organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-2-oxo-2-phenyl­acetamide

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 11 May 2012; accepted 23 May 2012; online 31 May 2012)

In the title compound, C14H17NO2, the two carbonyl groups are oriented with respect to each other with a torsion angle of −129.9 (3)°. The cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into a chain running along the a axis.

Related literature

For related N-substituted 2-oxo-2-phenyl­acetamides, see: Boryczka et al. (1998[Boryczka, S., Suwinska, K., Le Guillanton, G., Do, Q. T. & Elothmani, D. (1998). J. Chem. Crystallogr. 28, 555-560.]); Dai & Wu (2011[Dai, J. & Wu, J.-L. (2011). Acta Cryst. E67, o3152.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO2

  • Mr = 231.29

  • Orthorhombic, P 21 21 21

  • a = 9.6942 (4) Å

  • b = 10.4394 (6) Å

  • c = 13.2100 (8) Å

  • V = 1336.87 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.25 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • 5120 measured reflections

  • 1737 independent reflections

  • 845 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 1.00

  • 1737 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.02 2.863 (2) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several crystals of N-substituted phenylglyoxamide have been reported, and their great differences of the cystal form due to the N—H···O hydrogen bond linking form have been observed (Boryczka et al., 1998; Dai & Wu, 2011). In our research for exploring the effect rule of the N-substituted group of phenylglyoxamide to the crystal form, we have synthesized the title compound by condensation of phenylglyoxic acid with cyclohexylamine. The structure of the title compound has been characterized by spectroscopic methods and further confirmation by X-ray analysis. We report here its crystal structure. The two carbonyl groups of the molecule are oriented to each other with a torsion angle of -129.9 (3)°. Molecules are linked by intermolecular hydrogen bonds N—H···O into a one-dimensional chain (Fig. 2).

Related literature top

For related N-substituted 2-oxo-2-phenylacetamides, see: Boryczka et al. (1998); Dai & Wu (2011).

Experimental top

Into a suspension of phenylglyoxylic acid (400 mg, 2.67 mmol) and cyclohexylamine (0.272 ml, 2.38 mmol) in methylene chloride (10 ml), N,N'-dicyclohexylcarbodiimide (DCC) (540 mg, 2.62 mmol) and 4-(dimethylamino)pyridine (DMAP) (66 mg, 0.54 mmol) was added respectively at room temperature and continuted stirring for 10 h. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure, the residue was purified by colum chromatography (silica gel, 30% of ethyl acetate in hexane) to afford the title compound in 69% yield (379 mg) as a white solid, m.p. 384–385 K. Single crystals suitable for X-ray diffraction of the title compound were grown in a mixture of ethyl acetate and hexane.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, N—H = 0.88 Å and included in the refinement as riding their carrier atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 40% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. One-dimensional chain molecules of the title compound linked by two adjacent moleculars N—H···O hydrogen bonds (dotted lines). Symmetry code: (i) -0.5 + x, 0.5 - y, 1 - z.
N-Cyclohexyl-2-oxo-2-phenylacetamide top
Crystal data top
C14H17NO2F(000) = 496
Mr = 231.29Dx = 1.149 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6354 reflections
a = 9.6942 (4) Åθ = 3.2–27.5°
b = 10.4394 (6) ŵ = 0.08 mm1
c = 13.2100 (8) ÅT = 153 K
V = 1336.87 (12) Å3Block, colourless
Z = 40.25 × 0.16 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
845 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 1012
5120 measured reflectionsk = 913
1737 independent reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
1737 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.08 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
C14H17NO2V = 1336.87 (12) Å3
Mr = 231.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.6942 (4) ŵ = 0.08 mm1
b = 10.4394 (6) ÅT = 153 K
c = 13.2100 (8) Å0.25 × 0.16 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
845 reflections with I > 2σ(I)
5120 measured reflectionsRint = 0.026
1737 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.00Δρmax = 0.08 e Å3
1737 reflectionsΔρmin = 0.10 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4098 (2)0.2794 (2)0.45295 (19)0.0663 (6)
C20.3397 (2)0.3534 (2)0.3683 (2)0.0684 (7)
C30.3856 (2)0.3354 (2)0.2645 (2)0.0667 (6)
C40.4675 (3)0.2327 (3)0.2370 (3)0.0863 (7)
H40.49860.17490.28760.104*
C50.5046 (4)0.2127 (4)0.1389 (4)0.1220 (11)
H50.55980.14080.12160.146*
C60.4629 (6)0.2948 (6)0.0663 (3)0.1472 (17)
H60.49020.28100.00190.177*
C70.3812 (4)0.3986 (5)0.0898 (4)0.1328 (15)
H70.35250.45610.03820.159*
C80.3411 (3)0.4187 (3)0.1896 (3)0.0992 (9)
H80.28340.48910.20640.119*
C90.37782 (19)0.1451 (2)0.60266 (19)0.0663 (6)
H90.48010.13560.59660.080*
C100.3146 (2)0.0142 (2)0.6000 (2)0.0774 (7)
H10A0.33870.02840.53550.093*
H10B0.21300.02170.60350.093*
C110.3656 (3)0.0661 (3)0.6877 (2)0.0963 (9)
H11A0.32030.15110.68570.116*
H11B0.46630.07940.68110.116*
C120.3357 (3)0.0036 (3)0.7859 (2)0.1077 (10)
H12A0.37540.05570.84130.129*
H12B0.23460.00020.79600.129*
C130.3938 (3)0.1297 (3)0.7912 (2)0.1173 (11)
H13A0.49580.12520.79190.141*
H13B0.36350.17090.85490.141*
C140.3468 (3)0.2104 (3)0.7015 (2)0.0926 (8)
H14A0.24630.22590.70670.111*
H14B0.39410.29440.70350.111*
N10.32939 (16)0.22256 (17)0.51791 (15)0.0709 (6)
H10.23970.23150.51020.085*
O10.53605 (14)0.27896 (19)0.45723 (13)0.1065 (7)
O20.24786 (18)0.42743 (18)0.39078 (16)0.1070 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (12)0.0839 (14)0.0744 (18)0.0046 (11)0.0022 (12)0.0129 (15)
C20.0468 (12)0.0696 (14)0.089 (2)0.0002 (12)0.0027 (14)0.0158 (15)
C30.0585 (13)0.0672 (14)0.074 (2)0.0106 (13)0.0036 (14)0.0135 (15)
C40.0808 (16)0.0898 (18)0.088 (2)0.0109 (17)0.0028 (17)0.0012 (17)
C50.137 (3)0.125 (3)0.104 (3)0.020 (2)0.027 (3)0.016 (3)
C60.188 (4)0.167 (4)0.087 (3)0.077 (4)0.014 (3)0.015 (3)
C70.158 (3)0.148 (3)0.093 (3)0.044 (3)0.029 (3)0.054 (3)
C80.107 (2)0.0941 (18)0.097 (3)0.0214 (17)0.015 (2)0.030 (2)
C90.0369 (10)0.0915 (15)0.0706 (18)0.0062 (11)0.0024 (12)0.0167 (16)
C100.0801 (15)0.0763 (16)0.0757 (19)0.0060 (14)0.0005 (16)0.0040 (15)
C110.0945 (19)0.0939 (17)0.101 (3)0.0056 (16)0.0059 (19)0.0259 (19)
C120.102 (2)0.144 (3)0.077 (3)0.005 (2)0.005 (2)0.037 (2)
C130.131 (2)0.145 (3)0.076 (2)0.012 (2)0.026 (2)0.007 (2)
C140.0999 (19)0.0907 (17)0.087 (2)0.0083 (17)0.0252 (18)0.0073 (18)
N10.0344 (8)0.0975 (13)0.0809 (15)0.0005 (9)0.0012 (9)0.0273 (12)
O10.0367 (8)0.1821 (17)0.1007 (15)0.0129 (10)0.0007 (9)0.0534 (14)
O20.0890 (12)0.1142 (14)0.1178 (17)0.0351 (12)0.0181 (13)0.0217 (14)
Geometric parameters (Å, º) top
C1—O11.226 (2)C9—C141.504 (3)
C1—N11.302 (2)C9—H91.0000
C1—C21.519 (3)C10—C111.512 (3)
C2—O21.216 (3)C10—H10A0.9900
C2—C31.454 (3)C10—H10B0.9900
C3—C41.383 (3)C11—C121.481 (4)
C3—C81.386 (3)C11—H11A0.9900
C4—C51.360 (4)C11—H11B0.9900
C4—H40.9500C12—C131.502 (4)
C5—C61.348 (5)C12—H12A0.9900
C5—H50.9500C12—H12B0.9900
C6—C71.378 (5)C13—C141.524 (3)
C6—H60.9500C13—H13A0.9900
C7—C81.390 (5)C13—H13B0.9900
C7—H70.9500C14—H14A0.9900
C8—H80.9500C14—H14B0.9900
C9—N11.459 (3)N1—H10.8800
C9—C101.498 (3)
O1—C1—N1124.4 (2)C11—C10—H10A109.5
O1—C1—C2118.8 (2)C9—C10—H10B109.5
N1—C1—C2116.70 (18)C11—C10—H10B109.5
O2—C2—C3122.5 (2)H10A—C10—H10B108.1
O2—C2—C1118.1 (3)C12—C11—C10111.3 (2)
C3—C2—C1119.5 (2)C12—C11—H11A109.4
C4—C3—C8118.5 (3)C10—C11—H11A109.4
C4—C3—C2121.6 (2)C12—C11—H11B109.4
C8—C3—C2119.8 (3)C10—C11—H11B109.4
C5—C4—C3121.4 (3)H11A—C11—H11B108.0
C5—C4—H4119.3C11—C12—C13112.1 (3)
C3—C4—H4119.3C11—C12—H12A109.2
C6—C5—C4120.1 (4)C13—C12—H12A109.2
C6—C5—H5120.0C11—C12—H12B109.2
C4—C5—H5120.0C13—C12—H12B109.2
C5—C6—C7120.8 (4)H12A—C12—H12B107.9
C5—C6—H6119.6C12—C13—C14111.3 (3)
C7—C6—H6119.6C12—C13—H13A109.4
C6—C7—C8119.5 (4)C14—C13—H13A109.4
C6—C7—H7120.2C12—C13—H13B109.4
C8—C7—H7120.2C14—C13—H13B109.4
C3—C8—C7119.7 (3)H13A—C13—H13B108.0
C3—C8—H8120.2C9—C14—C13111.4 (2)
C7—C8—H8120.2C9—C14—H14A109.4
N1—C9—C10110.88 (19)C13—C14—H14A109.4
N1—C9—C14110.53 (19)C9—C14—H14B109.4
C10—C9—C14110.6 (2)C13—C14—H14B109.4
N1—C9—H9108.2H14A—C14—H14B108.0
C10—C9—H9108.2C1—N1—C9124.46 (16)
C14—C9—H9108.2C1—N1—H1117.8
C9—C10—C11110.8 (2)C9—N1—H1117.8
C9—C10—H10A109.5
O1—C1—C2—O2129.9 (3)C2—C3—C8—C7177.8 (3)
N1—C1—C2—O248.6 (3)C6—C7—C8—C31.1 (5)
O1—C1—C2—C349.1 (3)N1—C9—C10—C11179.74 (19)
N1—C1—C2—C3132.4 (2)C14—C9—C10—C1157.3 (3)
O2—C2—C3—C4165.7 (2)C9—C10—C11—C1257.3 (3)
C1—C2—C3—C415.4 (3)C10—C11—C12—C1355.3 (3)
O2—C2—C3—C810.9 (3)C11—C12—C13—C1453.3 (4)
C1—C2—C3—C8168.0 (2)N1—C9—C14—C13178.8 (2)
C8—C3—C4—C50.0 (4)C10—C9—C14—C1355.6 (3)
C2—C3—C4—C5176.7 (2)C12—C13—C14—C953.3 (3)
C3—C4—C5—C60.9 (5)O1—C1—N1—C93.0 (4)
C4—C5—C6—C70.9 (6)C2—C1—N1—C9178.6 (2)
C5—C6—C7—C80.1 (6)C10—C9—N1—C1125.1 (2)
C4—C3—C8—C71.1 (4)C14—C9—N1—C1111.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.022.863 (2)159
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H17NO2
Mr231.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)153
a, b, c (Å)9.6942 (4), 10.4394 (6), 13.2100 (8)
V3)1336.87 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5120, 1737, 845
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.00
No. of reflections1737
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.08, 0.10

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.022.863 (2)159
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Mr J. Gu for valuable suggestions and Mr J. Liu for assistance with the data collection.

References

First citationBoryczka, S., Suwinska, K., Le Guillanton, G., Do, Q. T. & Elothmani, D. (1998). J. Chem. Crystallogr. 28, 555–560.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J. & Wu, J.-L. (2011). Acta Cryst. E67, o3152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds