1A—N1—H1C109.5C3—C4—C5119.9 (2)
H1B—N1—H1C109.5C4—C5—C6120.2 (2)
C4—O1—H1113.6C4—C5—H5A119.9
C1—C2—C3119.4 (2)C6—C5—H5A119.9
C1—C2—H2A120.3C4—C3—C2120.1 (2)
C3—C2—H2A120.3C4—C3—H3A119.9
O2—C7—O3124.5 (2)C2—C3—H3A119.9
O2—C7—C8121.14 (19)C7—C8—Cl1114.65 (16)
O3—C7—C8114.38 (19)C7—C8—H8A108.6
C2—C1—C6121.2 (2)Cl1—C8—H8A108.6
C2—C1—N1118.9 (2)C7—C8—H8B108.6
C6—C1—N1119.9 (2)Cl1—C8—H8B108.6
C1—C6—C5119.2 (2)H8A—C8—H8B107.6
C3—C2—C1—C61.0 (4)C1—C6—C5—C40.3 (4)
C3—C2—C1—N1178.1 (2)O1—C4—C3—C2179.3 (2)
C2—C1—C6—C51.0 (4)C5—C4—C3—C20.3 (4)
N1—C1—C6—C5178.2 (2)C1—C2—C3—C40.4 (4)
O1—C4—C5—C6179.3 (2)O2—C7—C8—Cl17.3 (3)
C3—C4—C5—C60.3 (4)O3—C7—C8—Cl1173.97 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.911.862.755 (3)166
N1—H1B···O2i0.911.872.777 (3)171
N1—H1C···O2ii0.911.902.762 (2)157
O1—H1···O3iii0.821.872.683 (2)172
C8—H8A···O1iv0.992.383.319 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H8NO+·C2H2ClO2
Mr203.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.702 (3), 4.5242 (10), 19.357 (7)
β (°) 96.825 (2)
V3)930.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6248, 2122, 1699
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.104, 1.09
No. of reflections2122
No. of parameters119
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.911.862.755 (3)166.0
N1—H1B···O2i0.911.872.777 (3)171.1
N1—H1C···O2ii0.911.902.762 (2)156.6
O1—H1···O3iii0.821.872.683 (2)171.6
C8—H8A···O1iv0.992.383.319 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+2, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495–497.  CSD CrossRef CAS Google Scholar
First citationYe, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P.-W.-H. & Huang, S.-P.-D. (2008). Inorg. Chem. 47, 772–774.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds